1
|
Doğan Ulu Ö, Kuruçay A, Gümüşhan İY, Özdemir N, Ateş B, Özdemir İ. Design, synthesis, characterization, and biological activities of novel Ag(I)-NHC complexes based on 1,3-dioxane ligand. J Inorg Biochem 2024; 261:112719. [PMID: 39236445 DOI: 10.1016/j.jinorgbio.2024.112719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/21/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024]
Abstract
Herein, a series of new Ag(I)-NHC complexes containing 1,3-dioxane group were synthesized by the direct reaction of Ag2O and benzimidazolium salts in light-free conditions. All Ag(I)-NHC complexes were spectrally characterized using 1H, 13C NMR, FT-IR, LC-MS, and elemental analysis. Additionally, the structures of compounds 1a and 1e were elucidated by the single X-ray diffraction techniques. Further, the synthesized Ag(I)-NHC complexes were evaluated for cytotoxicity study on the L-929 cells and the anticancer activity against the HCT 116 and MCF-7 cancer cell lines. Notably, 1a showed significant anticancer activity against HCT 116 with an IC50 of 6.37 ± 0.92 μg/mL compared to cisplatin (IC50 = 36.75 ± 1.76 μg/mL). 1c (IC50 = 3.21 ± 1.96 μg/mL) and 1e (IC50 = 3.72 ± 1.12 μg/mL) exhibited significant anticancer activity against MCF-7 cells and was similar to cisplatin (IC50 = 32.17 ± 2.85 μg/mL). Meanwhile, 1a and 1e displayed the highest selectivity index. Most importantly, the cell viability test showed that 1e induced neglectable cytotoxicity (IC50 = 36.38 ± 2.27 μg/mL) toward L-929 and was similar to cisplatin (IC50 = 36.11 ± 2.09 μg/mL). The anticancer activities of Ag(I)-NHC complexes vary depending on the substituent group of the silver complex and the cell line type. Moreover, the inhibitory mechanism of 1e was not dependent on caspase-associated apoptosis initiated by the lysosomal-mitochondrial pathway. Taken together, we conclude that this work provides a simple and rapid protocol for the synthesis of Ag(I)-NHC complexes and the featured Ag(I)-NHC complexes have an anticancer drug potential for biomedical applications.
Collapse
Affiliation(s)
- Öznur Doğan Ulu
- Catalysis Research and Application Center, İnönü University, 44280 Malatya, Türkiye; Scientific And Technological Research Center, İnönü University, 44280 Malatya, Türkiye
| | - Ali Kuruçay
- Biochemistry and Biomaterials Research Laboratory, Department of Chemistry, Faculty of Arts and Science, İnönü University, 44280 Malatya, Türkiye
| | | | - Namık Özdemir
- Department of Physics, Faculty of Science, Ondokuz Mayıs University, 55139 Samsun, Türkiye
| | - Burhan Ateş
- Biochemistry and Biomaterials Research Laboratory, Department of Chemistry, Faculty of Arts and Science, İnönü University, 44280 Malatya, Türkiye
| | - İsmail Özdemir
- Catalysis Research and Application Center, İnönü University, 44280 Malatya, Türkiye; Department of Chemistry, Faculty of Arts and Science, İnönü University, 44280 Malatya, Türkiye; Drug Application and Research Center, İnönü University, 44280 Malatya, Türkiye.
| |
Collapse
|
2
|
Zhao Q, Han B, Peng C, Zhang N, Huang W, He G, Li JL. A promising future of metal-N-heterocyclic carbene complexes in medicinal chemistry: The emerging bioorganometallic antitumor agents. Med Res Rev 2024; 44:2194-2235. [PMID: 38591229 DOI: 10.1002/med.22039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/10/2024]
Abstract
Metal complexes based on N-heterocyclic carbene (NHC) ligands have emerged as promising broad-spectrum antitumor agents in bioorganometallic medicinal chemistry. In recent decades, studies on cytotoxic metal-NHC complexes have yielded numerous compounds exhibiting superior cytotoxicity compared to cisplatin. Although the molecular mechanisms of these anticancer complexes are not fully understood, some potential targets and modes of action have been identified. However, a comprehensive review of their biological mechanisms is currently absent. In general, apoptosis caused by metal-NHCs is common in tumor cells. They can cause a series of changes after entering cells, such as mitochondrial membrane potential (MMP) variation, reactive oxygen species (ROS) generation, cytochrome c (cyt c) release, endoplasmic reticulum (ER) stress, lysosome damage, and caspase activation, ultimately leading to apoptosis. Therefore, a detailed understanding of the influence of metal-NHCs on cancer cell apoptosis is crucial. In this review, we provide a comprehensive summary of recent advances in metal-NHC complexes that trigger apoptotic cell death via different apoptosis-related targets or signaling pathways, including B-cell lymphoma 2 (Bcl-2 family), p53, cyt c, ER stress, lysosome damage, thioredoxin reductase (TrxR) inhibition, and so forth. We also discuss the challenges, limitations, and future directions of metal-NHC complexes to elucidate their emerging application in medicinal chemistry.
