1
|
Hussein A, Fan S, Lopez-Redondo M, Kenney I, Zhang X, Beckstein O, Stokes DL. Energy coupling and stoichiometry of Zn 2+/H + antiport by the prokaryotic cation diffusion facilitator YiiP. eLife 2023; 12:RP87167. [PMID: 37906094 PMCID: PMC10617992 DOI: 10.7554/elife.87167] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023] Open
Abstract
YiiP from Shewanella oneidensis is a prokaryotic Zn2+/H+ antiporter that serves as a model for the Cation Diffusion Facilitator (CDF) superfamily, members of which are generally responsible for homeostasis of transition metal ions. Previous studies of YiiP as well as related CDF transporters have established a homodimeric architecture and the presence of three distinct Zn2+ binding sites named A, B, and C. In this study, we use cryo-EM, microscale thermophoresis and molecular dynamics simulations to address the structural and functional roles of individual sites as well as the interplay between Zn2+ binding and protonation. Structural studies indicate that site C in the cytoplasmic domain is primarily responsible for stabilizing the dimer and that site B at the cytoplasmic membrane surface controls the structural transition from an inward facing conformation to an occluded conformation. Binding data show that intramembrane site A, which is directly responsible for transport, has a dramatic pH dependence consistent with coupling to the proton motive force. A comprehensive thermodynamic model encompassing Zn2+ binding and protonation states of individual residues indicates a transport stoichiometry of 1 Zn2+ to 2-3 H+ depending on the external pH. This stoichiometry would be favorable in a physiological context, allowing the cell to use the proton gradient as well as the membrane potential to drive the export of Zn2+.
Collapse
Affiliation(s)
- Adel Hussein
- Department of Biochemistry and Molecular Pharmacology, NYU School of MedicineNew YorkUnited States
| | - Shujie Fan
- Department of Physics, Arizona State UniversityTempeUnited States
| | - Maria Lopez-Redondo
- Department of Biochemistry and Molecular Pharmacology, NYU School of MedicineNew YorkUnited States
| | - Ian Kenney
- Department of Physics, Arizona State UniversityTempeUnited States
| | - Xihui Zhang
- Department of Biochemistry and Molecular Pharmacology, NYU School of MedicineNew YorkUnited States
| | - Oliver Beckstein
- Department of Physics, Arizona State UniversityTempeUnited States
| | - David L Stokes
- Department of Biochemistry and Molecular Pharmacology, NYU School of MedicineNew YorkUnited States
| |
Collapse
|
2
|
Huynh U, Nguyen HN, Trinh BK, Elhaj J, Zastrow ML. A bioinformatic analysis of zinc transporters in intestinal Lactobacillaceae. Metallomics 2023; 15:mfad044. [PMID: 37463796 PMCID: PMC10391621 DOI: 10.1093/mtomcs/mfad044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/17/2023] [Indexed: 07/20/2023]
Abstract
As the second most abundant transition element and a crucial cofactor for many proteins, zinc is essential for the survival of all living organisms. To maintain required zinc levels and prevent toxic overload, cells and organisms have a collection of metal transport proteins for uptake and efflux of zinc. In bacteria, metal transport proteins are well defined for model organisms and many pathogens, but fewer studies have explored metal transport proteins, including those for zinc, in commensal bacteria from the gut microbiota. The healthy human gut microbiota comprises hundreds of species and among these, bacteria from the Lactobacillaceae family are well documented to have various beneficial effects on health. Furthermore, changes in dietary metal intake, such as for zinc and iron, are frequently correlated with changes in abundance of Lactobacillaceae. Few studies have explored zinc requirements and zinc homeostasis mechanisms in Lactobacillaceae, however. Here we applied a bioinformatics approach to identify and compare predicted zinc uptake and efflux proteins in several Lactobacillaceae genera of intestinal relevance. Few Lactobacillaceae had zinc transporters currently annotated in proteomes retrieved from the UniProt database, but protein sequence-based homology searches revealed that high-affinity ABC transporter genes are likely common, albeit with genus-specific domain features. P-type ATPase transporters are probably also common and some Lactobacillaceae genera code for predicted zinc efflux cation diffusion facilitators. This analysis confirms that Lactobacillaceae harbor genes for various zinc transporter homologs, and provides a foundation for systematic experimental studies to elucidate zinc homeostasis mechanisms in these bacteria.
