1
|
Pavlović S, Petrović B, Ćoćić D, Schreurer A, Sretenović S, Nešić MD, Nišavić M, Maric Z, Stanisavljević I, Ćorović I, Simović Marković B, Maric V, Jovanović I, Radić G, Radisavljević S, Jovanović Stević S. New Pd(II)-pincer type complexes as potential antitumor drugs: synthesis, nucleophilic substitution reactions, DNA/HSA interaction, molecular docking study and cytotoxic activity. Dalton Trans 2024; 53:18560-18574. [PMID: 39470017 DOI: 10.1039/d4dt02549k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Two new complexes of Pd(II), [Pd(L1)Cl]Cl (Pd1) and [Pd(L2)Cl]Cl (Pd2), (where L1 = N2,N6-bis(5-methylthiazol-2-yl)pyridine-2,6-dicarboxamide and L2 = N2,N6-di(benzo[d]thiazol-2-yl)pyridine-2.6-dicarboxamide) were synthesized. Characterization of the complexes was performed using elemental analysis, IR, 1H NMR spectroscopy and MALDI-TOF mass spectrometry. The nucleophilic substitution reactions of complexes with L-Methionine (L-Met), L-Cysteine (L-Cys) and guanosine-5'-monophosphate (5'-GMP) were studied by stopped-flow method at physiological conditions (pH = 7.2 and 37 °C). Complex Pd1 was more reactive than Pd2 in all studied reactions, while the order of reactivity of the selected ligands was: L-Met > L-Cys > 5'-GMP. The interaction of complexes with calf thymus-DNA (CT-DNA) was studied by Uv-Vis absorption and fluorescence emission spectroscopy. Competitive binding studies with intercalative agent ethidium bromide (EB) and minor groove binder Hoechst 33258 were performed as well. Both complexes interacted with DNA through intercalation and minor groove binding, where the latter was preferred. Additionally, the interaction of Pd1 and Pd2 complexes with human serum albumin (HSA) was studied employing fluorescence quenching spectroscopy. The results indicate a moderate binding affinity of complexes, with slightly stronger binding of the Pd1. Fluorescence competition experiments with site-markers (eosin Y and ibuprofen) for HSA were used to locate the binding site of Pd1 to the HSA. Additionally, the interaction with DNA and HSA was studied by molecular docking and the revealed results were in good agreement with the experimentally obtained ones. Pd1 complex exhibited cytotoxicity toward human (HCT116) and mouse cell lines (CT26) of colorectal cancer, mouse (4T1) and human (MDA-MB468) breast cancer lines and non-cancerous mouse mesenchymal stem cells (mMSC). In addition, Pd1 complex demonstrated significant selectivity towards cancer cells over non-cancerous mMSC, indicating a high potential to eliminate malignant cells without affecting normal cells. It induced apoptosis in CT26 cells, effectively arrested the cell cycle in the S phase, and selectively down-regulated cyclin D and cyclin E. Moreover, it can alter the expression of cell cycle regulators by increasing p21 and decreasing p-AKT. These findings confirm its ability to disrupt key tumor cell survival signals and suggest that the Pd1 complex is a potent candidate for effective cancer treatment.
Collapse
Affiliation(s)
- Sladjana Pavlović
- University of Kragujevac, Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Biljana Petrović
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia.
| | - Dušan Ćoćić
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia.
| | - Andreas Schreurer
- Inorganic Chemistry, Department of Chemistry and Pharmacy, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Snežana Sretenović
- University of Kragujevac, Faculty of Medicinal Science, Department of Internal Medicine, Kragujevac, Serbia
| | - Maja D Nešić
- Center for Light-Based Research and Technologies COHERENCE, Department of Atomic Physics, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000, Serbia
| | - Marija Nišavić
- Center for Light-Based Research and Technologies COHERENCE, Department of Atomic Physics, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000, Serbia
| | - Zorana Maric
- University of East Sarajevo, Faculty of Medicine, Studentska 5, 73300 Foca, BiH
| | - Isidora Stanisavljević
- University of Kragujevac, Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Irfan Ćorović
- General Hospital of Novi Pazar, Department of Internal Medicine, Generala Živkovića 1, 36300 Novi Pazar, Serbia
| | - Bojana Simović Marković
- University of Kragujevac, Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Veljko Maric
- University of East Sarajevo, Faculty of Medicine, Studentska 5, 73300 Foca, BiH
| | - Ivan Jovanović
- University of Kragujevac, Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Gordana Radić
- University of Kragujevac, Faculty of Medical Sciences, Department of Pharmacy, Svetozara Markovića 69, 34000 Kragujevac, Serbia.
| | - Snežana Radisavljević
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia.
| | - Snežana Jovanović Stević
- University of Kragujevac, Faculty of Medical Sciences, Department of Pharmacy, Svetozara Markovića 69, 34000 Kragujevac, Serbia.
