1
|
Skipworth T, Klaine S, Zhang R. Photochemical generation and reactivity of a new phthalocyanine-manganese-oxo intermediate. Chem Commun (Camb) 2023; 59:6540-6543. [PMID: 37161771 DOI: 10.1039/d3cc01275a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The first phthalocyanine-manganese-oxo intermediate was successfully generated by visible-light photolysis of chlorate or nitrite manganese(III) precursors, and its reactivity towards organic substrates was kinetically probed and compared with other related porphyrin-metal-oxo intermediates.
Collapse
Affiliation(s)
- Tristan Skipworth
- Department of Chemistry, Western Kentucky University, 1906 College Heights Blvd., Bowling Green, Kentucky, USA.
| | - Seth Klaine
- Department of Chemistry, Western Kentucky University, 1906 College Heights Blvd., Bowling Green, Kentucky, USA.
| | - Rui Zhang
- Department of Chemistry, Western Kentucky University, 1906 College Heights Blvd., Bowling Green, Kentucky, USA.
| |
Collapse
|
2
|
Hybrid Materials Based on Imidazo[4,5-b]porphyrins for Catalytic Oxidation of Sulfides. Catalysts 2023. [DOI: 10.3390/catal13020402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Heterogenized metalloporphyrin catalysts for oxidation reactions are extensively explored to improve chemical production. In this work, manganese meso-tetraarylporphyrins were immobilized on hydrated mesoporous titanium dioxide (SBET = 705 m2 g−1) through carboxylate or phosphonate anchoring groups separated from the macrocycle by the 2-arylimidazole linker fused across one of the pyrrolic rings of the macrocycle. The element composition of two mesoporous hybrid materials thus obtained were investigated and the integrity of the immobilized complexes was shown by different physicochemical methods. Finally, the catalytic efficiency of the more stable material Mn(TMPIP)/TiO2 with the phosphonate anchor was evaluated in the selective oxidation of sulfides to sulfoxides by molecular oxygen in the presence of isobutyraldehyde (IBA). The heterogenized complex has shown excellent catalytic activity exhibiting a turnover (TON) of ~1100 in a single catalytic run of the sulfoxidation of thioanisole. The catalyst was successfully reused in seven consecutive catalytic cycles.
Collapse
|
3
|
Skipworth T, Khashimov M, Ojo I, Zhang R. Kinetics of chromium(V)-oxo and chromium(IV)-oxo porphyrins: Reactivity and mechanism for sulfoxidation reactions. J Inorg Biochem 2022; 237:112006. [PMID: 36162208 DOI: 10.1016/j.jinorgbio.2022.112006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 01/18/2023]
Abstract
In this work, chromium(IV)-oxo porphyrins [CrIV(Por)(O)] (2) (Por = porphyrin) were produced either by oxidation of [CrIII(Por)Cl] (1) with iodobenzene diacetate or visible light photolysis of porphyrin‑chromium(III) chlorates. Subsequent oxidation of 2 with silver perchlorate gave chromium(V)-oxo porphyrins [CrV(Por)(O)](ClO4) (3) in three porphyrin ligands, including 5,10,15,20-tetramesitylporphyrin(TMP, a), 5,10,15,20-tetrakis(2,6-difluorophenyl)porphyrin(TDFPP, b), and 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin (TPFPP, c). Complexes 2 and 3 reacted with thioanisoles to produce the corresponding sulfoxides, and their kinetics of sulfoxidation reactions with a series of aryl methyl sulfides(thioanisoles) were studied in organic solutions. Chromium(V)-oxo porphyrins are several orders of magnitudes more reactive than chromium(IV)-oxo species, and representative second-order rate constants (kox) for the oxidation of thioansole are (0.40 ± 0.01) M-1 s-1 (3a), and (2.82 ± 0.20) × 102 M-1 s-1 (3b), and (2.20 ± 0.01) × 103 M-1 s-1 (3c). The order of reactivity for 2 and 3 follows TPFPP > TDFPP > TMP, in agreement with the electrophilic nature of metal-oxo complexes. Hammett analyses indicate significant charge transfer in the transition states for oxidation of para-substituted thioanisoles by [CrV(Por)(O)]+. The ρ+ constants are -1.69 for 3a, -2.63 for 3b, and - 2.89 for 3c, respectively, mirror values found previously for related metal-oxo species. A mechanism involving the electrophilic attack of the CrV-oxo at sulfides to form a sulfur cation intermediate in the rate-determining step is suggested. Competition studies with chromium(III) porphyrin chloride and PhI(OAc)2 gave relative rate constants for oxidations of competing thioanisoles that closely match ratios of absolute rate constants from chromium(V)-oxo species, which are true oxidants under catalytic conditions.
