1
|
Orta-Rivera AM, Meléndez-Contés Y, Medina-Berríos N, Gómez-Cardona AM, Ramos-Rodríguez A, Cruz-Santiago C, González-Dumeng C, López J, Escribano J, Rivera-Otero JJ, Díaz-Rivera J, Díaz-Vélez SC, Feliciano-Delgado Z, Tinoco AD. Copper-Based Antibiotic Strategies: Exploring Applications in the Hospital Setting and the Targeting of Cu Regulatory Pathways and Current Drug Design Trends. INORGANICS 2023; 11:252. [PMID: 39381734 PMCID: PMC11460770 DOI: 10.3390/inorganics11060252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
Classical antibacterial drugs were designed to target specific bacterial properties distinct from host human cells to maximize potency and selectivity. These designs were quite effective as they could be easily derivatized to bear next-generation drugs. However, the rapid mutation of bacteria and their associated acquired drug resistance have led to the rise of highly pathogenic superbug bacterial strains for which treatment with first line drugs is no match. More than ever, there is a dire need for antibacterial drug design that goes beyond conventional standards. Taking inspiration by the body's innate immune response to employ its own supply of labile copper ions in a toxic attack against pathogenic bacteria, which have a very low Cu tolerance, this review article examines the feasibility of Cu-centric strategies for antibacterial preventative and therapeutic applications. Promising results are shown for the use of Cu-containing materials in the hospital setting to minimize patient bacterial infections. Studies directed at disrupting bacterial Cu regulatory pathways elucidate new drug targets that can enable toxic increase of Cu levels and perturb bacterial dependence on iron. Likewise, Cu intracellular chelation/prochelation strategies effectively induce bacterial Cu toxicity. Cu-based small molecules and nanoparticles demonstrate the importance of the Cu ions in their mechanism and display potential synergism with classical drugs.
Collapse
|
2
|
Ugwu DI, Conradie J. Metal complexes derived from bidentate ligands: Synthesis, catalytic and biological applications. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
3
|
Martins DOS, Souza RAC, Freire MCLC, de Moraes Roso Mesquita NC, Santos IA, de Oliveira DM, Junior NN, de Paiva REF, Harris M, Oliveira CG, Oliva G, Jardim ACG. Insights into the role of the cobalt(III)-thiosemicarbazone complex as a potential inhibitor of the Chikungunya virus nsP4. J Biol Inorg Chem 2023; 28:101-115. [PMID: 36484824 PMCID: PMC9735056 DOI: 10.1007/s00775-022-01974-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/19/2022] [Indexed: 12/14/2022]
Abstract
Chikungunya virus (CHIKV) is the causative agent of chikungunya fever, a disease that can result in disability. Until now, there is no antiviral treatment against CHIKV, demonstrating that there is a need for development of new drugs. Studies have shown that thiosemicarbazones and their metal complexes possess biological activities, and their synthesis is simple, clean, versatile, and results in high yields. Here, we evaluated the mechanism of action (MOA) of a cobalt(III) thiosemicarbazone complex named [CoIII(L1)2]Cl based on its in vitro potent antiviral activity against CHIKV previously evaluated (80% of inhibition on replication). Furthermore, the complex has no toxicity in healthy cells, as confirmed by infecting BHK-21 cells with CHIKV-nanoluciferase in the presence of the compound, showing that [CoIII(L1)2]Cl inhibited CHIKV infection with the selective index of 3.26. [CoIII(L1)2]Cl presented a post-entry effect on viral replication, emphasized by the strong interaction of [CoIII(L1)2]Cl with CHIKV non-structural protein 4 (nsP4) in the microscale thermophoresis assay, suggesting a potential mode of action of this compound against CHIKV. Moreover, in silico analyses by molecular docking demonstrated potential interaction of [CoIII(L1)2]Cl with nsP4 through hydrogen bonds, hydrophobic and electrostatic interactions. The evaluation of ADME-Tox properties showed that [CoIII(L1)2]Cl presents appropriate lipophilicity, good human intestinal absorption, and has no toxicological effect as irritant, mutagenic, reproductive, and tumorigenic side effects.