Collapse
Affiliation(s)
- Qian Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Dermatology & Venerolog, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Gu He
- Department of Dermatology & Venerolog, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jun-Long Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Anti-Infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
| |
Collapse
|
3
|
Lv A, Li G, Zhang P, Tao R, Li X, Ren X, Li P, Liu X, Yuan XA, Liu Z. Design and anticancer behaviour of cationic/neutral half-sandwich iridium(III) imidazole-phenanthroline/phenanthrene complexes. J Inorg Biochem 2024; 257:112612. [PMID: 38761579 DOI: 10.1016/j.jinorgbio.2024.112612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/17/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Considerable attention has been devoted to the exploration of organometallic iridium(III) (IrIII) complexes for their potential as metallic anticancer drugs. In this study, twelve half-sandwich IrIII imidazole-phenanthroline/phenanthrene complexes were prepared and characterized. Complexes exhibited promising in-vitro anti-proliferative activity, and some are obviously superior to cisplatin towards A549 cells. These complexes possessed suitable fluorescence, and a non-energy-dependent uptake pathway was identified, subsequently leading to their accumulation in the lysosome and the lysosomal damage. Additionally, complexes could inhibit the cell cycle (G1-phase) and catalyze intracellular NADH oxidation, thus substantiating the elevation of intracellular reactive oxygen species (ROS) level, which confirming the oxidative mechanism. Western blotting further confirmed that complexes could induce A549 cell apoptosis through the lysosomal-mitochondrial anticancer pathway, which was inconsistent with cisplatin. In summary, these complexes offer fresh concepts for the development of organometallic non‑platinum anticancer drugs.
Collapse
Affiliation(s)
- Ao Lv
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Guangxiao Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Pei Zhang
- College of Life Sciences, Qufu Normal University, Qufu 273165, Shandong, China
| | - Rui Tao
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Xiaoshuang Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Xueyan Ren
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Peixuan Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Xicheng Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Xiang-Ai Yuan
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Zhe Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| |
Collapse
|
4
|
Chen SQ, Lu XY, Zhu LY, Zhu H, Li RT, Ye RR. Design, synthesis, and antitumor mechanism investigation of iridium(III) complexes conjugated with ibuprofen. J Inorg Biochem 2024; 257:112596. [PMID: 38759264 DOI: 10.1016/j.jinorgbio.2024.112596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/18/2024] [Accepted: 05/05/2024] [Indexed: 05/19/2024]
Abstract
The design and synthesis of a series of metal complexes formed by non-steroidal anti-inflammatory drugs (NSAIDs) ibuprofen (IBP) and iridium(III), with the molecular formula [Ir(C^N)2bpy(4-CH2OIBP-4'-CH2OIBP)](PF6) (Ir-IBP-1, Ir-IBP-2) (C^N = 2-phenylpyridine (ppy, Ir-IBP-1), 2-(2-thienyl)pyridine (thpy, Ir-IBP-2)) was introduced in this article. Firstly, it was found that the anti-proliferative activity of these complexes was more effective than that of cisplatin. Further research showed that Ir-IBP-1 and Ir-IBP-2 can accumulate in intracellular mitochondria, thereby disrupting mitochondrial membrane potential (MMP), increasing intracellular reactive oxygen species (ROS), blocking the G2/M phase of the cell cycle, and inducing cell apoptosis. In terms of protein expression, the expression of COX-2, MMP-9, NLRP3 and Caspase-1 proteins can be downregulated, indicating their ability to anti-inflammatory and overcome immune evasion. Furthermore, Ir-IBP-1 and Ir-IBP-2 can induce immunogenic cell death (ICD) by triggering the release of cell surface calreticulin (CRT), high mobility group box 1 (HMGB1) and adenosine triphosphate (ATP). Overall, iridium(III)-IBP conjugates exhibit various anti-tumor mechanisms, including mitochondrial damage, cell cycle arrest, inflammatory suppression, and induction of ICD.