Collapse
Affiliation(s)
- Uyen Huynh
- Department of Chemistry, University of Houston, Houston, TX 77204, USA
| | - Hazel N Nguyen
- Department of Chemistry, University of Houston, Houston, TX 77204, USA
| | - Brittany K Trinh
- Department of Chemistry, University of Houston, Houston, TX 77204, USA
| | - Joanna Elhaj
- Department of Chemistry, University of Houston, Houston, TX 77204, USA
| | - Melissa L Zastrow
- Department of Chemistry, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
3
|
Hussein A, Fan S, Lopez-Redondo M, Kenney I, Zhang X, Beckstein O, Stokes DL. Energy Coupling and Stoichiometry of Zn 2+/H + Antiport by the Cation Diffusion Facilitator YiiP. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.23.529644. [PMID: 36865113 PMCID: PMC9980050 DOI: 10.1101/2023.02.23.529644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
YiiP is a prokaryotic Zn2+/H+ antiporter that serves as a model for the Cation Diffusion Facilitator (CDF) superfamily, members of which are generally responsible for homeostasis of transition metal ions. Previous studies of YiiP as well as related CDF transporters have established a homodimeric architecture and the presence of three distinct Zn2+ binding sites named A, B, and C. In this study, we use cryo-EM, microscale thermophoresis and molecular dynamics simulations to address the structural and functional roles of individual sites as well as the interplay between Zn2+ binding and protonation. Structural studies indicate that site C in the cytoplasmic domain is primarily responsible for stabilizing the dimer and that site B at the cytoplasmic membrane surface controls the structural transition from an inward facing conformation to an occluded conformation. Binding data show that intramembrane site A, which is directly responsible for transport, has a dramatic pH dependence consistent with coupling to the proton motive force. A comprehensive thermodynamic model encompassing Zn2+ binding and protonation states of individual residues indicates a transport stoichiometry of 1 Zn2+ to 2-3 H+ depending on the external pH. This stoichiometry would be favorable in a physiological context, allowing the cell to use the proton gradient as well as the membrane potential to drive the export of Zn2+.
Collapse
Affiliation(s)
- Adel Hussein
- Dept. of Cell Biology, NYU School of Medicine, New York, NY 10016 USA
| | - Shujie Fan
- Dept. of Physics, Arizona State University, Tempe AZ
| | | | - Ian Kenney
- Dept. of Physics, Arizona State University, Tempe AZ
| | - Xihui Zhang
- Dept. of Cell Biology, NYU School of Medicine, New York, NY 10016 USA
| | | | - David L Stokes
- Dept. of Cell Biology, NYU School of Medicine, New York, NY 10016 USA
| |
Collapse
|
4
|
He Z, Shen J, Li Q, Yang Y, Zhang D, Pan X. Bacterial metal(loid) resistance genes (MRGs) and their variation and application in environment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162148. [PMID: 36758696 DOI: 10.1016/j.scitotenv.2023.162148] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Toxic metal(loid)s are widespread and permanent in the biosphere, and bacteria have evolved a wide variety of metal(loid) resistance genes (MRGs) to resist the stress of excess metal(loid)s. Via active efflux, permeability barriers, extracellular/intracellular sequestration, enzymatic detoxification and reduction in metal(loid)s sensitivity of cellular targets, the key components of bacterial cells are protected from toxic metal(loid)s to maintain their normal physiological functions. Exploiting bacterial metal(loid) resistance mechanisms, MRGs have been applied in many environmental fields. Based on the specific binding ability of MRGs-encoded regulators to metal(loid)s, MRGs-dependent biosensors for monitoring environmental metal(loid)s are developed. MRGs-related biotechnologies have been applied to environmental remediation of metal(loid)s by using the metal(loid) tolerance, biotransformation, and biopassivation abilities of MRGs-carrying microorganisms. In this work, we review the historical evolution, resistance mechanisms, environmental variation, and environmental applications of bacterial MRGs. The potential hazards, unresolved problems, and future research directions are also discussed.
