1
|
Alajroush DR, Smith CB, Anderson BF, Oyeyemi IT, Beebe SJ, Holder AA. A Comparison of In Vitro Studies between Cobalt(III) and Copper(II) Complexes with Thiosemicarbazone Ligands to Treat Triple Negative Breast Cancer. Inorganica Chim Acta 2024; 562:121898. [PMID: 38282819 PMCID: PMC10810091 DOI: 10.1016/j.ica.2023.121898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Metal complexes have gained significant attention as potential anti-cancer agents. The anti-cancer activity of [Co(phen)2(MeATSC)](NO3)3•1.5H2O•C2H5OH 1 (where phen = 1,10-phenanthroline and MeATSC = 9-anthraldehyde-N(4)-methylthiosemicarbazone) and [Cu(acetylethTSC)Cl]Cl•0.25C2H5OH 2 (where acetylethTSC = (E)-N-ethyl-2-[1-(thiazol-2-yl)ethylidene]hydrazinecarbothioamide) was investigated by analyzing DNA cleavage activity. The cytotoxic effect was analyzed using CCK-8 viability assay. The activities of caspase 3/7, 9, and 1, reactive oxygen species (ROS) production, cell cycle arrest, and mitochondrial function were further analyzed to study the cell death mechanisms. Complex 2 induced a significant increase in nicked DNA. The IC50 values of complex 1 were 17.59 μM and 61.26 μM in cancer and non-cancer cells, respectively. The IC50 values of complex 2 were 5.63 and 12.19 μM for cancer and non-cancer cells, respectively. Complex 1 induced an increase in ROS levels, mitochondrial dysfunction, and activated caspases 3/7, 9, and 1, which indicated the induction of intrinsic apoptotic pathway and pyroptosis. Complex 2 induced cell cycle arrest in the S phase, ROS generation, and caspase 3/7 activation. Thus, complex 1 induced cell death in the breast cancer cell line via activation of oxidative stress which induced apoptosis and pyroptosis while complex 2 induced cell cycle arrest through the induction of DNA cleavage.
Collapse
Affiliation(s)
- Duaa R. Alajroush
- Department of Chemistry and Biochemistry, Old Dominion University 4501 Elkhorn Avenue, Norfolk, VA 23529, U.S.A
| | - Chloe B. Smith
- Department of Chemistry and Biochemistry, Old Dominion University 4501 Elkhorn Avenue, Norfolk, VA 23529, U.S.A
| | - Brittney F. Anderson
- Department of Biological Sciences, University of the Virgin Islands, 2 John Brewers Bay, St. Thomas, VI 00802, U.S.A
| | - Ifeoluwa T. Oyeyemi
- Department of Chemistry and Biochemistry, Old Dominion University 4501 Elkhorn Avenue, Norfolk, VA 23529, U.S.A
- Department of Biological Sciences, University of Medical Sciences, Ondo City, Nigeria
| | - Stephen J. Beebe
- Frank Reidy Research center for Bioelectrics, Old Dominion University, 4211 Monarch Way, Suite 300, Norfolk, VA, 23508, U.S.A
| | - Alvin A. Holder
- Department of Chemistry and Biochemistry, Old Dominion University 4501 Elkhorn Avenue, Norfolk, VA 23529, U.S.A
| |
Collapse
|
2
|
Liu X, Lv A, Zhang P, Chang J, Dong R, Liu M, Liu J, Huang X, Yuan XA, Liu Z. The anticancer application of half-sandwich iridium(III) ferrocene-thiosemicarbazide Schiff base complexes. Dalton Trans 2024; 53:552-563. [PMID: 38054240 DOI: 10.1039/d3dt02879h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Ferrocenyl derivatives and organometallic iridium(III) complexes have been prospective substitutes for platinum-based anticancer drugs. Eight half-sandwich iridium(III) ferrocene-thiosemicarbazide (Fc-TSC) Schiff base anticancer complexes were prepared in this study. These complexes displayed a dimeric structure and exhibited a particular fluorescence due to the "enol" orientation of the TSC pro-ligand. An energy-dependent pathway of the uptake mechanism was ascertained, which ended in the lysosome and led to lysosome damage and apoptosis. Flow cytometry confirmed that the complexes could block the cell cycle (G1 phase) and improve the levels of intracellular reactive oxygen species, indicating an anticancer mechanism of oxidation. Then, a lysosomal-mitochondrial anticancer pathway was verified through western blotting. In vivo toxicity assays confirmed that these complexes showed better anti-migration ability and less toxicity in comparison to cisplatin. Thus, these complexes provide a new strategy for the design of non-platinum organometallic anticancer drugs.