Collapse
Affiliation(s)
- Si-Qin Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Xing-Yun Lu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Lin-Yuan Zhu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Hou Zhu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Rong-Tao Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China.
| | - Rui-Rong Ye
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China.
| |
Collapse
|
5
|
Bajinka O, Ouedraogo SY, Golubnitschaja O, Li N, Zhan X. Energy metabolism as the hub of advanced non-small cell lung cancer management: a comprehensive view in the framework of predictive, preventive, and personalized medicine. EPMA J 2024; 15:289-319. [PMID: 38841622 PMCID: PMC11147999 DOI: 10.1007/s13167-024-00357-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 03/20/2024] [Indexed: 06/07/2024]
Abstract
Energy metabolism is a hub of governing all processes at cellular and organismal levels such as, on one hand, reparable vs. irreparable cell damage, cell fate (proliferation, survival, apoptosis, malignant transformation etc.), and, on the other hand, carcinogenesis, tumor development, progression and metastazing versus anti-cancer protection and cure. The orchestrator is the mitochondria who produce, store and invest energy, conduct intracellular and systemically relevant signals decisive for internal and environmental stress adaptation, and coordinate corresponding processes at cellular and organismal levels. Consequently, the quality of mitochondrial health and homeostasis is a reliable target for health risk assessment at the stage of reversible damage to the health followed by cost-effective personalized protection against health-to-disease transition as well as for targeted protection against the disease progression (secondary care of cancer patients against growing primary tumors and metastatic disease). The energy reprogramming of non-small cell lung cancer (NSCLC) attracts particular attention as clinically relevant and instrumental for the paradigm change from reactive medical services to predictive, preventive and personalized medicine (3PM). This article provides a detailed overview towards mechanisms and biological pathways involving metabolic reprogramming (MR) with respect to inhibiting the synthesis of biomolecules and blocking common NSCLC metabolic pathways as anti-NSCLC therapeutic strategies. For instance, mitophagy recycles macromolecules to yield mitochondrial substrates for energy homeostasis and nucleotide synthesis. Histone modification and DNA methylation can predict the onset of diseases, and plasma C7 analysis is an efficient medical service potentially resulting in an optimized healthcare economy in corresponding areas. The MEMP scoring provides the guidance for immunotherapy, prognostic assessment, and anti-cancer drug development. Metabolite sensing mechanisms of nutrients and their derivatives are potential MR-related therapy in NSCLC. Moreover, miR-495-3p reprogramming of sphingolipid rheostat by targeting Sphk1, 22/FOXM1 axis regulation, and A2 receptor antagonist are highly promising therapy strategies. TFEB as a biomarker in predicting immune checkpoint blockade and redox-related lncRNA prognostic signature (redox-LPS) are considered reliable predictive approaches. Finally, exemplified in this article metabolic phenotyping is instrumental for innovative population screening, health risk assessment, predictive multi-level diagnostics, targeted prevention, and treatment algorithms tailored to personalized patient profiles-all are essential pillars in the paradigm change from reactive medical services to 3PM approach in overall management of lung cancers. This article highlights the 3PM relevant innovation focused on energy metabolism as the hub to advance NSCLC management benefiting vulnerable subpopulations, affected patients, and healthcare at large. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-024-00357-5.