| |
Collapse
|
2
|
Haribabu J, Madhavan G, Swaminathan S, Panneerselvam M, Moraga D, Dasararaju G, Echeverria C, Arulraj A, Mangalaraja RV, Kokkarachedu V, Santibanez JF, Ramirez-Tagle R. Multifaceted exploration of acylthiourea compounds: In vitro cytotoxicity, DFT calculations, molecular docking and dynamics simulation studies. Int J Biol Macromol 2024; 278:134870. [PMID: 39173802 DOI: 10.1016/j.ijbiomac.2024.134870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/31/2024] [Accepted: 08/17/2024] [Indexed: 08/24/2024]
Abstract
This study reports the synthesis and analysis of biologically active acylthiourea compounds (1 and 2) with a cyclohexyl moiety. The compounds were characterized using UV-Visible, FT-IR, 1H/13C NMR, and elemental analysis. The crystal structure of 2 was solved, revealing intra- and inter-molecular hydrogen bonds. Density functional theory (DFT) calculations provided insights into chemical reactivity and non-covalent interactions. Cytotoxicity assays showed the cyclohexyl group enhanced the activity of compound 2 compared to compound 1. Epoxide hydrolase 1 was predicted as the enzyme target for both compounds. We modeled the structure of epoxide hydrolase 1 and performed molecular dynamics simulation and docking studies. Additionally, in silico docking with SARS-CoV-2 main protease, human ACE2, and avian influenza H5N1 hemagglutinin indicated strong binding potential of the compounds. This integrated approach improves our understanding of the biological potential of acylthiourea derivatives.
Collapse
Affiliation(s)
- Jebiti Haribabu
- ATACAMA-OMICS, Faculty of Medicine, University of Atacama, Los Carreras 1579, 1532502 Copiapo, Chile; Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India.
| | - Geetha Madhavan
- Chennai Institute of Technology (CIT), Chennai 600069, Tamil Nadu, India
| | - Srividya Swaminathan
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India
| | - Murugesan Panneerselvam
- MolMod-CS - Instituto de Química, Universidade Federal Fluminense, Campos de Valonginho s/n, Centro, Niterói 24020-14, Rio de Janeiro, Brazil
| | - Daniel Moraga
- Laboratorio de Fisiología, Departamento de Ciencias Biomédicas, Facultad de Medicina Universidad de Tarapacá, Arica 1000000, Chile
| | | | - Cesar Echeverria
- ATACAMA-OMICS, Faculty of Medicine, University of Atacama, Los Carreras 1579, 1532502 Copiapo, Chile
| | - Arunachalam Arulraj
- Departamento de Electricidad, Facultad de Ingeniería, Universidad Tecnológica Metropolitana (UTEM), Av. José Pedro Alessandri 1242, Ñuñoa-7800002, Santiago, Chile
| | - Ramalinga Viswanathan Mangalaraja
- Faculty of Engineering and Sciences, Universidad Adolfo Ibáñez, Diagonal las Torres 2640, Peñalolén, Santiago, Chile; Department of Mechanical Engineering, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India
| | - Varaprasad Kokkarachedu
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Lientur 1457, Concepción, Chile
| | - Juan F Santibanez
- Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia; Integrative Center for Biology and Applied Chemistry (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile
| | - Rodrigo Ramirez-Tagle
- Facultad de Ingeniería y Arquitectura, Universidad Central de Chile, Santiago, Chile
| |
Collapse
|
3
|
van Niekerk A, Chakraborty S, Bellis C, Chellan P, Prince S, Mapolie SF. Binuclear palladacycles with ionisable and non-ionisable tethers as anticancer agents. J Inorg Biochem 2024; 257:112608. [PMID: 38761581 DOI: 10.1016/j.jinorgbio.2024.112608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 05/20/2024]
Abstract
The search for novel anticancer agents to replace the current platinum-based treatments remains an ongoing process. Palladacycles have shown excellent promise as demonstrated by our previous work which yielded BTC2, a binuclear palladadycle with a non-ionisable polyethylene glycol (PEG) tether. Here, we explore the importance of the PEG-tether length on the anticancer activity of the binuclear palladacycles by comparing three analogous binuclear palladacycles, BTC2, BTC5 and BTC6, in the oestrogen receptor positive MCF7 and triple-negative MDA-MB-231 breast cancer cell lines. In addition, these are compared to another analogue with an ionisable morpholine tether, BTC7. Potent anticancer activity was revealed through cell viability studies (MTT assays) revealed that while BTC6 showed similar potent anticancer activity as BTC2, it was less toxic towards non-cancerous cell lines. Interestingly, BTC7 and BTCF were less potent than the PEGylated palladacycles but showed significantly improved selectivity towards the triple-negative breast cancer cells. Cell death analysis showed that BTC7 and BTCF significantly induced apoptosis in both the cancer cell lines while the PEGylated complexes induced both apoptosis and secondary necrosis. Furthermore, experimental and computational DNA binding studies indicated partial intercalation and groove binding as the modes of action for the PEGylated palladacycles. Similarly, experimental and computational BSA binding studies indicated and specific binding sites in BSA dependent on the nature of the tethers on the complexes.