Collapse
Affiliation(s)
- Xicheng Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Ao Lv
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Pei Zhang
- College of Life Sciences, Qufu Normal University, Qufu 273165, Shandong, China
| | - Jiaying Chang
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Ruixiao Dong
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Mengxian Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Jiayi Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Xiaoqing Huang
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Xiang-Ai Yuan
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Zhe Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| |
Collapse
|
3
|
Jiang X, Fielding LA, Davis H, Carroll W, Lisic EC, Deweese JE. Inhibition of Topoisomerases by Metal Thiosemicarbazone Complexes. Int J Mol Sci 2023; 24:12010. [PMID: 37569386 PMCID: PMC10419228 DOI: 10.3390/ijms241512010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Topoisomerases, common targets for anti-cancer therapeutics, are crucial enzymes for DNA replication, transcription, and many other aspects of DNA metabolism. The potential anti-cancer effects of thiosemicarbazones (TSC) and metal-TSC complexes have been demonstrated to target several biological processes, including DNA metabolism. Human topoisomerases were discovered among the molecular targets for TSCs, and metal-chelated TSCs specifically displayed significant inhibition of topoisomerase II. The processes by which metal-TSCs or TSCs inhibit topoisomerases are still being studied. In this brief review, we summarize the TSCs and metal-TSCs that inhibit various types of human topoisomerases, and we note some of the key unanswered questions regarding this interesting class of diverse compounds.
Collapse
Affiliation(s)
- Xiaohua Jiang
- Department of Chemistry, Vanderbilt University, Nashville, TN 37240, USA
| | - Lauren A. Fielding
- Department of Biological, Physical and Human Sciences, Freed Hardeman University, Henderson, TN 38340, USA
| | - Hunter Davis
- Department of Chemistry, Tennessee Tech University, Cookeville, TN 38505, USA
| | - William Carroll
- Department of Chemistry, Tennessee Tech University, Cookeville, TN 38505, USA
| | - Edward C. Lisic
- Department of Chemistry, Tennessee Tech University, Cookeville, TN 38505, USA
| | - Joseph E. Deweese
- Department of Biological, Physical and Human Sciences, Freed Hardeman University, Henderson, TN 38340, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| |
Collapse
|
4
|
Manakkadan V, Haribabu J, Palakkeezhillam VNV, Rasin P, Mandal M, Kumar VS, Bhuvanesh N, Udayabhaskar R, Sreekanth A. Synthesis and characterization of N-substituted thiosemicarbazones: DNA/BSA binding, molecular docking, anticancer activity, ADME study and computational investigations. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
5
|
Antiproliferative Activity and DNA Interaction Studies of a Series of N4,N4-Dimethylated Thiosemicarbazone Derivatives. Molecules 2023; 28:molecules28062778. [PMID: 36985750 PMCID: PMC10058200 DOI: 10.3390/molecules28062778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023] Open
Abstract
The exploitation of bioactive natural sources to obtain new anticancer agents with novel modes of action may represent an innovative and successful strategy in the field of medicinal chemistry. Many natural products and their chemical analogues have been proposed as starting molecules to synthesise compounds with increased biological potential. In this work, the design, synthesis, and characterisation of a new series of N4,N4-dimethylated thiosemicarbazone Cu(II), Ni(II), and Pt(II) complexes are reported and investigated for their in vitro toxicological profile against a leukaemia cell line (U937). The antiproliferative activity was studied by MTS assay to determine the GI50 value for each compound after 24 h of treatment, while the genotoxic potential was investigated to determine if the complexes could cause DNA damage. In addition, the interaction between the synthesised molecules and DNA was explored by means of spectroscopic techniques, showing that for Pt and Ni derivatives a single mode of action can be postulated, while the Cu analogue behaves differently.