Collapse
Affiliation(s)
- Daniel Oliveira Silva Martins
- Institute of Biomedical Sciences, Federal University of Uberlândia, Avenida Amazonas, 4C- Room 216, Umuarama, Uberlândia, MG, 38405-302, Brazil
- São Paulo State University, IBILCE, São José do Rio Preto, SP, Brazil
| | | | | | | | - Igor Andrade Santos
- Institute of Biomedical Sciences, Federal University of Uberlândia, Avenida Amazonas, 4C- Room 216, Umuarama, Uberlândia, MG, 38405-302, Brazil
| | - Débora Moraes de Oliveira
- Institute of Biomedical Sciences, Federal University of Uberlândia, Avenida Amazonas, 4C- Room 216, Umuarama, Uberlândia, MG, 38405-302, Brazil
| | - Nilson Nicolau Junior
- Molecular Modeling Laboratory, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Brazil
| | | | - Mark Harris
- Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Carolina Gonçalves Oliveira
- Bioinorganic Chemistry Group, Institute of Chemistry, Federal University of Uberlândia, Uberlândia, MG, 38408-100, Brazil.
| | - Glaucius Oliva
- Physics Institute of São Carlos, University of São Paulo, São Carlos, SP, Brazil
| | - Ana Carolina Gomes Jardim
- Institute of Biomedical Sciences, Federal University of Uberlândia, Avenida Amazonas, 4C- Room 216, Umuarama, Uberlândia, MG, 38405-302, Brazil.
- São Paulo State University, IBILCE, São José do Rio Preto, SP, Brazil.
| |
Collapse
|
4
|
Villa-Pérez C, Cadavid-Vargas JF, Medina JJM, Echeverría GA, Camí GE, Virgilio ALD, Soria DB. Physicochemical and biological studies of Ni(II), Cu(II) and Zn(II) ternary complexes of sulfaquinoxaline and 2,2’-bipyrimidine. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
5
|
Antibacterial and antifungal activities in vitro of a novel silver(I) complex with sulfadoxine-salicylaldehyde Schiff base. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Olar R, Maxim C, Badea M, Bacalum M, Raileanu M, Avram S, Korošin NČ, Burlanescu T, Rostas AM. Antiproliferative Copper(II) Complexes Bearing Mixed Chelating Ligands: Structural Characterization, ROS Scavenging, In Silico Studies, and Anti-Melanoma Activity. Pharmaceutics 2022; 14:pharmaceutics14081692. [PMID: 36015318 PMCID: PMC9416163 DOI: 10.3390/pharmaceutics14081692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/29/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Melanoma is a skin cancer characterized by rapid growth and spread for which current therapies produce both resistance and increased risk of infection. To develop new anti-melanoma biocompatible species, the series of complexes Cu(N-N)(bzac)(X)⋅nH2O (N-N: 1,10-phenanthroline/2,2′-bipyridine, Hbzac: 1-phenyl-1,3-butanedione, X: NO3/ClO4, and n = 0, 1) was studied. Single-crystal X-ray diffraction revealed a mononuclear structure for all complexes. The ability of the complexes to scavenge or trap reactive oxygen species such as O2⋅− and HO⋅ was proved by EPR spectroscopy experiments. All complexes inhibited B16 murine melanoma cells in a dose-dependent and nanomolar range, but the complexes with 1,10-phenanthroline were more active. Moreover, comparative activity on B16 and healthy BJ cells revealed a therapeutic index of 1.27–2.24. Bioinformatic methods were used to calculate the drug-likeness, pharmacokinetic, pharmacogenomic, and pharmacodynamic profiles of the compounds. The results showed that all compounds exhibit drug-likeness features, as well as promising absorption, distribution, metabolism, and excretion (ADME) properties, and no toxicity. The pharmacodynamics results showed that the neutral species appear to be good candidates for antitumor molecular targets (Tyrosyl-DNA phosphodiesterase 1, DNA-(apurinic or apyrimidinic site) lyase or Kruppel-like factor 5). Furthermore, the pharmacogenomic results showed a good affinity of the copper(II) complexes for the human cytochrome. These results recommend complexes bearing 1,10-phenanthroline as good candidates for developing drugs to melanoma alternative treatment.