Collapse
Affiliation(s)
- A van Niekerk
- Department of Chemistry and Polymer Science, Stellenbosch University, Private bag X1, Stellenbosch 7602, South Africa,; Department of Human Biology, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa.
| | - S Chakraborty
- Department of Human Biology, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa
| | - C Bellis
- Department of Human Biology, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa
| | - P Chellan
- Department of Chemistry and Polymer Science, Stellenbosch University, Private bag X1, Stellenbosch 7602, South Africa
| | - S Prince
- Department of Human Biology, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa
| | - S F Mapolie
- Department of Chemistry and Polymer Science, Stellenbosch University, Private bag X1, Stellenbosch 7602, South Africa
| |
Collapse
|
4
|
Zheng Y, An H, Qi J, Li J. Recent progress in thiocarbazone metal complexes for cancer therapy via mitochondrial signalling pathway. Front Chem 2024; 12:1424022. [PMID: 38873408 PMCID: PMC11169589 DOI: 10.3389/fchem.2024.1424022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 05/15/2024] [Indexed: 06/15/2024] Open
Abstract
Mitochondria are the energy factories of cells and are important targets for the development of novel tumour treatment strategies owing to their involvement in processes such as apoptosis, oxidative stress, and metabolic programming. Thiosemicarbazone metal complexes target mitochondria and reduce mitochondrial membrane potential. The breakdown of mitochondrial membrane potential is a key event in the early stage of apoptosis, which releases cytochrome C and other pro-apoptotic factors, activates the intracellular apoptotic enzyme cascade, and eventually causes irreversible apoptosis of tumour cells. Thiosemicarbazone metal complexes targeting the mitochondria have recently emerged as potential antitumour agents; therefore, this review describes the structural diversity of thiosemicarbazone metal [Fe(III), Cu(II), Ni(II), Zn(II), Ga(III), Pb(II), Au(III), and Ir(III)] complexes and explores their anti-tumour mechanisms that target mitochondrial pathways.
Collapse
Affiliation(s)
- Yunyun Zheng
- Medical School of Pingdingshan University, Pingdingshan, China
| | - Hangyi An
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou, China
| | - Jinxu Qi
- Medical School of Pingdingshan University, Pingdingshan, China
| | - Jiaming Li
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou, China
| |
Collapse
|
5
|
Cobalt(II), Nickel(II), Palladium(II) and Zinc(II) Metallothiosemicarbazones: Synthesis, Characterization, X-ray Structures and Biological Activity. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
6
|
Lv D, Lai Q, Zhang Q, Wang JH, Li YC, Zeng GZ, Yin JL. 3-Deoxysappanchalcone isolated from Caesalpinia sinensis shows anticancer effects on HeLa and PC3 cell lines: invasion, migration, cell cycle arrest, and signaling pathway. Heliyon 2022; 8:e11013. [PMID: 36276736 PMCID: PMC9582709 DOI: 10.1016/j.heliyon.2022.e11013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/19/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022] Open
Abstract
To study the antitumor activity of compound 3-desoxysulforaphane (3-DSC) isolated from Caesalpinia sinensis, SRB assay, clone formation assay, flow cytometric cell cycle assay, scratch assay, transwell assay, and molecular docking were used to investigate the inhibitory effect of 3-DSC on HeLa and PC3 cells. The results showed that 3-DSC inhibited the cell migration and invasion by down-regulating expression of N-cadherin, Vimentin, MMP-2, and MMP-9 in HeLa and PC3 cells; It also inhibits cell proliferation by promoting the expression of CDK1 (cyclin-dependent kinases 1) and CDK2 (cyclin-dependent kinases 2), which arrests the tumor cell cycle at G2 phase. 3-DSC inhibits phosphorylation of AKT and ERK and upregulates the expression of the tumor suppressor gene p53. Molecular docking results confirmed that 3-DSC could bind firmly to AKT. In conclusion, 3-DSC inhibited the proliferation, migration and invasion of HeLa and PC3 cells.
Collapse
|
7
|
Bai XG, Zheng Y, Qi J. Advances in thiosemicarbazone metal complexes as anti-lung cancer agents. Front Pharmacol 2022; 13:1018951. [PMID: 36238553 PMCID: PMC9551402 DOI: 10.3389/fphar.2022.1018951] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/13/2022] [Indexed: 01/31/2023] Open
Abstract
The great success of cisplatin as a chemotherapeutic agent considerably increased research efforts in inorganic biochemistry to identify more metallic drugs having the potential of treating lung cancer. Metal coordination centres, which exhibit a wide range of coordination numbers and geometries, various oxidised and reduced states and the inherent ligand properties offer pharmaceutical chemists a plethora of drug structures. Owing to the presence of C=N and C=S bonds in a thiosemicarbazone Schiff base, N and S atoms in its hybrid orbital has lone pair of electrons, which can generate metal complexes with different stabilities with most metal elements under certain conditions. Such ligands and complexes play key roles in the treatment of anti-lung cancer. Research regarding metallic anti-lung cancer has advanced considerably, but there remain several challenges. In this review, we discuss the potential of thiosemicarbazone Schiff base complexes as anti-lung cancer drugs, their anti-cancer activities and the most likely action mechanisms involving the recent families of copper, nickel, platinum, ruthenium and other complexes.