Collapse
Affiliation(s)
- Zhanfei He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Jiaquan Shen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Qunqun Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Yingli Yang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Daoyong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
5
|
Structure and Function of the Zinc Binding Protein ZrgA from Vibrio cholerae. Int J Mol Sci 2022; 24:ijms24010548. [PMID: 36613986 PMCID: PMC9820375 DOI: 10.3390/ijms24010548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/16/2022] [Accepted: 12/27/2022] [Indexed: 12/30/2022] Open
Abstract
ATP binding cassette (ABC) transporters are the primary means by which bacteria acquire trace elements from the environment. They rely on solute binding proteins (SBPs) to bind the relevant substrate and deliver it to the integral membrane permease for ATP-powered import into the cytoplasm. SBPs of cluster A-I are known to facilitate the transport of essential metals zinc, manganese, and iron, and many have been characterized to date. A group of ABC transporter operons dubbed zinc-regulated genes (zrg) have recently been shown to transport zinc with putative SBPs (zrgA) bearing no homology to the classical cluster A-I family, and a recent crystal structure of a representative protein from Pseudomonas aeruginosa shows no structural similarity to classical SBPs. Thus, the ZrgA proteins appear to represent a newly discovered family of zinc SBPs widespread among Gram-negative bacteria, including human pathogens. Here, we have determined the crystal structure of ZrgA from Vibrio cholerae and characterized its zinc binding in vitro and function in vivo. We also assessed the role of a histidine-rich sequence that appears to be a hallmark of ZrgA proteins that is particularly long in V. cholerae ZrgA. The results show that the zrgA gene is critical to the function of the operon, consistent with a function as an SBP in this system. Further, the His-rich region is not essential to the function of ZrgA, but it does provide additional zinc binding sites in vitro. The structure and zinc binding data for ZrgA reveal interesting differences between it and its homologue from P. aeruginosa, illustrating diversity within this little-studied protein family.
Collapse
|
6
|
The Molecular Basis of Acinetobacter baumannii Cadmium Toxicity and Resistance. Appl Environ Microbiol 2021; 87:e0171821. [PMID: 34495707 DOI: 10.1128/aem.01718-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Acinetobacter species are ubiquitous Gram-negative bacteria that can be found in water, in soil, and as commensals of the human skin. The successful inhabitation of Acinetobacter species in diverse environments is primarily attributable to the expression of an arsenal of stress resistance determinants, which includes an extensive repertoire of metal ion efflux systems. Metal ion homeostasis in the hospital pathogen Acinetobacter baumannii contributes to pathogenesis; however, insights into its metal ion transporters for environmental persistence are lacking. Here, we studied the impact of cadmium stress on A. baumannii. Our functional genomics and independent mutant analyses revealed a primary role for CzcE, a member of the cation diffusion facilitator (CDF) superfamily, in resisting cadmium stress. We also show that the CzcCBA heavy metal efflux system contributes to cadmium efflux. Collectively, these systems provide A. baumannii with a comprehensive cadmium translocation pathway from the cytoplasm to the periplasm and subsequently the extracellular space. Furthermore, analysis of the A. baumannii metallome under cadmium stress showed zinc depletion, as well as copper enrichment, both of which are likely to influence cellular fitness. Overall, this work provides new knowledge on the role of a broad arsenal of membrane transporters in A. baumannii metal ion homeostasis. IMPORTANCE Cadmium toxicity is a widespread problem, yet the interaction of this heavy metal with biological systems is poorly understood. Some microbes have evolved traits to proactively counteract cadmium toxicity, including Acinetobacter baumannii, which is notorious for persisting in harsh environments. Here, we show that A. baumannii utilizes a dedicated cadmium efflux protein in concert with a system that is primarily attuned to zinc efflux to efficiently overcome cadmium stress. The molecular characterization of A. baumannii under cadmium stress revealed how active cadmium efflux plays a key role in preventing the dysregulation of bacterial metal ion homeostasis, which appeared to be a primary means by which cadmium exerts toxicity upon the bacterium.