Collapse
Affiliation(s)
- Rodica Olar
- Faculty of Chemistry, Department of Inorganic Chemistry, University of Bucharest, 90-92 Panduri Str., 050663 Bucharest, Romania
- Correspondence: (R.O.); (S.A.)
| | - Catalin Maxim
- Faculty of Chemistry, Department of Inorganic Chemistry, University of Bucharest, 90-92 Panduri Str., 050663 Bucharest, Romania
| | - Mihaela Badea
- Faculty of Chemistry, Department of Inorganic Chemistry, University of Bucharest, 90-92 Panduri Str., 050663 Bucharest, Romania
| | - Mihaela Bacalum
- Horia Hulubei National Institute for Physics and Nuclear Engineering, Department of Life and Environmental Physics, 30 Reactorului Str., 077125 Magurele-Ilfov, Romania
| | - Mina Raileanu
- Horia Hulubei National Institute for Physics and Nuclear Engineering, Department of Life and Environmental Physics, 30 Reactorului Str., 077125 Magurele-Ilfov, Romania
- Faculty of Physics, Department of Electricity, Solid State and Biophysics, University of Bucharest, 405A Atomiștilor Str., 077125 Magurele-Ilfov, Romania
| | - Speranta Avram
- Faculty of Biology, Department of Anatomy, Animal Physiology and Biophysics, University of Bucharest, 91-95, Splaiul Independenței, 050095 Bucharest, Romania
- Correspondence: (R.O.); (S.A.)
| | - Nataša Čelan Korošin
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Teodora Burlanescu
- Laboratory of Optical Processes in Nanostructure Materials, National Institute of Materials Physics, 405A Atomiștilor Str., 077125 Magurele-Ilfov, Romania
| | - Arpad Mihai Rostas
- Laboratory of Atomic Structures and Defects in Advanced Materials, LASDAM, National Institute of Materials Physics, 405A Atomiștilor Str., 077125 Magurele-Ilfov, Romania
| |
Collapse
|
7
|
|
8
|
Bergamini FR, Nunes JH, Manzano CM, de Carvalho MA, Ribeiro MA, Ruiz ALTG, de Carvalho JE, Lustri WR, de Paiva REF, Portes MC, da Costa Ferreira AM, Corbi PP. Investigating the antiproliferative activities of new CuII complexes with pyridine hydrazone derivatives of nalidixic acid. J Inorg Biochem 2022; 234:111881. [DOI: 10.1016/j.jinorgbio.2022.111881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/10/2022] [Accepted: 05/28/2022] [Indexed: 11/16/2022]
|
9
|
Anjomshoa M, Amirheidari B. Nuclease-like metalloscissors: Biomimetic candidates for cancer and bacterial and viral infections therapy. Coord Chem Rev 2022; 458:214417. [PMID: 35153301 PMCID: PMC8816526 DOI: 10.1016/j.ccr.2022.214417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/09/2022] [Indexed: 12/25/2022]
Abstract
Despite the extensive and rapid discovery of modern drugs for treatment of cancer, microbial infections, and viral illnesses; these diseases are still among major global health concerns. To take inspiration from natural nucleases and also the therapeutic potential of metallopeptide antibiotics such as the bleomycin family, artificial metallonucleases with the ability of promoting DNA/RNA cleavage and eventually affecting cellular biological processes can be introduced as a new class of therapeutic candidates. Metal complexes can be considered as one of the main categories of artificial metalloscissors, which can prompt nucleic acid strand scission. Accordingly, biologists, inorganic chemists, and medicinal inorganic chemists worldwide have been designing, synthesizing and evaluating the biological properties of metal complexes as artificial metalloscissors. In this review, we try to highlight the recent studies conducted on the nuclease-like metalloscissors and their potential therapeutic applications. Under the light of the concurrent Covid-19 pandemic, the human need for new therapeutics was highlighted much more than ever before. The nuclease-like metalloscissors with the potential of RNA cleavage of invading viral pathogens hence deserve prime attention.