Collapse
Affiliation(s)
| | | | - Jinxu Qi
- *Correspondence: Yunyun Zheng, ; Jinxu Qi,
| |
Collapse
|
8
|
Yousuf S, Arjmand F, Tabassum S. ROS -mediated anticancer response of potent copper(II) drug entities derived from S, O and N, N chelating donor scaffold: Single X-ray crystal diffraction and spectroscopic studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Dorairaj DP, Haribabu J, Chang Y, Echeverria C, Hsu SCN, Karvembu R. Pd (II)‐PPh
3
complexes of halogen substituted acylthiourea ligands: Biomolecular interactions and
in vitro
anti‐proliferative activity. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | - Jebiti Haribabu
- Department of Chemistry National Institute of Technology Tiruchirappalli India
- Facultad de Medicina Universidad de Atacama Copiapo Chile
| | - Yu‐Lun Chang
- Department of Medicinal and Applied Chemistry Kaohsiung Medical University Kaohsiung Taiwan
| | | | - Sodio C. N. Hsu
- Department of Medicinal and Applied Chemistry Kaohsiung Medical University Kaohsiung Taiwan
| | - Ramasamy Karvembu
- Department of Chemistry National Institute of Technology Tiruchirappalli India
| |
Collapse
|
10
|
Balakrishanan N, Haribabu J, Dharmasivam M, Swaminathan S, Karvembu R. Impact of denticity of chromone/chromene thiosemicarbazones in the ruthenium (II)‐DMSO complexes on their cytotoxicity against breast cancer cells. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nithya Balakrishanan
- Department of Chemistry National Institute of Technology Tiruchirappalli Tamil Nadu India
| | - Jebiti Haribabu
- Department of Chemistry National Institute of Technology Tiruchirappalli Tamil Nadu India
- Facultad de Medicina, Universidad de Atacama Copiapo Chile
| | - Mahendiran Dharmasivam
- Centre for Cancer Cell Biology and Drug Discovery Griffith University Brisbane Queensland Australia
| | - Srividya Swaminathan
- Department of Chemistry National Institute of Technology Tiruchirappalli Tamil Nadu India
| | - Ramasamy Karvembu
- Department of Chemistry National Institute of Technology Tiruchirappalli Tamil Nadu India
| |
Collapse
|
11
|
Effect of N-benzyl group in indole scaffold of thiosemicarbazones on the biological activity of their Pd(II) complexes: DFT, biomolecular interactions, in silico docking, ADME and cytotoxicity studies. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120805] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
Dorairaj DP, Haribabu J, Shashankh PV, Chang YL, Echeverria C, Hsu SC, Karvembu R. Bidentate acylthiourea ligand anchored Pd-PPh3 complexes with biomolecular binding, cytotoxic, antioxidant and antihemolytic properties. J Inorg Biochem 2022; 233:111843. [DOI: 10.1016/j.jinorgbio.2022.111843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 04/18/2022] [Accepted: 04/18/2022] [Indexed: 11/24/2022]
|
13
|
Karakurt T, Kaya B, Şahin O, Ülküseven B. Synthesis of the nickel(II) complexes bearing tetradentate thiosemicarbazone through Michael addition of n-alcohols. Experimental, theoretical characterization and antioxidant properties. Struct Chem 2022. [DOI: 10.1007/s11224-022-01908-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Development of thiosemicarbazone-based transition metal complexes as homogeneous catalysts for various organic transformations. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2021.120742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Haribabu J, Garisetti V, Malekshah RE, Srividya S, Gayathri D, Bhuvanesh N, Mangalaraja RV, Echeverria C, Karvembu R. Design and synthesis of heterocyclic azole based bioactive compounds: Molecular structures, quantum simulation, and mechanistic studies through docking as multi-target inhibitors of SARS-CoV-2 and cytotoxicity. J Mol Struct 2022; 1250:131782. [PMID: 34697505 PMCID: PMC8528790 DOI: 10.1016/j.molstruc.2021.131782] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/16/2021] [Accepted: 10/19/2021] [Indexed: 01/04/2023]
Abstract
Two heterocyclic azole compounds, 3-(2,3-dihydrobenzo[d]thiazol-2-yl)-4H-chromen-4-one (SVS1) and 5-(1H-indol-3-yl)-4-methyl-2,4-dihydro-3H-1,2,4-triazole-3-thione (SVS2) were obtained unexpectedly from 2-aminothiophenol and 4-oxo-4H-chromene-3-carbaldehyde (for SVS1), and (E)-2-((1H-indol-3-yl)methylene)-N-methylhydrazine-1-carbothioamide in the presence of anhydrous FeCl3 (for SVS2), respectively. The compounds were well characterized by analytical and spectroscopic tools. The molecular structures of both the compounds were determined by single crystal X-ray diffraction (XRD) study. The results obtained from density functional theory (DFT) study revealed the molecular geometry and electron distribution of the compounds, which were correlated well with the three-dimensional structures obtained from the single crystal XRD. DMol3 was used to calculate quantum chemical parameters [chemical potential (µ), global hardness (η), global softness (σ), absolute electronegativity (χ) and electrophilicity index (ω)] of SVS1 and SVS2. Molecular docking study was performed to elucidate the binding ability of SVS1 and SVS2 with SARS-CoV-2 main protease and human angiotensin-converting enzyme-2 (ACE-2) molecular targets. Interestingly, the binding efficiency of the compounds with the molecular targets was comparable with that of remdesivir (SARS-CoV-2), chloroquine and hydroxychloroquine. SVS1 showed better docking energy than SVS2. The molecular docking study was complemented by molecular dynamics simulation study of SARS-CoV-2 main protease-SVS1 complex, which further exemplified the binding ability of SVS1 with the target. In addition, SVS1, SVS2 and cisplatin were assessed for their cytotoxicity against a panel of three human cancer cells such as HepG-2 (hepatic carcinoma), T24 (bladder) and EA.hy926 (endothelial), as well as Vero (kidney epithelial cells extracted from an African green monkey) normal cells using MTT assay. The results showed that SVS2 has significant cytotoxicity against HepG-2 and EA.hy926 cells with the IC50 values of 33.8 μM (IC50 = 49.9 μM-cisplatin and 8.6 μM-doxorubicin) and 29.2 (IC50 = 26.6 μM-cisplatin and 3.8 μM-doxorubicin), respectively.