Collapse
|
7
|
Barber-Zucker S, Moran A, Zarivach R. Metal transport mechanism of the cation diffusion facilitator (CDF) protein family - a structural perspective on human CDF (ZnT)-related diseases. RSC Chem Biol 2021; 2:486-498. [PMID: 34458794 PMCID: PMC8341793 DOI: 10.1039/d0cb00181c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/26/2020] [Indexed: 11/21/2022] Open
Abstract
Divalent d-block metal cations (DDMCs) participate in many cellular functions; however, their accumulation in cells can be cytotoxic. The cation diffusion facilitator (CDF) family is a ubiquitous family of transmembrane DDMC exporters that ensures their homeostasis. Severe diseases, such as type II diabetes, Parkinson's and Alzheimer's disease, were linked to dysfunctional human CDF proteins, ZnT-1-10 (SLC30A1-10). Each member of the CDF family reduces the cytosolic concentration of a specific DDMC by transporting it from the cytoplasm to the extracellular environment or into intracellular compartments. This process is usually achieved by utilizing the proton motive force. In addition to their activity as DDMC transporters, CDFs also have other cellular functions such as the regulation of ion channels and enzymatic activity. The combination of structural and biophysical studies of different bacterial and eukaryotic CDF proteins led to significant progress in the understanding of the mutual interaction among CDFs and DDMCs, their involvement in ion binding and selectivity, conformational changes and the consequent transporting mechanisms. Here, we review these studies, provide our mechanistic interpretation of CDF proteins based on the current literature and relate the above to known human CDF-related diseases. Our analysis provides a common structure-function relationship to this important protein family and closes the gap between eukaryote and prokaryote CDFs.
Collapse
Affiliation(s)
- Shiran Barber-Zucker
- Department of Life Sciences, the National Institute for Biotechnology in the Negev and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev P.O.B. 653 Beer Sheva 8410501 Israel +972-8-6472970 +972-8-6472970 +972-8-6428447 +972-8-6461999
| | - Arie Moran
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev P.O.B. 653 Beer Sheva 8410501 Israel
| | - Raz Zarivach
- Department of Life Sciences, the National Institute for Biotechnology in the Negev and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev P.O.B. 653 Beer Sheva 8410501 Israel +972-8-6472970 +972-8-6472970 +972-8-6428447 +972-8-6461999
| |
Collapse
|
8
|
Catapano MC, Parsons DS, Kotuniak R, Mladěnka P, Bal W, Maret W. Probing the Structure and Function of the Cytosolic Domain of the Human Zinc Transporter ZnT8 with Nickel(II) Ions. Int J Mol Sci 2021; 22:2940. [PMID: 33799326 PMCID: PMC8000985 DOI: 10.3390/ijms22062940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 11/30/2022] Open
Abstract
The human zinc transporter ZnT8 provides the granules of pancreatic β-cells with zinc (II) ions for assembly of insulin hexamers for storage. Until recently, the structure and function of human ZnTs have been modelled on the basis of the 3D structures of bacterial zinc exporters, which form homodimers with each monomer having six transmembrane α-helices harbouring the zinc transport site and a cytosolic domain with an α,β structure and additional zinc-binding sites. However, there are important differences in function as the bacterial proteins export an excess of zinc ions from the bacterial cytoplasm, whereas ZnT8 exports zinc ions into subcellular vesicles when there is no apparent excess of cytosolic zinc ions. Indeed, recent structural investigations of human ZnT8 show differences in metal binding in the cytosolic domain when compared to the bacterial proteins. Two common variants, one with tryptophan (W) and the other with arginine (R) at position 325, have generated considerable interest as the R-variant is associated with a higher risk of developing type 2 diabetes. Since the mutation is at the