Collapse
|
10
|
Santos IA, Pereira AKDS, Guevara-Vega M, de Paiva REF, Sabino-Silva R, Bergamini FRG, Corbi PP, Jardim ACG. Repurposing potential of rimantadine hydrochloride and development of a promising platinum(II)-rimantadine metallodrug for the treatment of Chikungunya virus infection. Acta Trop 2022; 227:106300. [PMID: 34979144 DOI: 10.1016/j.actatropica.2021.106300] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 11/15/2022]
Abstract
Most of the patients infected with Chikungunya virus (CHIKV) develop chronic manifestations characterized by pain and deformity in joints, impacting their quality of life. The aminoadamantanes, in their turn, have been exploited due to their biological activities, with amantadine and memantine recently described with anti-CHIKV activities. Here we evaluated the antiviral activity of rimantadine hydrochloride (rtdH), a well-known antiviral agent against influenza A, its platinum complex (Pt-rtd), and the precursor cis-[PtCl2(dmso)2], against CHIKV infection in vitro. The rtdH demonstrated significant antiviral activity in all stages of CHIKV replication (29% in pre-treatment; 57% in early stages of infection; 60% in post-entry stages). The Pt-rtd complex protected the cells against infection in 92%, inhibited 100% of viral entry, mainly by a virucidal effect, and impaired 60% of post-entry stages. Alternatively, cis-[PtCl2(dmso)2] impaired viral entry in 100% and post-entry steps in 60%, but had no effect in protecting cells when administered prior to CHIKV infection. Collectively, the obtained data demonstrated that rtdH and Pt-rtd significantly interfered in the early stages of CHIKV life cycle, with the strongest effect observed to Pt-rtd complex, which reduced up to 100% of CHIKV infection. Moreover, molecular docking analysis and infrared spectroscopy data (ATR-FTIR) suggest an interaction of Pt-rtd with CHIKV glycoproteins, potentially related to the mechanism of inhibition of viral entry by Pt-rtd. Through a migration retardation assay, it was also shown that Pt-rtd and cis-[PtCl2(dmso)2] interacted with the dsRNA in 87% and 100%, respectively. The obtained results highlight the repurposing potential of rtdH as an anti-CHIKV drug, as well as the synthesis of promising platinum(II) metallodrugs with potential application for the treatment of CHIKV infections. Importance Chikungunya fever is a disease that can result in persistent symptoms due to the chronic infection process. Infected patients can develop physical disability, resulting and high costs to the health system and significant impacts on the quality of life of affected individuals. Additionally, there are no licensed vaccines or antivirals against the Chikungunya virus (CHIKV) and the virus is easily transmitted due to the abundance of viable vectors in epidemic regions. In this context, our study highlights the repurposing potential of the commercial drug rimantadine hydrochloride (rtdH) as an antiviral agent for the treatment of CHIKV infections. Moreover, our data demonstrated that a platinum(II)-rimantadine metallodrug (Pt-rtd) poses as a potent anti-CHIKV molecule with potential application for the treatment of Chikungunya fever. Altogether, rtdH and Pt-rtd significantly interfered in the early stages of CHIKV life cycle, reducing up to 100% of CHIKV infection in vitro.
Collapse
Affiliation(s)
- Igor Andrade Santos
- Laboratory of Virology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia-MG 38405-302, Brazil
| | | | - Marco Guevara-Vega
- Innovation Center in Salivary Diagnostic and Nanotheranostics, Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlandia, Minas Gerais, Brazil
| | | | - Robinson Sabino-Silva
- Innovation Center in Salivary Diagnostic and Nanotheranostics, Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlandia, Minas Gerais, Brazil
| | - Fernando R G Bergamini
- Laboratory of Synthesis of Bioinspired Molecules, Institute of Chemistry, Federal University of Uberlândia, Uberlândia-MG 34000-902, Brazil.
| | - Pedro P Corbi
- Institute of Chemistry, University of Campinas-UNICAMP, Campinas-SP 13083-871, Brazil.
| | - Ana Carolina G Jardim
- Laboratory of Virology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia-MG 38405-302, Brazil; Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São Paulo State University (Unesp), Campus São José do Rio Preto, São José do Rio Preto, São Paulo, Brazil.
| |
Collapse
|
11
|
Scarim CB, Pavan FR. An overview of sulfonamide-based conjugates: Recent advances for tuberculosis treatment. Drug Dev Res 2022; 83:567-577. [PMID: 35040503 DOI: 10.1002/ddr.21913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 11/11/2022]
Abstract
In 2019, tuberculosis (TB) caused approximately 1.4 million deaths around the world. TB is an infectious respiratory disease mainly caused by Mycobacterium tuberculosis. The lack of new drugs to treat drug-resistant strains is a principal factor for the continuous slow rise in TB infections. Sulfonamides are active moieties in various drugs used against several sicknesses, including TB. Our aim is to aid the development of new TB treatments and drugs by describing recent improvements (2011-2021) to sulfonamide-based compounds.