Collapse
|
6
|
Jeevitha Rani J, Mary Imelda Jayaseeli A, Sankarganesh M, Nandini Asha R. Bovine serum albumin interaction, molecular docking, anticancer and antimicrobial activities of Co(II) Schiff base complex derived from Nophen ligand. J Biomol Struct Dyn 2023; 41:1895-1903. [PMID: 35037822 DOI: 10.1080/07391102.2022.2026249] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In this report, synthesis, characterization, biological and molecular modeling studies of Nophen Schiff base [N,N-bis(2-hydroxy-1-naphthaldehyde)-o-phenylenediamine] and Co(II)-Nophen complex have been furnished. BSA binding affinities of the ligand and Co(II)-Nophen complex have been appraised by UV-visible, fluorescence and cyclic voltammetric techniques. Spectroscopic measurements indicate strong binding of the complex with BSA protein through static quenching mechanism with binding constant in the order of 104 M-1. The negative shift of the peak potential in cyclic voltammetry suggested an electrostatic interaction. Molecular docking analysis reveals significant binding affinity (-6.3 kcal/mol) of the complex towards BSA protein. It is amazing that the in vitro cytotoxicity of Co(II)-Nophen complex against A549 cell lines (Human lung carcinoma cells) has remarkable potentials with 29 ± 1.2 µM as IC50 value. Comparing the biological activity towards microorganisms, Co(II)-Nophen complex show substantial response than the Nophen ligand.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- J Jeevitha Rani
- Post Graduate and Research Center of Chemistry, Jayaraj Annapackiam College for Women (Autonomous), Affiliated to Mother Teresa Women's University, Kodaikanal, Periyakulam, Theni, Tamil Nadu, India
| | - A Mary Imelda Jayaseeli
- Post Graduate and Research Center of Chemistry, Jayaraj Annapackiam College for Women (Autonomous), Affiliated to Mother Teresa Women's University, Kodaikanal, Periyakulam, Theni, Tamil Nadu, India
| | - M Sankarganesh
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - R Nandini Asha
- Department of Chemistry, Pope's College (Autonomous), Sawyerpuram, Thoothukudi, Tamil Nadu, India
| |
Collapse
|
7
|
Research Progress on the Biological Activities of Metal Complexes Bearing Polycyclic Aromatic Hydrazones. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238393. [PMID: 36500482 PMCID: PMC9739244 DOI: 10.3390/molecules27238393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022]
Abstract
Due to the abundant and promising biological activities of aromatic hydrazones, it is of great significance to study the biological activities of their metal complexes for the research and development of metal-based drugs. In this review, we focus on the metal complexes of polycyclic aromatic hydrazones, which still do not receive much attention, and summarize the studies related to their biological activities. Although the large number of metal complexes in phenylhydrazone prevent them all from being summarized, the significant value of polycyclic aromatic hydrocarbons themselves (such as naphthalene and anthracene) as pharmacophores are also considered. Therefore, the bioactivities of the metal complexes of naphthylhydrazone and anthrahydrazone are focused on, and the recent research progress on the metal complexes of anthrahydrazone by the authors is also included. In terms of biological activities, these complexes mainly show antibacterial and anticancer activities, along with less bioactivities. The present review demonstrates that the structural design and bioactivities of these complexes are fundamental, which also indicates a certain structure-activity relationship (SAR) in some substructural areas. However, a systematic and comprehensive conclusion of the SAR is still not available, which suggests that more attention should be paid to the bioactivities of the metal complexes of polycyclic aromatic hydrazones since their potential in structural design and biological activity remains to be explored. We hope that this review will attract more researchers to devote their interest and energy into this promising area.