Collapse
Affiliation(s)
- Jebiti Haribabu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India,Facultad de Medicina, Universidad de Atacama, Los Carreras 1579, 1532502 Copiapo, Chile
| | - Vasavi Garisetti
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600025, India
| | - Rahime Eshaghi Malekshah
- Medical Biomaterial Research Centre (MBRC), Tehran University of Medical Sciences, Tehran, Iran,Department of Chemistry, Iran University of Science and Technology, Tehran 16846‒13114, Iran
| | - Swaminathan Srividya
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India
| | - Dasararaju Gayathri
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600025, India
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A & M University, College Station, TX 77842, USA
| | - Ramalinga Viswanathan Mangalaraja
- Advanced Ceramics and Nanotechnology Laboratory, Department of Materials Engineering, Faculty of Engineering, University of Concepcion, Concepcion, Chile
| | - Cesar Echeverria
- Facultad de Medicina, Universidad de Atacama, Los Carreras 1579, 1532502 Copiapo, Chile,Corresponding authors
| | - Ramasamy Karvembu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India,Corresponding authors
| |
Collapse
|
16
|
Narwane M, Dorairaj DP, Chang YL, Karvembu R, Huang YH, Chang HW, Hsu SCN. Tris-(2-pyridyl)-pyrazolyl Borate Zinc(II) Complexes: Synthesis, DNA/Protein Binding and In Vitro Cytotoxicity Studies. Molecules 2021; 26:7341. [PMID: 34885924 PMCID: PMC8659194 DOI: 10.3390/molecules26237341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022] Open
Abstract
Zn(II) complexes bearing tris[3-(2-pyridyl)-pyrazolyl] borate (Tppy) ligand (1-3) was synthesized and examined by spectroscopic and analytical tools. Mononuclear [TppyZnCl] (1) has a Zn(II) centre with one arm (pyrazolyl-pyridyl) dangling outside the coordination sphere which is a novel finding in TppyZn(II) chemistry. In complex [TppyZn(H2O)][BF4] (2) hydrogen bonding interaction of aqua moiety stabilizes the dangling arm. In addition, solution state behaviour of complex 1 confirms the tridentate binding mode and reactivity studies show the exogenous axial substituents used to form the [TppyZnN3] (3). The complexes (1-3) were tested for their ability to bind with Calf thymus (CT) DNA and Bovine serum albumin (BSA) wherein they revealed to exhibit good binding constant values with both the biomolecules in the order of 104-105 M-1. The intercalative binding mode with CT DNA was confirmed from the UV-Visible absorption, viscosity, and ethidium bromide (EB) DNA displacement studies. Further, the complexes were tested for in vitro cytotoxic ability on four triple-negative breast cancer (TNBC) cell lines (MDA-MB-231, MDA-MB-468, HCC1937, and Hs 578T). All three complexes (1-3) exhibited good IC50 values (6.81 to 16.87 μM for 24 h as seen from the MTS assay) results which indicated that these complexes were found to be potential anticancer agents against the TNBC cells.
Collapse
Affiliation(s)
- Manmath Narwane
- Drug Development and Value Creation Research Centre, Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (M.N.); (D.P.D.); (Y.-L.C.)
| | - Dorothy Priyanka Dorairaj
- Drug Development and Value Creation Research Centre, Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (M.N.); (D.P.D.); (Y.-L.C.)
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India;
| | - Yu-Lun Chang
- Drug Development and Value Creation Research Centre, Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (M.N.); (D.P.D.); (Y.-L.C.)
| | - Ramasamy Karvembu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India;
| | - Yu-Han Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environment Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Sodio C. N. Hsu
- Drug Development and Value Creation Research Centre, Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (M.N.); (D.P.D.); (Y.-L.C.)
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| |
Collapse
|
17
|
|
18
|
Haribabu J, Balakrishnan N, Swaminathan S, Peter J, Gayathri D, Echeverria C, Bhuvanesh N, Karvembu R. Synthesis, cytotoxicity and docking studies (with SARS-CoV-2) of water-soluble binuclear Ru- p-cymene complex holding indole thiosemicarbazone ligand. INORG CHEM COMMUN 2021; 134:109029. [PMID: 34729032 PMCID: PMC8552700 DOI: 10.1016/j.inoche.2021.109029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 02/07/2023]
Abstract
A water-soluble binuclear organometallic Ru-p-cymene complex [Ru(η6-p-cymene)(η2-L)]2 (1) was prepared from (E)-2-((1H-indol-3-yl)methylene)-N-phenylhydrazine-1-carbothioamide (HL) and [RuCl2(p-cymene)]2 in methanol at room temperature under inert atmosphere. The structure of binuclear complex was analyzed by UV-Visible, FT-IR, NMR and mass spectroscopic methods. The solid-state structure of the complex was ascertained by single crystal X-ray diffraction technique. The complex exhibited pseudo-octahedral (piano-stool) geometry around Ru(II) ion. The cytotoxic property of the ligand and complex along with cisplatin was investigated against A549-lung, MCF-7-breast, HeLa-cervical, HepG-2-liver, T24-urinary bladder and EA.hy926-endothelial cancer cells, and Vero-kidney epithelial normal cells. The complex exhibited superior activity than cisplatin against A549, HeLa and T24 cancer cells with the IC50 values of 7.70, 11.2, and 5.05 µM, respectively. The complexes were cytotoxic specifically to the cancer cells. Molecular docking studies showed good binding potential of the ligand and complex with the spike protein and main protease of SARS-CoV-2, indicating the promising role of these compounds as antiviral compounds.