Collapse
Affiliation(s)
- Cauê Benito Scarim
- Department of Cell and Molecular Biology, University of Mississippi Medical Center (UMMC), Jackson, Mississippi, USA
| | - Fernando Rogério Pavan
- School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, Sao Paulo, Brazil
| |
Collapse
|
12
|
Ternary Copper Complex of L-Glutamine and Phenanthroline as Counterions of Cyclo-Tetravanadate Anion: Experimental–Theoretical Characterization and Potential Antineoplastic Activity. METALS 2021. [DOI: 10.3390/met11101541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Over the last decade, therapeutic metallodrugs have become substantially effective in the treatment of cancer. Thus, developing new effective anticancer drugs is a significant research area against the continuing increase in cancers worldwide. In the search for heterobimetallic prodrugs containing V/Cu, a new cyclo-tetravanadate was synthesized and characterized by UV-visible and FTIR spectroscopies and single-crystal X-ray diffraction. L-Glutamine and 1,10-phenanthroline allow the crystallization of [Cu(L-Gln)(phen)(H2O)]4[V4O12]∙8(H2O) (1), in which the cyclo-tetravanadate acts as a free anion. Density functional theory (DFT) calculations were carried out to characterize the frontier molecular orbitals and molecular electrostatic potential. Global reactivity indexes were calculated and analyzed to give insight into the cyclo-tetravanadate anion and complex counterions interactions. Also, using Bader’s theory of atoms in molecules (AIM), non-covalent interactions were analyzed. Docking analysis with the Casiopeina-like complex resulting from the hydrolysis of compound 1 provided insights into these complex potential anticancer activities by interacting with DNA/tRNA via H-bonds and hydrophobic interactions. The release of both components could act together or separately, acting as prodrugs with potential dual antineoplastic activities.
Collapse
|
13
|
Almeida JDC, Silva RT, Zanetti RD, Moreira MB, Portes MC, Polloni L, de Vasconcelos Azevedo FV, Von Poelhsitz G, Pivatto M, Netto AV, Ávila VDMR, Manieri KF, Pavan FR, Da Costa Ferreira AM, Guerra W. DNA interactions, antitubercular and cytotoxic activity of heteroleptic CuII complexes containing 1,10-phenanthroline. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
A novel water-soluble platinum(II) complex with the amino acid deoxyalliin: synthesis, crystal structure, theoretical studies and investigations about its antibacterial activity. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Scarim CB, Lira de Farias R, Vieira de Godoy Netto A, Chin CM, Leandro Dos Santos J, Pavan FR. Recent advances in drug discovery against Mycobacterium tuberculosis: Metal-based complexes. Eur J Med Chem 2021; 214:113166. [PMID: 33550181 DOI: 10.1016/j.ejmech.2021.113166] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 12/12/2022]
Abstract
Metal-based drugs are privileged motifs that act as primary pharmacophores in bioactive compounds for various diseases, including tuberculosis (TB). This potentially life-threatening and extremely contagious infectious disease is caused by Mycobacterium tuberculosis (Mtb). In 2018, TB infected about 10 million people and caused 1.2 million deaths worldwide. A large number of ligands are promising scaffolds in drug design, including heterocyclic, phosphines, schiff bases, thio and semicarbazones, aliphatic amines, cyclopalladated, cyanometallates and miscellaneous. Moreover, several metal-based complexes have been studied for the treatment of numerous illnesses, including infectious diseases. To contribute to drug design, we identified the metal-based organometallic complexes against Mtb. Thus, in this review article, we analysed the recent contributions of metal-based scaffolds for design of new anti-Mtb drugs in the last decade (2011-2020). Besides, metal-based approaches will be presented in order to find out new antitubercular agents.
Collapse
Affiliation(s)
- Cauê Benito Scarim
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, 14800-903, Brazil.
| | - Renan Lira de Farias
- Sao Paulo State University (UNESP), Institute of Chemistry, Araraquara, SP, 14800-900, Brazil
| | | | - Chung Man Chin
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, 14800-903, Brazil; School of Medicine, Union of the Colleges of the Great Lakes (UNILAGO), São José do Rio Preto, SP, 15030-070, Brazil
| | - Jean Leandro Dos Santos
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, 14800-903, Brazil; Sao Paulo State University (UNESP), Institute of Chemistry, Araraquara, SP, 14800-900, Brazil
| | - Fernando Rogério Pavan
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, 14800-903, Brazil.