Collapse
Affiliation(s)
- Tristan Skipworth
- Department of Chemistry, Western Kentucky University, 1906 College Heights Blvd #11079, Bowling Green, KY 42101-1079, United States of America
| | - Mardan Khashimov
- Department of Chemistry, Western Kentucky University, 1906 College Heights Blvd #11079, Bowling Green, KY 42101-1079, United States of America
| | - Iyanu Ojo
- Department of Chemistry, Western Kentucky University, 1906 College Heights Blvd #11079, Bowling Green, KY 42101-1079, United States of America
| | - Rui Zhang
- Department of Chemistry, Western Kentucky University, 1906 College Heights Blvd #11079, Bowling Green, KY 42101-1079, United States of America.
| |
Collapse
|
4
|
Polivanovskaia DA, Abdulaeva IA, Birin KP, Gorbunova YG, Tsivadze AY. Diaryl-pyrazinoporphyrins – Prospective photocatalysts for efficient sulfoxidation. J Catal 2022. [DOI: 10.1016/j.jcat.2022.06.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
5
|
Li R, Khan FST, Hematian S. Dioxygen Reactivity of Copper(I)/Manganese(II)-Porphyrin Assemblies: Mechanistic Studies and Cooperative Activation of O 2. Molecules 2022; 27:molecules27031000. [PMID: 35164265 PMCID: PMC8839022 DOI: 10.3390/molecules27031000] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 12/04/2022] Open
Abstract
The oxidation of transition metals such as manganese and copper by dioxygen (O2) is of great interest to chemists and biochemists for fundamental and practical reasons. In this report, the O2 reactivities of 1:1 and 1:2 mixtures of [(TPP)MnII] (1; TPP: Tetraphenylporphyrin) and [(tmpa)CuI(MeCN)]+ (2; TMPA: Tris(2-pyridylmethyl)amine) in 2-methyltetrahydrofuran (MeTHF) are described. Variable-temperature (-110 °C to room temperature) absorption spectroscopic measurements support that, at low temperature, oxygenation of the (TPP)Mn/Cu mixtures leads to rapid formation of a cupric superoxo intermediate, [(tmpa)CuII(O2•-)]+ (3), independent of the presence of the manganese porphyrin complex (1). Complex 3 subsequently reacts with 1 to form a heterobinuclear μ-peroxo species, [(tmpa)CuII-(O22-)-MnIII(TPP)]+ (4; λmax = 443 nm), which thermally converts to a μ-oxo complex, [(tmpa)CuII-O-MnIII(TPP)]+ (5; λmax = 434 and 466 nm), confirmed by electrospray ionization mass spectrometry and nuclear magnetic resonance spectroscopy. In the 1:2 (TPP)Mn/Cu mixture, 4 is subsequently attacked by a second equivalent of 3, giving a bis-μ-peroxo species, i.e., [(tmpa)CuII-(O22-)-MnIV(TPP)-(O22-)-CuII(tmpa)]2+ (7; λmax = 420 nm and δpyrrolic = -44.90 ppm). The final decomposition product of the (TPP)Mn/Cu/O2 chemistry in MeTHF is [(TPP)MnIII(MeTHF)2]+ (6), whose X-ray structure is also presented and compared to literature analogs.