Collapse
Affiliation(s)
- Jebiti Haribabu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India.,Facultad de Medicina, Universidad de Atacama, Copayapu 485, 1531772 Copiapo, Chile
| | - Nithya Balakrishnan
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India
| | - Srividya Swaminathan
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India
| | - Jerome Peter
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India.,Division of Materials Science and Chemical Engineering (MSE), Hanyang University (ERICA), Ansan, Republic of Korea - 15588
| | - Dasararaju Gayathri
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600025, India
| | - Cesar Echeverria
- Facultad de Medicina, Universidad de Atacama, Copayapu 485, 1531772 Copiapo, Chile
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A & M University, College Station, TX 77842, USA
| | - Ramasamy Karvembu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India
| |
Collapse
|
19
|
Yousuf S, Arjmand F, Tabassum S. Design, synthesis, ligand’s scaffold variation and structure elucidation of Cu(II) complexes; In vitro DNA binding, morphological studies and their anticancer activity. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
20
|
Lavanya M, Haribabu J, Ramaiah K, Suresh Yadav C, Kumar Chitumalla R, Jang J, Karvembu R, Varada Reddy A, Jagadeesh M. 2′-Thiophenecarboxaldehyde derived thiosemicarbazone metal complexes of copper(II), palladium(II) and zinc(II) ions: Synthesis, spectroscopic characterization, anticancer activity and DNA binding studies. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Swaminathan S, Haribabu J, Kalagatur NK, Nikhil M, Balakrishnan N, Bhuvanesh NSP, Kadirvelu K, Kolandaivel P, Karvembu R. Tunable Anticancer Activity of Furoylthiourea-Based Ru II -Arene Complexes and Their Mechanism of Action. Chemistry 2021; 27:7418-7433. [PMID: 33404126 DOI: 10.1002/chem.202004954] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/21/2020] [Indexed: 11/08/2022]
Abstract
Fourteen new RuII -arene (p-cymene/benzene) complexes (C1-C14) have been synthesized by varying the N-terminal substituent in the furoylthiourea ligand and satisfactorily characterized by using analytical and spectroscopic techniques. Electrostatic potential maps predicted that the electronic effect of the substituents was mostly localized, with some influence seen on the labile chloride ligands. The structure-activity relationships of the Ru-p-cymene and Ru-benzene complexes showed opposite trends. All the complexes were found to be highly toxic towards IMR-32 cancer cells, with C5 (Ru-p-cymene complex containing C6 H2 (CH3 )3 as N-terminal substituent) and C13 (Ru-benzene complex containing C6 H4 (CF3 ) as N-terminal substituent) showing the highest activity among each set of complexes, and hence they were chosen for further study. These complexes showed different behavior in aqueous solutions, and were also found to catalytically oxidize glutathione. They also promoted cell death by apoptosis and cell cycle arrest. Furthermore, the complexes showed good binding ability with the receptors Pim-1 kinase and vascular endothelial growth factor receptor 2, commonly overexpressed in cancer cells.
Collapse
Affiliation(s)
- Srividya Swaminathan
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620015, Tamil Nadu, India
| | - Jebiti Haribabu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620015, Tamil Nadu, India
| | - Naveen Kumar Kalagatur
- DRDO-BU Centre for Life Sciences, Bharathiar University Campus, Coimbatore, 641046, Tamil Nadu, India
| | - Maroli Nikhil
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Nithya Balakrishnan
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620015, Tamil Nadu, India
| | | | - Krishna Kadirvelu
- DRDO-BU Centre for Life Sciences, Bharathiar University Campus, Coimbatore, 641046, Tamil Nadu, India
| | | | - Ramasamy Karvembu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620015, Tamil Nadu, India
| |
Collapse
|
22
|
Balakrishnan N, Haribabu J, Dhanabalan AK, Swaminathan S, Sun S, Dibwe DF, Bhuvanesh N, Awale S, Karvembu R. Thiosemicarbazone(s)-anchored water soluble mono- and bimetallic Cu(ii) complexes: enzyme-like activities, biomolecular interactions, anticancer property and real-time live cytotoxicity. Dalton Trans 2021; 49:9411-9424. [PMID: 32589180 DOI: 10.1039/d0dt01309a] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The reactions of CuCl2·2H2O with chromone thiosemicarbazone ligands containing a -H or -CH3 substituent on terminal N yielded monometallic Cu(ii) complexes [Cu(HL1)Cl2] (1) and [Cu(HL2)Cl2] (2), whereas bimetallic Cu(ii) complexes [Cu(μ-Cl)(HL3)]2Cl2 (3), [Cu(μ-Cl)(HL4)]2Cl2 (4) and [Cu(μ-Cl)(L5)]2 (5) were obtained when a -C2H5, -C6H11 or -C6H5 substituent was present, respectively, in the ligands. The complexes were characterized using elemental analyses, UV-Vis, FT-IR, EPR, mass and TGA studies. The structures of neutral monometallic and dicationic bimetallic complexes were confirmed by single crystal X-ray diffraction, and they exhibited a distorted square pyramidal geometry around Cu(ii) ions. The catecholase-mimicking activity of complexes 1-5 was examined spectrophotometrically, and the results revealed that all the complexes except 5 had the ability to oxidize 3,5-di-tert-butylcatechol (3,5-DTBC) to 3,5-di-tert-butylquinone (3,5-DTBQ) under aerobic conditions with moderate turnover numbers. In order to find the possible complex-substrate intermediates, a mass spectrometry study was carried out for complexes 1-4 in the presence of 3,5-DTBC. The phosphatase-like activity of 1-5 was also investigated using 4-nitrophenylphosphate (4-NPP) as a model substrate. All the complexes exhibited excellent phosphatase activity in DMF-H2O medium. The complexes displayed significant biomolecular interactions and antioxidant potential. Complex 3 showed good interaction with apoptotic CASP3 protein, VEGFR2 and PIM-1 kinase receptors as revealed by a molecular docking study. Complexes (3-5) exhibited promising cytotoxicity against HeLa-cervical cancer cells with IC50 values of 2.24 (3), 2.25 (4) and 3.77 (5) μM, respectively, and showed a two-fold higher activity than cisplatin. The active complex 3 showed complete inhibition of colony formation at 10 μM concentration. In addition, the acridine orange (AO)/ethidium bromide (EB) staining and real-time live cell imaging results confirmed that complex 3 induced cell death in HeLa cells.