Collapse
|
8
|
Das R, Mondal M, Paul S, Pan A, Banerjee P. An Easy-to-use phosphate triggered Zinc-Azophenine Complex assisted metal extrusion assay: A diagnostic approach for chronic kidney disease and in silico docking studies. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
9
|
Indumathy R, Senthilrajkapoor P, Kalaiarasi G, Sathyaraj G, Uma V. Synthesis, spectral characterization, protein binding and cytotoxic evaluation of new cobalt(II) and cobalt(III) complexes containing benzimidazolylterpyridine as ligand. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2141116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ramasamy Indumathy
- Department of Chemistry, Nallamuthu Gounder Mahalingam College, Pollachi, India
| | | | - Giriraj Kalaiarasi
- Department of Chemistry, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore, India
| | - Gopal Sathyaraj
- Centre for Analysis, Testing, Evaluation & Reporting Services (CATERS), CSIR-Central Leather Research Institute, Adyar, Chennai, India
| | - Varadarajan Uma
- Department of Chemistry, Presidency College, Chepauk, Chennai, India
| |
Collapse
|
10
|
Gaikwad M, Konkimalla VB, Salunke-Gawali S. Metal complexes as topoisomerase inhibitors. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Kar K, Ghosh D, Kabi B, Chandra A. A concise review on cobalt Schiff base complexes as anticancer agents. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Venkateswarlu K, Daravath S, Ramesh G, Lakshmi PVA, Shivaraj. Investigation of DNA binding and bioactivities of furan cored Schiff base Cu (II), Ni (II), and Co (III) complexes: Synthesis, characterization and spectroscopic properties. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
| | | | - Gali Ramesh
- Department of Chemistry Osmania University Hyderabad India
| | | | - Shivaraj
- Department of Chemistry Osmania University Hyderabad India
| |
Collapse
|
13
|
Synthesis, spectral characterization, DNA/BSA binding, antimicrobial and in vitro cytotoxicity of cobalt(III) complexes containing 7-hydroxy-4-oxo-4H-chromene Schiff bases. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120060] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
The interaction of a thiosemicarbazone derived from R - (+) - limonene with lipid membranes. Chem Phys Lipids 2020; 234:105018. [PMID: 33232725 DOI: 10.1016/j.chemphyslip.2020.105018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 11/21/2022]
Abstract
As a potential drug, 2-nitrobenzaldehyde-thiosemicarbazone (2-TSC), a thiosemicarbazone derived from the terpene R-(+)-limonene, was studied through calorimetric and spectroscopic techniques. Differential Scanning Calorimetry (DSC) data showed that 2-TSC causes structural changes in a 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DMPC) membrane, strongly decreasing the cooperativity of the bilayer gel-fluid thermal transition. Optical absorption spectroscopy showed that 2-TSC is more soluble in ethanol and lipids than in water medium, and that the drug displays different structures in the different environments. Though 2-TSC displays no fluorescence, time resolved fluorescence showed that the drug is an effective quencher of the fluorescent probe 6-dodecanoyl-2-dimethylaminonaphthalene (Laurdan). As it is well accepted that Laurdan is positioned into the bilayer close to the membrane surface, that is possibly the localization of 2-TSC in a bilayer. Electron spin resonance (ESR) of the probe 1-palmitoyl-2-stearoyl-(14-doxyl)-sn-glycero-3-phosphocholine (14-PCSL) revealed that 2-TSC is inserted into the hydrocarbon part of the bilayer, fluidizing the lipid bilayer gel phase and rigidifying or organizing the bilayer fluid phase. Similar effects are found for other lipophilic molecules, including cholesterol. These results are useful to improve the understanding of the processes that govern the interaction of thiosemicarbazones with cell membranes, related to the activity of the drugs and their cytotoxicity.
Collapse
|
15
|
Inhibition of histone deacetylases, topoisomerases and epidermal growth factor receptor by metal-based anticancer agents: Design & synthetic strategies and their medicinal attributes. Bioorg Chem 2020; 105:104396. [PMID: 33130345 DOI: 10.1016/j.bioorg.2020.104396] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 12/22/2022]
Abstract
Metal-based inhibitors of histone deacetylases (HDAC), DNA topoisomerases (Topos) and Epidermal Growth Factor Receptor (EGFR) have demonstrated their cytotoxic potential against various cancer types such as breast, lung, uterus, colon, etc. Additionally, these have proven their role in resolving the resistance issues, enhancing the affinity, lipophilicity, stability, and biocompatibility and therefore, emerged as potential candidates for molecularly targeted therapeutics. This review focusses on nature and role of metals and organic ligands in tuning the anticancer activity in multiple modes of inhibition considering HDACs, Topos or EGFR as one of the primary targets. The conceptual design and synthetic approaches of platinum and non-platinum metal complexes comprising of chiefly ruthenium, rhodium, palladium, copper, iron, nickel, cobalt, zinc metals coordinated with organic scaffolds, along with their biological activity profiles, structure-activity relationships (SARs), docking studies, possible modes of action, and their scope and limitations are discussed in detail.