Collapse
Affiliation(s)
- Ousman Bajinka
- Medical Science and Technology Innovation Center, Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Serge Yannick Ouedraogo
- Medical Science and Technology Innovation Center, Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, University Hospital Bonn, Venusberg Campus 1, Rheinische Friedrich-Wilhelms-University of Bonn, 53127 Bonn, Germany
| | - Na Li
- Medical Science and Technology Innovation Center, Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Xianquan Zhan
- Medical Science and Technology Innovation Center, Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| |
Collapse
|
6
|
Liu X, Lv A, Zhang P, Chang J, Dong R, Liu M, Liu J, Huang X, Yuan XA, Liu Z. The anticancer application of half-sandwich iridium(III) ferrocene-thiosemicarbazide Schiff base complexes. Dalton Trans 2024; 53:552-563. [PMID: 38054240 DOI: 10.1039/d3dt02879h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Ferrocenyl derivatives and organometallic iridium(III) complexes have been prospective substitutes for platinum-based anticancer drugs. Eight half-sandwich iridium(III) ferrocene-thiosemicarbazide (Fc-TSC) Schiff base anticancer complexes were prepared in this study. These complexes displayed a dimeric structure and exhibited a particular fluorescence due to the "enol" orientation of the TSC pro-ligand. An energy-dependent pathway of the uptake mechanism was ascertained, which ended in the lysosome and led to lysosome damage and apoptosis. Flow cytometry confirmed that the complexes could block the cell cycle (G1 phase) and improve the levels of intracellular reactive oxygen species, indicating an anticancer mechanism of oxidation. Then, a lysosomal-mitochondrial anticancer pathway was verified through western blotting. In vivo toxicity assays confirmed that these complexes showed better anti-migration ability and less toxicity in comparison to cisplatin. Thus, these complexes provide a new strategy for the design of non-platinum organometallic anticancer drugs.
Collapse
Affiliation(s)
- Xicheng Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Ao Lv
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Pei Zhang
- College of Life Sciences, Qufu Normal University, Qufu 273165, Shandong, China
| | - Jiaying Chang
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Ruixiao Dong
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Mengxian Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Jiayi Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Xiaoqing Huang
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Xiang-Ai Yuan
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Zhe Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| |
Collapse
|
7
|
Zhu J, Zhang K, Zhou Y, Wang R, Gong L, Wang C, Zhong K, Liu W, Feng F, Qu W. A Carrier-Free Nanomedicine Enables Apoptosis-Ferroptosis Synergistic Breast Cancer Therapy by Targeting Subcellular Organelles. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22403-22414. [PMID: 37104698 DOI: 10.1021/acsami.3c01350] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The heterogeneity of cancer cells disables the single-cell death patterns in subtypes of cells with different genotypes and phenotypes, such as refractory triple-negative breast cancer (TNBC). Therefore, the combination of multiple death modes, such as the proven cooperative apoptosis and ferroptosis, is expected to sensitize in treating TNBC. Herein, carrier-free theranostic ASP nanoparticles (NPs) were designed for wiping out TNBC by synergistic apoptosis and ferroptosis, which was self-assembled by aurantiamide acetate (Aa), scutebarbatine A (SA), and palmitin (P). Structurally, the rigid parent nucleus of SA and hydrophobic chain of P combined with the Aa to form an ordered nanostructure by noncovalent bonding forces. This self-assembly example applies to the design of nanomedicines based on more than two natural products. Notably, enhanced permeability and retention (EPR) effects and mitochondrial-lysosomal targeting empower ASP NPs to pinpoint tumor sites. Especially, Aa and P induced mitochondrial apoptosis of cancer cells, while SA and P inhibited TNBC by ferroptosis and upregulating p53. More interestingly, the combination of Aa, SA, and P enhanced the uptake of ASP NPs by cancer cell membranes. Overall, the three compounds synergize with each other to exert excellent anticancer effects.
Collapse
Affiliation(s)
- Jiaxin Zhu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Kexin Zhang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Ya Zhou
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Ruyi Wang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Liangping Gong
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Can Wang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Keke Zhong
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 211198, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 211198, China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
- Nanjing Medical University, Nanjing 211198, China
| | - Wei Qu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
8
|
Liu J, Wu Y, Yang G, Liu Z, Liu X. Mitochondrial targeting half-sandwich iridium(III) and ruthenium(II) dppf complexes and in vitro anticancer assay. J Inorg Biochem 2023; 239:112069. [PMID: 36423395 DOI: 10.1016/j.jinorgbio.2022.112069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/10/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
Considering the potential application of half-sandwich and ferrocenyl-containing organometallic complexes in the area of anticancer, four half-sandwich iridium(III) (IrIII) and ruthenium(II) (RuII) diphenylphosphino ferrocene (dppf) complexes were prepared in this study. Complexes showed favorable anti-proliferation activity towards A549 cell lines compared to cisplatin, meanwhile, which could effectively inhibit cell migration. These complexes followed an energy dependence uptake mechanism, effectively accumulated in mitochondria with a Pearson's Colocalization Coefficient (PCC) of 0.77, decreased the mitochondrial membrane potential, induced a surge of reactive oxygen species, disturbed cell cycle, and eventually led to apoptosis. Western blot assay further confirmed that these complexes induced apoptosis following a mitochondrial pathway. Above all, half-sandwich IrIII and RuII dppf complexes show the prospect of becoming a new multifunctional therapeutic platform for mitochondrial targeted imaging and anticancer drugs.