Collapse
Affiliation(s)
- Nithya Balakrishnan
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India.
| | - Jebiti Haribabu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India. and Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan
| | - Ananda Krishnan Dhanabalan
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600025, India
| | - Srividya Swaminathan
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India.
| | - Sijia Sun
- Division of Natural Drug Discovery, Department of Translational Research, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Dya Fita Dibwe
- Division of Natural Drug Discovery, Department of Translational Research, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A & M University, College Station, TX 77842, USA
| | - Suresh Awale
- Division of Natural Drug Discovery, Department of Translational Research, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Ramasamy Karvembu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India.
| |
Collapse
|
23
|
Haribabu J, Alajrawy OI, Jeyalakshmi K, Balachandran C, Krishnan DA, Bhuvanesh N, Aoki S, Natarajan K, Karvembu R. N-substitution in isatin thiosemicarbazones decides nuclearity of Cu(II) complexes - Spectroscopic, molecular docking and cytotoxic studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 246:118963. [PMID: 33017789 DOI: 10.1016/j.saa.2020.118963] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/08/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
The mono- (1) and bi-nuclear (2) copper(II) complexes containing N-substituted isatin thiosemicarbazone(s) were synthesized, and characterized by analytical and spectroscopic (UV-Visible, FT-IR and EPR) techniques. Bimetallic nature of complex 2 was confirmed by single crystal X-ray crystallography. The structures predicted by spectroscopic and crystallographic methods were validated by computational studies. From the spectroscopic, crystallographic and computational data, the structures were found to be distorted square planar for 1 and distorted square pyramidal for 2. Molecular docking studies showed hydrogen bonding and hydrophobic interactions of the complexes with tyrosinase kinase receptors. Complex 1 exhibited promising cytotoxic activity against Jurkat (leukemia) cell line, and complex 2 displayed more activity against HeLa S3 (cervical) and Jurkat cell lines with the IC50 values of 3.53 and 3.70 μM, respectively. Cytotoxicity of 1 (Jurkat) and 2 (Jurkat and HeLa S3) was better than that of cisplatin. Morphological changes in A549 (lung), HeLa S3 and Jurkat cell lines were examined in presence of the active complexes with the co-staining of Hoechst, AO (acridine orange) and EB (ethidium bromide) by fluorescence microscope.
Collapse
Affiliation(s)
- Jebiti Haribabu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India; Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan
| | - Othman I Alajrawy
- College of Applied Science, Department of Applied Chemistry, University of Fallujah, Fallujah 00964, Iraq
| | - Kumaramangalam Jeyalakshmi
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India; Department of Chemistry, M. Kumarasamy College of Engineering, Karur 639113, India
| | - Chandrasekar Balachandran
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan
| | - Dhanabalan Anantha Krishnan
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600025, India
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A & M University, College Station, TX 77842, USA
| | - Shin Aoki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan; Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan
| | - Karuppannan Natarajan
- Department of Chemistry, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore 641 020, India
| | - Ramasamy Karvembu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India.