Collapse
|
6
|
Van Trieste GP, Reid KA, Hicks MH, Das A, Figgins MT, Bhuvanesh N, Ozarowski A, Telser J, Powers DC. Nitrene Photochemistry of Manganese
N
‐Haloamides**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Kaleb A. Reid
- Department of Chemistry Texas A&M University College Station TX 77843 USA
| | - Madeline H. Hicks
- Department of Chemistry Texas A&M University College Station TX 77843 USA
| | - Anuvab Das
- Department of Chemistry Texas A&M University College Station TX 77843 USA
| | - Matthew T. Figgins
- Department of Chemistry Texas A&M University College Station TX 77843 USA
| | - Nattamai Bhuvanesh
- Department of Chemistry Texas A&M University College Station TX 77843 USA
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory Florida State University Tallahassee FL 32310 USA
| | - Joshua Telser
- Department of Biological, Physical and Chemical Sciences Roosevelt University Chicago IL 60605 USA
| | - David C. Powers
- Department of Chemistry Texas A&M University College Station TX 77843 USA
| |
Collapse
|
7
|
Guo M, Zhang J, Zhang L, Lee YM, Fukuzumi S, Nam W. Enthalpy-Entropy Compensation Effect in Oxidation Reactions by Manganese(IV)-Oxo Porphyrins and Nonheme Iron(IV)-Oxo Models. J Am Chem Soc 2021; 143:18559-18570. [PMID: 34723505 DOI: 10.1021/jacs.1c08198] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
"Enthalpy-Entropy Compensation Effect" (EECE) is ubiquitous in chemical reactions; however, such an EECE has been rarely explored in biomimetic oxidation reactions. In this study, six manganese(IV)-oxo complexes bearing electron-rich and -deficient porphyrins are synthesized and investigated in various oxidation reactions, such as hydrogen atom transfer (HAT), oxygen atom transfer (OAT), and electron-transfer (ET) reactions. First, all of the six Mn(IV)-oxo porphyrins are highly reactive in the HAT, OAT, and ET reactions. Interestingly, we have observed a reversed reactivity in the HAT and OAT reactions by the electron-rich and -deficient Mn(IV)-oxo porphyrins, depending on reaction temperatures, but not in the ET reactions; the electron-rich Mn(IV)-oxo porphyrins are more reactive than the electron-deficient Mn(IV)-oxo porphyrins at high temperature (e.g., 0 °C), whereas at low temperature (e.g., -60 °C), the electron-deficient Mn(IV)-oxo porphyrins are more reactive than the electron-rich Mn(IV)-oxo porphyrins. Such a reversed reactivity between the electron-rich and -deficient Mn(IV)-oxo porphyrins depending on reaction temperatures is rationalized with EECE; that is, the lower is the activation enthalpy, the more negative is the activation entropy, and vice versa. Interestingly, a unified linear correlation between the activation enthalpies and the activation entropies is observed in the HAT and OAT reactions of the Mn(IV)-oxo porphyrins. Moreover, from the previously reported HAT reactions of nonheme Fe(IV)-oxo complexes, a linear correlation between the activation enthalpies and the activation entropies is also observed. To the best of our knowledge, we report the first detailed mechanistic study of EECE in the oxidation reactions by synthetic high-valent metal-oxo complexes.
Collapse
Affiliation(s)
- Mian Guo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.,College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Jisheng Zhang
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Lina Zhang
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.,Faculty of Science and Engineering, Meijo University, Nagoya, Aichi 468-8502, Japan
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.,School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| |
Collapse
|
8
|
Van Trieste GP, Reid KA, Hicks MH, Das A, Figgins MT, Bhuvanesh N, Ozarowski A, Telser J, Powers DC. Nitrene Photochemistry of Manganese N-Haloamides*. Angew Chem Int Ed Engl 2021; 60:26647-26655. [PMID: 34662473 DOI: 10.1002/anie.202108304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Indexed: 11/06/2022]
Abstract
Manganese complexes supported by macrocyclic tetrapyrrole ligands represent an important platform for nitrene transfer catalysis and have been applied to both C-H amination and olefin aziridination catalysis. The reactivity of the transient high-valent Mn nitrenoids that mediate these processes renders characterization of these species challenging. Here we report the synthesis and nitrene transfer photochemistry of a family of MnIII N-haloamide complexes. The S=2 N-haloamide complexes are characterized by 1 H NMR, UV-vis, IR, high-frequency and -field EPR (HFEPR) spectroscopies, and single-crystal X-ray diffraction. Photolysis of these complexes results in the formal transfer of a nitrene equivalent to both C-H bonds, such as the α-C-H bonds of tetrahydrofuran, and olefinic substrates, such as styrene, to afford aminated and aziridinated products, respectively. Low-temperature spectroscopy and analysis of kinetic isotope effects for C-H amination indicate halogen-dependent photoreactivity: Photolysis of N-chloroamides proceeds via initial cleavage of the Mn-N bond to generate MnII and amidyl radical intermediates; in contrast, photolysis of N-iodoamides proceeds via N-I cleavage to generate a MnIV nitrenoid (i.e., {MnNR}7 species). These results establish N-haloamide ligands as viable precursors in the photosynthesis of metal nitrenes and highlight the power of ligand design to provide access to reactive intermediates in group-transfer catalysis.