Collapse
Affiliation(s)
- Jinfeng Liu
- College of Life Sciences, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Yuting Wu
- College of Life Sciences, Qufu Normal University, Qufu 273165, Shandong, China
| | - Ge Yang
- College of Life Sciences, Qufu Normal University, Qufu 273165, Shandong, China
| | - Zhe Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Xicheng Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| |
Collapse
|
9
|
Yang T, Zhu M, Jiang M, Yang F, Zhang Z. Current status of iridium-based complexes against lung cancer. Front Pharmacol 2022; 13:1025544. [PMID: 36210835 PMCID: PMC9538862 DOI: 10.3389/fphar.2022.1025544] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/09/2022] [Indexed: 11/22/2022] Open
Abstract
Lung cancer is one of the most common malignant tumors, with the highest mortality rate in the world, and its incidence is second only to breast cancer. It has posed a serious threat to human health. Cisplatin, a metal-based drug, is one of the most widely used chemotherapeutic agents for the treatment of various cancers. However, its clinical efficacy is seriously limited by numerous side effects and drug resistance. This has led to the exploration and development of other transition metal complexes for the treatment of malignant tumors. In recent years, iridium-based complexes have attracted extensive attention due to their potent anticancer activities, limited side effects, unique antitumor mechanisms, and rich optical properties, and are expected to be potential antitumor drugs. In this review, we summarize the recent progress of iridium complexes against lung cancer and introduce their anti-tumor mechanisms, including apoptosis, cycle arrest, inhibition of lung cancer cell migration, induction of immunogenic cell death, etc.
Collapse
Affiliation(s)
- Tongfu Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi, China
| | - Minghui Zhu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi, China
| | - Ming Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi, China
- School of food and biochemical engineering, Guangxi Science and Technology Normal University, Laibin, Guangxi, China
| | - Feng Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi, China
| | - Zhenlei Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi, China
- *Correspondence: Zhenlei Zhang,
| |
Collapse
|
10
|
Lyu J, Liu D, Wang C, Zhang Z, Zhang X. Halogen-bridged binuclear iridium(III) complexes with enhanced photodynamic therapeutic effects in mitochondria. J Mater Chem B 2022; 10:6307-6314. [PMID: 35916051 DOI: 10.1039/d2tb01078j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The development of high-performance photosensitizers is the top priority in photodynamic therapy (PDT). Iridium complexes are widely used because of their many advantages such as high photostability, long T1 lifetime, high yield of singlet oxygen generation, and so on. Halogen-bridged binuclear complexes are often used as intermediates in the synthesis of photosensitizers but ignored in PDT applications. Here we found that halogen-bridged binuclear iridium complexes showed excellent performance in 1O2 generation. It was also confirmed that these complexes kill tumor cells by inducing apoptosis. Through molecular design and modification, we studied the effect of the bridging halogen atoms and intracellular localization on the performance of PDT. The results show that replacing the bridging halogen with heavier atoms and targeting the complex in mitochondria can effectively enhance the efficiency of PDT. Among them, the bromine bridged binuclear iridium complex located in mitochondria reported in this paper can achieve an IC50 value of 75 nM for MCF-7 cells. This work also provides inspiration for the exploration of complex-based photosensitizers.