| |
Collapse
|
24
|
Dorairaj DP, Haribabu J, Chithravel V, Vennila KN, Bhuvanesh N, Echeverria C, Hsu SC, Karvembu R. Spectroscopic, anticancer and antioxidant studies of fluxional trans-[PdCl2(S-acylthiourea)2] complexes. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
25
|
Haribabu J, Srividya S, Mahendiran D, Gayathri D, Venkatramu V, Bhuvanesh N, Karvembu R. Synthesis of Palladium(II) Complexes via Michael Addition: Antiproliferative Effects through ROS-Mediated Mitochondrial Apoptosis and Docking with SARS-CoV-2. Inorg Chem 2020; 59:17109-17122. [PMID: 33231439 PMCID: PMC7724763 DOI: 10.1021/acs.inorgchem.0c02373] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Indexed: 12/27/2022]
Abstract
Metal complexes have numerous applications in the current era, particularly in the field of pharmaceutical chemistry and catalysis. A novel synthetic approach for the same is always a beneficial addition to the literature. Henceforth, for the first time, we report the formation of three new Pd(II) complexes through the Michael addition pathway. Three chromone-based thiosemicarbazone ligands (SVSL1-SVSL3) and Pd(II) complexes (1-3) were synthesized and characterized by analytical and spectroscopic tools. The Michael addition pathway for the formation of complexes was confirmed by spectroscopic studies. Distorted square planar structure of complex 2 was confirmed by single-crystal X-ray diffraction. Complexes 1-3 were subjected to DNA- and BSA-binding studies. The complex with cyclohexyl substituent on the terminal N of thiosemicarbazone (3) showed the highest binding efficacy toward these biomolecules, which was further understood through molecular docking studies. The anticancer potential of these complexes was studied preliminarily by using MTT assay in cancer and normal cell lines along with the benchmark drugs (cisplatin, carboplatin, and gemcitabine). It was found that complex 3 was highly toxic toward MDA-MB-231 and AsPC-1 cancer cells with IC50 values of 0.5 and 0.9 μM, respectively, and was more efficient than the standard drugs. The programmed cell death mechanism of the complexes in MDA-MB-231 cancer cells was confirmed. Furthermore, the complexes induced apoptosis via ROS-mediated mitochondrial signaling pathway. Conveniently, all the complexes showed less toxicity (≥50 μM) against MCF-10a normal cell line. Molecular docking studies were performed with VEGFR2, EGFR, and SARS-CoV-2 main protease to illustrate the binding efficiency of the complexes with these receptors. To our surprise, binding potential of the complexes with SARS-CoV-2 main protease was higher than that with chloroquine and hydroxychloroquine.
Collapse
Affiliation(s)
- Jebiti Haribabu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India
| | - Swaminathan Srividya
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India
| | - Dharmasivam Mahendiran
- Department of Pathology, Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Dasararaju Gayathri
- Centre of Advanced
Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600025, India
| | - Vemula Venkatramu
- Department of Physics, Krishna University
Dr. MRAR PG Centre, Nuzvid 521201, India
| | - Nattamai Bhuvanesh
- Department
of Chemistry, Texas A & M University, College Station, Texas 77842, United States
| | - Ramasamy Karvembu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India
| |
Collapse
|
26
|
da Silveira Santos F, da Silveira CH, Souza Nunes F, Ferreira DC, Victória HFV, Krambrock K, Chaves OA, Rodembusch FS, Iglesias BA. Photophysical, photodynamical, redox properties and BSA interactions of novel isomeric tetracationic peripheral palladium(II)-bipyridyl porphyrins. Dalton Trans 2020; 49:16278-16295. [PMID: 32400785 DOI: 10.1039/d0dt01063d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
New isomeric tetra-cationic porphyrins containing peripheral [Pd(bpy)Cl]+ units attached to pyridyl substituents were synthesized and fully characterized. The porphyrins present an intense Soret band located in the blue spectral region and an additional four weaker red-shifted Q bands in the visible spectral region (about 500-700 nm). The obtained Strickler-Berg parameters indicate fully spin and symmetry allowed transitions for all the observed absorption bands. Both porphyrins present two fluorescence emission bands, an intense one located around 650 nm and an additional weak red-shifted emission at ∼710 nm. Fluorescence decay time profiles were obtained showing bi-exponential decay. The interaction of the porphyrins with bovine serum albumin (BSA) was studied in detail by a fluorescence quenching method and molecular docking analysis. In addition, the photodynamical activity of the porphyrins in the photooxidation of BSA was determined and compared with the light-induced formation of reactive oxygen species (ROS) by electron paramagnetic resonance (EPR) allied with the spin trapping method. The results show that the Pd(ii)-bypyridyl tetra-cationic porphyrins are promising candidates for the photooxidation of biological substrates used in photodynamic therapy (PDT).
Collapse
Affiliation(s)
- Fabiano da Silveira Santos
- Grupo de pesquisa em Fotoquímica Orgânica Aplicada, Instituto de Química, Universidade Federal do Rio Grande do Sul, UFRGS, Av. Bento Gonçalves 9500, 91501-970, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Jerome P, Haribabu J, Bhuvanesh NSP, Karvembu R. Pd(II)‐NNN Pincer Complexes for Catalyzing Transfer Hydrogenation of Ketones. ChemistrySelect 2020. [DOI: 10.1002/slct.202003634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Peter Jerome
- Department of Chemistry National Institute of Technology Tiruchirappalli 620015 India
| | - Jebiti Haribabu
- Department of Chemistry National Institute of Technology Tiruchirappalli 620015 India
| | | | - Ramasamy Karvembu
- Department of Chemistry National Institute of Technology Tiruchirappalli 620015 India
| |
Collapse
|
28
|
New Palladium(II) complexes with ONO chelated hydrazone ligand: Synthesis, characterization, DNA/BSA interaction, antioxidant and cytotoxicity. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119868] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Haribabu J, Srividya S, Umapathi R, Gayathri D, Venkatesu P, Bhuvanesh N, Karvembu R. Enhanced anticancer activity of half-sandwich Ru(II)-p-cymene complex bearing heterocyclic hydrazone ligand. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108054] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
30
|
Omondi RO, Bellam R, Ojwach SO, Jaganyi D, Fatokun AA. Palladium(II) complexes of tridentate bis(benzazole) ligands: Structural, substitution kinetics, DNA interactions and cytotoxicity studies. J Inorg Biochem 2020; 210:111156. [DOI: 10.1016/j.jinorgbio.2020.111156] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/15/2020] [Accepted: 06/21/2020] [Indexed: 01/21/2023]
|