| |
Collapse
|
16
|
Copper(II) Complexes with Mixed Heterocycle Ligands as Promising Antibacterial and Antitumor Species. Molecules 2020; 25:molecules25173777. [PMID: 32825156 PMCID: PMC7504215 DOI: 10.3390/molecules25173777] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/08/2020] [Accepted: 08/14/2020] [Indexed: 12/28/2022] Open
Abstract
Complexes with mixed ligands [Cu(N-N)2(pmtp)](ClO4)2 ((1) N-N: 2,2′-bipyridine; (2) L: 1,10-phenanthroline and pmpt: 5-phenyl-7-methyl-1,2,4-triazolo[1,5-a]pyrimidine) were synthesized and structurally and biologically characterized. Compound (1) crystallizes into space group Pa and (2) in P-1. Both complexes display an intermediate stereochemistry between the two five-coordinated ones. The biological tests indicated that the two compounds exhibited superoxide scavenging capacity, intercalative DNA properties, and metallonuclease activity. Tests on various cell systems indicated that the two complexes neither interfere with the proliferation of Saccharomyces cerevisiae or BJ healthy skin cells, nor cause hemolysis in the active concentration range. Nevertheless, the compounds showed antibacterial potential, with complex (2) being significantly more active than complex (1) against all tested bacterial strains, both in planktonic and biofilm growth state. Both complexes exhibited a very good activity against B16 melanoma cells, with a higher specificity being displayed by compound (1). Taken together, the results indicate that complexes (1) and (2) have specific biological relevance, with potential for the development of antitumor or antimicrobial drugs.
Collapse
|
17
|
Silver(I) and gold(I) complexes with sulfasalazine: Spectroscopic characterization, theoretical studies and antiproliferative activities over Gram-positive and Gram-negative bacterial strains. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128158] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Copper transporter 1 affinity as a delivery strategy to improve the cytotoxic profile of rationally designed copper(II) complexes for cancer treatment. Toxicol In Vitro 2020; 67:104922. [PMID: 32590028 DOI: 10.1016/j.tiv.2020.104922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/30/2020] [Accepted: 06/17/2020] [Indexed: 12/20/2022]
Abstract
Cisplatin is widely used to treat different types of cancer, but its severe side effects are the major disadvantage of this treatment. Therefore, other metals are currently the subject of research in the rational development of anticancer drugs, such as copper, that has been demonstrated to be promising in this scenario. Here, we evaluated the effects of two novel copper complexes against breast cancer cell lines, and also examined the influence of overexpressing copper transporter 1 (CTR1) on the cytotoxicity of these complexes. Complex (1) [Cu(sdmx-)2(phen)] showed low IC50 values, induced intense cell morphological changes and arrested the cell cycle at the sub-G1 phase in cancer cells. Complex (1) was tested in transfected cells overexpressing the CTR1 receptor in order to compare its steric effects with a less bulky ligand and more labile complex (2) [CuCl2(impy)]. A significant reduction of IC50 value was observed in CTR1 overexpressing cells for complex (2) (32 μM to 20 μM) as compared to (1) (2.78 μM to 3.41 μM), evidencing a possible uptake through copper reduction (Cu+2 → Cu+1) mediated by CTR1. Thus, considering that CTR1 is a mediator of metallodrugs uptake, the development of strategies that use rational drug design is important in order to improve the therapeutic efficacy through greater specificity and consecutive reduction of side effects. Here we show the example for the case of copper(II) complexes.
Collapse
|
19
|
Di Natale C, De Benedictis I, De Benedictis A, Marasco D. Metal-Peptide Complexes as Promising Antibiotics to Fight Emerging Drug Resistance: New Perspectives in Tuberculosis. Antibiotics (Basel) 2020; 9:antibiotics9060337. [PMID: 32570779 PMCID: PMC7344629 DOI: 10.3390/antibiotics9060337] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 12/21/2022] Open
Abstract
In metal-peptide interactions, cations form stable complexes through bonds with coordinating groups as side chains of amino acids. These compounds, among other things, exert a wide variety of antimicrobial activities through structural changes of peptides upon metal binding and redox chemistry. They exhibit different mechanisms of action (MOA), including the modification of DNA/RNA, protein and cell wall synthesis, permeabilization and modulation of gradients of cellular membranes. Nowadays, the large increase in antibiotic resistance represents a crucial problem to limit progression at the pandemic level of the diseases that seemed nearly eradicated, such as tuberculosis (Tb). Mycobacterium tuberculosis (Mtb) is intrinsically resistant to many antibiotics due to chromosomal mutations which can lead to the onset of novel strains. Consequently, the maximum pharmaceutical effort should be focused on the development of new therapeutic agents and antimicrobial peptides can represent a valuable option as a copious source of potential bioactive compounds. The introduction of a metal center can improve chemical diversity and hence specificity and bioavailability while, in turn, the coordination to peptides of metal complexes can protect them and enhance their poor water solubility and air stability: the optimization of these parameters is strictly required for drug prioritization and to obtain potent inhibitors of Mtb infections with novel MOAs. Here, we present a panoramic review of the most recent findings in the field of metal complex-peptide conjugates and their delivery systems with the potential pharmaceutical application as novel antibiotics in Mtb infections.