Collapse
|
16
|
Antibacterial Activity of a Cationic Antimicrobial Peptide against Multidrug-Resistant Gram-Negative Clinical Isolates and Their Potential Molecular Targets. Molecules 2020; 25:molecules25215035. [PMID: 33142969 PMCID: PMC7663601 DOI: 10.3390/molecules25215035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/10/2020] [Accepted: 10/24/2020] [Indexed: 12/20/2022] Open
Abstract
Antimicrobial resistance reduces the efficacy of antibiotics. Infections caused by multidrug-resistant (MDR), Gram-negative bacterial strains, such as Klebsiella pneumoniae (MDRKp) and Pseudomonas aeruginosa (MDRPa), are a serious threat to global health. However, cationic antimicrobial peptides (CAMPs) are promising as an alternative therapeutic strategy against MDR strains. In this study, the inhibitory activity of a cationic peptide, derived from cecropin D-like (ΔM2), against MDRKp and MDRPa clinical isolates, and its interaction with membrane models and bacterial genomic DNA were evaluated. In vitro antibacterial activity was determined using the broth microdilution test, whereas interactions with lipids and DNA were studied by differential scanning calorimetry and electronic absorption, respectively. A strong bactericidal effect of ΔM2 against MDR strains, with minimal inhibitory concentration (MIC) and minimal bactericidal concentrations (MBC) between 4 and 16 μg/mL, was observed. The peptide had a pronounced effect on the thermotropic behavior of the 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)/1,2-dimyristoyl-sn-glycero-3-phosphorylglycerol (DMPG) membrane models that mimic bacterial membranes. Finally, the interaction between the peptide and genomic DNA (gDNA) showed a hyperchromic effect, which indicates that ΔM2 can denature bacterial DNA strands via the grooves.
Collapse
|
17
|
Fagbohun OF, Olawoye B, Ademakinwa AN, Oriyomi OV, Fagbohun OS, Fadare OA, Msagati TAM. UHPLC/GC-TOF-MS metabolomics, MTT assay, and molecular docking studies reveal physostigmine as a new anticancer agent from the ethyl acetate and butanol fractions of Kigelia africana (Lam.) Benth. fruit extracts. Biomed Chromatogr 2020; 35:e4979. [PMID: 32895963 DOI: 10.1002/bmc.4979] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 11/08/2022]
Abstract
Kigelia africana plant is widely used as a herbal remedy in preventing the onset and the treatment of cancer-related infections. With the increase in the research interest of the plant, the specific chemical compound or metabolite that confers its anticancer properties has not been adequately investigated. The ethyl acetate and butanol fractions of the fruit extracts were evaluated by 2-(4,5-dimethylthiazol-2-yl)-3,5-diphenyl-2H-tetrazolium bromide assay against four different cell lines, with the ethyl acetate fraction having inhibition concentration values of 0.53 and 0.42 μM against Hep G2 and HeLa cells, respectively. More than 235 phytoconstituents were profiled using UHPLC-TOF-MS, while more than 15 chemical compounds were identified using GC-MS from the fractions. Molecular docking studies revealed that physostigmine, fluazifop, dexamethasone, sulfisomidine, and desmethylmirtazapine could favorably bind at higher binding energies of -8.3, -8.6, -8.2, and -8.1 kcal/mol, respectively, better than camptothecin with a binding energy of -7.9 kcal/mol. The results of this study showed that physostigmine interacted well with topoisomerase IIα and had a high score of pharmacokinetic prediction using absorption, distribution, metabolism, excretion, and toxicity profiles, thereby suggesting that drug design using physostigmine as a base structure could serve as an alternative against the toxic side effects of doxorubicin and camptothecin.
Collapse
Affiliation(s)
- Oladapo F Fagbohun
- Department of Biomedical Engineering, First Technical University, Ibadan, Nigeria
| | - Babatunde Olawoye
- Department of Food Science and Technology, First Technical University, Ibadan, Nigeria
| | - Adedeji N Ademakinwa
- Department of Physical and Chemical Sciences, Elizade University, Ilara-Mokin, Nigeria
| | | | - Oladoyin S Fagbohun
- Department of Chemical Engineering, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Olatomide A Fadare
- Organic Chemistry Research Laboratory, Department of Chemistry, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Titus A M Msagati
- Nanotechnology and Water Sustainability Research Unit, College of Science Engineering and Technology, University of South Africa (UNISA), Johannesburg, South Africa
| |
Collapse
|