Collapse
Affiliation(s)
| | - Kaleb A Reid
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Madeline H Hicks
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Anuvab Das
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Matthew T Figgins
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, 32310, USA
| | - Joshua Telser
- Department of Biological, Physical and Chemical Sciences, Roosevelt University, Chicago, IL, 60605, USA
| | - David C Powers
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
9
|
Li J, Wei J, Gao Z, Yin G, Li H. The oxidative reactivity of three manganese(III) porphyrin complexes with hydrogen peroxide and nitrite toward catalytic nitration of protein tyrosine. Metallomics 2021; 13:6134099. [PMID: 33576808 DOI: 10.1093/mtomcs/mfab005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 01/10/2021] [Accepted: 02/04/2021] [Indexed: 11/12/2022]
Abstract
Understanding the toxicological properties of MnIII-porphyrins (MnTPPS, MnTMPyP, or MnTBAP) can provide important biochemical rationales in developing them as the therapeutic drugs against protein tyrosine nitration-induced inflammation diseases. Here, we present a comprehensive understanding of the pH-dependent redox behaviors of these MnIII-porphyrins and their structural effects on catalyzing bovine serum albumin (BSA) nitration in the presence of H2O2 and NO2-. It was found that both MnTPPS and MnTBAP stand out in catalyzing BSA nitration at physiologically close condition (pH 8), yet they are less effective at pH 6 and 10. MnTMPyP was shown to have no ability to catalyze BSA nitration under all tested pHs (pH 6, 8, and 10). The kinetics and active intermediate determination through electrochemistry method revealed that both the pH-dependent redox behavior of the central metal cation and the antioxidant capability of porphin derivative contribute to the catalytic activities of three MnIII-porphyrins in BSA nitration in the presence of H2O2/NO2-. These comprehensive studies on the oxidative reactivity of MnIII-porphyrins toward BSA nitration may provide new clues for searching the manganese-based therapeutic drugs against the inflammation-related diseases.
Collapse
Affiliation(s)
- Jiayu Li
- Hubei Provincial Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Jingjing Wei
- Hubei Provincial Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Zhonghong Gao
- Hubei Provincial Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Guochuan Yin
- Hubei Provincial Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Hailing Li
- Hubei Provincial Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
10
|
Visible light generation of high-valent metal-oxo intermediates and mechanistic insights into catalytic oxidations. J Inorg Biochem 2020; 212:111246. [PMID: 33059321 DOI: 10.1016/j.jinorgbio.2020.111246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/07/2020] [Accepted: 08/22/2020] [Indexed: 11/21/2022]
Abstract
High-valent metal-oxo complexes play central roles as active oxygen atom transfer (OAT) agents in many enzymatic and synthetic oxidation catalysis. This review focuses on our recent advances in application of photochemical approaches to probe the oxidizing metal-oxo species with different metals and macrocyclic ligands. Under visible light irradiation, a variety of important metal-oxo species including iron-oxo porphyrins, manganese-oxo porphyrin/corroles, ruthenium-oxo porphyrins, and chromium-oxo salens have been successfully generated. Kinetical studies in real time have provided mechanistic insights as to the reactivity and reaction pathways of the metal-oxo intermediates in their oxidation reactions. In photo-induced ligand cleavage reactions, metals in n+ oxidation state with the oxygen-containing ligands bromate, chlorate, or nitrites were photolyzed. Homolytic cleavage of the O-X bond in the ligand gives (n + 1)+ oxidation state metal-oxo species, and heterolytic cleavage gives (n + 2)+ oxidation state metal-oxo species. In photo-disproportionation reactions, reactive Mn+1-oxo species can be formed by photolysis of μ-oxo dimeric Mn+ complexes with the concomitant formation of Mn-1 products. Importantly, the oxidation of Mn-1 products by molecular oxygen (O2) to regenerate the μ-oxo dimeric Mn+ complexes in photo-disproportionation reactions represents an attractive and green catalytic cycle for the development of photocatalytic aerobic oxidations.
Collapse
|