Collapse
Affiliation(s)
- Concetta Di Natale
- Department of Pharmacy, University of Naples “Federico II”, 80134 Napoli NA, Italy; (C.D.N.); (I.D.B.); (A.D.B.)
- Center for Advanced Biomaterial for Health Care (CABHC), Istituto Italiano di Tecnologia, 80125 Naples, Italy
- Interdisciplinary Research Centre on Biomaterials (CRIB) and Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
| | - Ilaria De Benedictis
- Department of Pharmacy, University of Naples “Federico II”, 80134 Napoli NA, Italy; (C.D.N.); (I.D.B.); (A.D.B.)
| | - Arianna De Benedictis
- Department of Pharmacy, University of Naples “Federico II”, 80134 Napoli NA, Italy; (C.D.N.); (I.D.B.); (A.D.B.)
| | - Daniela Marasco
- Department of Pharmacy, University of Naples “Federico II”, 80134 Napoli NA, Italy; (C.D.N.); (I.D.B.); (A.D.B.)
- Correspondence:
| |
Collapse
|
20
|
An Oxalate-Bridged Copper(II) Complex Combining Monodentate Benzoate, 2,2'-bipyridine and Aqua Ligands: Synthesis, Crystal Structure and Investigation of Magnetic Properties. Molecules 2020; 25:molecules25081898. [PMID: 32326057 PMCID: PMC7221668 DOI: 10.3390/molecules25081898] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/12/2020] [Accepted: 04/14/2020] [Indexed: 11/28/2022] Open
Abstract
A dinuclear copper(II) complex of formula [{Cu(bipy)(bzt)(OH2)}2(μ-ox)] (1) (where bipy = 2,2′-bipyridine, bzt = benzoate and ox = oxalate) was synthesised and characterised by diffractometric (powder and single-crystal XRD) and thermogravimetric (TG/DTG) analyses, spectroscopic techniques (IR, Raman, electron paramagnetic resonance spectroscopy (EPR) and electronic spectroscopy), magnetic measurements and density functional theory (DFT) calculations. The analysis of the crystal structure revealed that the oxalate ligand is in bis(bidentate) coordination mode between two copper(II) centres. The other four positions of the coordination environment of the copper(II) ion are occupied by one water molecule, a bidentate bipy and a monodentate bzt ligand. An inversion centre located on the ox ligand generates the other half of the dinuclear complex. Intermolecular hydrogen bonds and π-π interactions are responsible for the organisation of the molecules in the solid state. Molar magnetic susceptibility and field dependence magnetisation studies evidenced a weak intramolecular–ferromagnetic interaction (J = +2.9 cm−1) between the metal ions. The sign and magnitude of the calculated J value by density functional theory (DFT) are in agreement with the experimental data.
Collapse
|
21
|
Guerra RB, de Campos Fraga-Silva TF, Aguiar J, Oshiro PB, Holanda BB, Venturini J, Bannach G. Lanthanum(III) and neodymium(III) complexes with anti-inflammatory drug sulindac: Synthesis, characterization, thermal investigation using coupled techniques TG-FTIR, and in vitro biological studies. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Pereira AKDS, Manzano CM, Nakahata DH, Clavijo JCT, Pereira DH, Lustri WR, Corbi PP. Synthesis, crystal structures, DFT studies, antibacterial assays and interaction assessments with biomolecules of new platinum(ii) complexes with adamantane derivatives. NEW J CHEM 2020. [DOI: 10.1039/d0nj02009e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Synthesis, crystal structures and antibacterial activities of new Pt(ii) complexes with adamantane derivatives are presented in this article.
Collapse
Affiliation(s)
| | | | | | | | | | - Wilton Rogério Lustri
- Department of Biological and Health Sciences
- University of Araraquara
- UNIARA
- São Paulo
- Brazil
| | - Pedro Paulo Corbi
- Institute of Chemistry
- University of Campinas – UNICAMP
- 13083-970 Campinas
- Brazil
| |
Collapse
|
23
|
Nakahata DH, de Paiva REF, Lustri WR, Corbi PP. Sulfonamide-containing copper(ii) complexes: new insights on biophysical interactions and antibacterial activities. NEW J CHEM 2020. [DOI: 10.1039/d0nj01889a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cu–(N^N)–sulfonamide complexes are selective metallonucleases that bind tightly to BSA with no protease activity. These compounds have promising antibacterial properties.