Collapse
Affiliation(s)
- Jinxiao Lyu
- Cancer Centre and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China.
| | - Dongcheng Liu
- Cancer Centre and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China. .,School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Chunfei Wang
- Cancer Centre and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China.
| | - Zhao Zhang
- Cancer Centre and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China.
| | - Xuanjun Zhang
- Cancer Centre and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China. .,MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, 999078, China
| |
Collapse
|
11
|
Cyclometalated iridium(III) dithioformic acid complexes as mitochondria-targeted imaging and anticancer agents. J Inorg Biochem 2022; 233:111855. [DOI: 10.1016/j.jinorgbio.2022.111855] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/27/2022] [Accepted: 05/06/2022] [Indexed: 12/14/2022]
|
12
|
Zhen W, An S, Wang S, Hu W, Li Y, Jiang X, Li J. Precise Subcellular Organelle Targeting for Boosting Endogenous-Stimuli-Mediated Tumor Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101572. [PMID: 34611949 DOI: 10.1002/adma.202101572] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/15/2021] [Indexed: 06/13/2023]
Abstract
Though numerous external-stimuli-triggered tumor therapies, including phototherapy, radiotherapy, and sonodynamic therapy have made great progress in cancer therapy, the low penetration depth of the laser, safety concerns of radiation, the therapeutic resistance, and the spatio-temporal constraints of the specific equipment restrict their convenient clinical applications. What is more, the inherent physiological barriers of the tumor microenvironment (TME), including hypoxia, heterogeneity, and high expression of antioxidant molecules also restrict the efficiency of tumor therapy. As a result, the development of nanoplatforms responsive to endogenous stimuli (such as glucose, acidic pH, cellular redox events, and etc.) has attracted great attention for starvation therapy, ion therapy, prodrug-mediated chemotherapy, or enzyme-catalyzed therapy. In addition, nanomedicines can be modified by some targeted units for precisely locating in subcellular organelles and boosting the destroying of tumor tissue, decreasing the dosage of nanoagents, reducing side effects, and enhancing the therapeutic efficiency. Herein, the properties of the TME, the advantages of endogenous stimuli, and the principles of subcellular-organelle-targeted strategies will be emphasized. Some necessary considerations for the exploitation of precision medicine and clinical translation of multifunctional nanomedicines in the future are also pointed out.
Collapse
Affiliation(s)
- Wenyao Zhen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Shangjie An
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Shuqi Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Wenxue Hu
- Shenyang University of Chemical Technology, Shenyang, Liaoning, 110142, China
| | - Yujie Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Xiue Jiang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jinghong Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
13
|
Bonfiglio A, McCartin C, Carrillo U, Cebrián C, Gros PC, Fournel S, Kichler A, Daniel C, Mauro M. Ir
III
−Pyridoannelated N‐Heterocyclic Carbene Complexes: Potent Theranostic Agents via Mitochondria Targeting. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Anna Bonfiglio
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) UMR7504 Université de Strasbourg & CNRS 23 rue du Loess 67083 Strasbourg France
| | - Conor McCartin
- 3Bio Team, CAMB UMR7199 CNRS-University of Strasbourg Faculté de Pharmacie 74 route du Rhin 67401 Illkirch cedex France
| | | | | | | | - Sylvie Fournel
- 3Bio Team, CAMB UMR7199 CNRS-University of Strasbourg Faculté de Pharmacie 74 route du Rhin 67401 Illkirch cedex France
| | - Antoine Kichler
- 3Bio Team, CAMB UMR7199 CNRS-University of Strasbourg Faculté de Pharmacie 74 route du Rhin 67401 Illkirch cedex France
| | - Chantal Daniel
- Laboratoire de Chimie Quantique Institut de Chimie de Strasbourg UMR7177 Université de Strasbourg-CNRS 4 Rue Blaise Pascal 67000 Strasbourg France
| | - Matteo Mauro
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) UMR7504 Université de Strasbourg & CNRS 23 rue du Loess 67083 Strasbourg France
| |
Collapse
|
14
|
Guan R, Xie L, Ji L, Chao H. Phosphorescent Iridium(III) Complexes for Anticancer Applications. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000754] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ruilin Guan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat‐Sen University 510275 Guangzhou P. R. China
| | - Lina Xie
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat‐Sen University 510275 Guangzhou P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat‐Sen University 510275 Guangzhou P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat‐Sen University 510275 Guangzhou P. R. China
- MOE Key Laboratory of Theoretical Organic Chemistry and Functional Molecule School of Chemistry and Chemical Engineering Hunan University of Science and Technology 400201 Xiangtan P. R. China
| |
Collapse
|