Collapse
Affiliation(s)
| | | | - Wilton R. Lustri
- Biological and Health Sciences Department
- University of Araraquara – UNIARA
- 14801-320 Araraquara
- Brazil
| | - Pedro P. Corbi
- Institute of Chemistry
- University of Campinas
- UNICAMP
- 13083-970 Campinas
- Brazil
| |
Collapse
|
24
|
Li YH, Gai LX, Zhang CG, Zhang CC, Liu XJ, Hou B, Wu X. Effects of Substituent Groups on the Crystal Structures and Anti-Cervical Cancer Activity of Zero-/Two-Dimensional Cu(II) Complexes. J STRUCT CHEM+ 2020. [DOI: 10.1134/s0022476620010151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Naso LG, Martínez Medina JJ, D'Alessandro F, Rey M, Rizzi A, Piro OE, Echeverría GA, Ferrer EG, Williams PAM. Ternary copper(II) complex of 5-hydroxytryptophan and 1,10-phenanthroline with several pharmacological properties and an adequate safety profile. J Inorg Biochem 2019; 204:110933. [PMID: 31825796 DOI: 10.1016/j.jinorgbio.2019.110933] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/12/2019] [Accepted: 11/17/2019] [Indexed: 12/22/2022]
Abstract
We report the synthesis and biological evaluation of a ternary copper complex, [Cu(5HTP)(phen)(H2O)](NO3).2H2O, with the antioxidant agent 5-hydroxytryptophan (5-HTP) and phenanthroline (phen, added to improve its lipophilicity and membrane transport). The crystal structure of the complex was determined by X-ray diffraction methods. The complex showed antioxidant, antimicrobial, antitumor and antimetastatic properties with an adequate safety profile. The interaction of the metal with phen promotes cellular copper accumulation and cytotoxicity on human lung A549 cell line (IC50 = 3.6 μM). Furthermore, the viability of the normal human fetal lung fibroblast cell line (MRC-5) is not altered by the complex. An oxidative stress mechanism for the anticancer effect has been determined: cellular increase of reactive oxygen species (ROS), decrease of the glutathione (GSH) and oxidized GSH (GSSG) ratio and alteration of the mitochondrial potential. The complex also displays antimetastatic activities with inhibition of cell adhesion, invasion and migration. It has not mutagenic behavior and no toxicity on Artemia salina indicating its potential to act as an effective and safety antimicrobial and antitumor drug.
Collapse
Affiliation(s)
- Luciana G Naso
- CEQUINOR, CONICET/UNLP, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv. 120 N° 1465, 1900 La Plata, Argentina.
| | - Juan J Martínez Medina
- Universidad Nacional del Chaco Austral, Comandante Fernández 755, CP: 3700 Presidencia Roque Sáenz Peña, Chaco, Argentina
| | - Franco D'Alessandro
- CEQUINOR, CONICET/UNLP, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv. 120 N° 1465, 1900 La Plata, Argentina
| | - Marilin Rey
- Departamento de Física, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria-Paraje El Pozo, 3000 Santa Fe, Argentina
| | - Alberto Rizzi
- Departamento de Física, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria-Paraje El Pozo, 3000 Santa Fe, Argentina
| | - Oscar E Piro
- Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata y IFLP (CONICET, CCT La Plata), C.C. 67, 1900 La Plata, Argentina
| | - Gustavo A Echeverría
- Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata y IFLP (CONICET, CCT La Plata), C.C. 67, 1900 La Plata, Argentina
| | - Evelina G Ferrer
- CEQUINOR, CONICET/UNLP, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv. 120 N° 1465, 1900 La Plata, Argentina
| | - Patricia A M Williams
- CEQUINOR, CONICET/UNLP, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv. 120 N° 1465, 1900 La Plata, Argentina.
| |
Collapse
|
26
|
Bormio Nunes JH, Simoni DA, Braga LE, Ruiz ALT, Ernesto de Carvalho J, Corbi PP. Synthesis, characterization, crystal structure and in vitro antiproliferative assays of the 2-thiouracilato(triphenylphosphine)gold(I) complex. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.10.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|