apex of the cytosolic domain facing towards the cytosol, it is not clear how it can affect zinc transport through the transmembrane domain. We expressed the cytosolic domain of both variants of human ZnT8 and have begun structural and functional studies. We found that (i) the metal binding of the human protein is different from that of the bacterial proteins, (ii) the human protein has a C-terminal extension with three cysteine residues that bind a zinc(II) ion, and (iii) there are small differences in stability between the two variants. In this investigation, we employed nickel(II) ions as a probe for the spectroscopically silent Zn(II) ions and utilised colorimetric and fluorimetric indicators for Ni(II) ions to investigate metal binding. We established Ni(II) coordination to the C-terminal cysteines and found differences in metal affinity and coordination in the two ZnT8 variants. These structural differences are thought to be critical for the functional differences regarding the diabetes risk. Further insight into the assembly of the metal centres in the cytosolic domain was gained from potentiometric investigations of zinc binding to synthetic peptides corresponding to N-terminal and C-terminal sequences of ZnT8 bearing the metal-coordinating ligands. Our work suggests the involvement of the C-terminal cysteines, which are part of the cytosolic domain, in a metal chelation and/or acquisition mechanism and, as now supported by the high-resolution structural work, provides the first example of metal-thiolate coordination chemistry in zinc transporters.
Collapse
Affiliation(s)
- Maria Carmen Catapano
- Departments of Biochemistry and Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King’s College London, Franklin-Wilkins Bldg, 150 Stamford St., London SE1 9NH, UK; (M.C.C.); (D.S.P.)
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Douglas S. Parsons
- Departments of Biochemistry and Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King’s College London, Franklin-Wilkins Bldg, 150 Stamford St., London SE1 9NH, UK; (M.C.C.); (D.S.P.)
- Department of Radiology, Boston University School of Medicine, 670 Albany Street, Boston, MA 02118, USA
| | - Radosław Kotuniak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (R.K.); (W.B.)
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic;
| | - Wojciech Bal
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (R.K.); (W.B.)
| | - Wolfgang Maret
- Departments of Biochemistry and Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King’s College London, Franklin-Wilkins Bldg, 150 Stamford St., London SE1 9NH, UK; (M.C.C.); (D.S.P.)
| |
Collapse
|
9
|
Cuajungco MP, Ramirez MS, Tolmasky ME. Zinc: Multidimensional Effects on Living Organisms. Biomedicines 2021; 9:biomedicines9020208. [PMID: 33671781 PMCID: PMC7926802 DOI: 10.3390/biomedicines9020208] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 12/28/2022] Open
Abstract
Zinc is a redox-inert trace element that is second only to iron in abundance in biological systems. In cells, zinc is typically buffered and bound to metalloproteins, but it may also exist in a labile or chelatable (free ion) form. Zinc plays a critical role in prokaryotes and eukaryotes, ranging from structural to catalytic to replication to demise. This review discusses the influential properties of zinc on various mechanisms of bacterial proliferation and synergistic action as an antimicrobial element. We also touch upon the significance of zinc among eukaryotic cells and how it may modulate their survival and death through its inhibitory or modulatory effect on certain receptors, enzymes, and signaling proteins. A brief discussion on zinc chelators is also presented, and chelating agents may be used with or against zinc to affect therapeutics against human diseases. Overall, the multidimensional effects of zinc in cells attest to the growing number of scientific research that reveal the consequential prominence of this remarkable transition metal in human health and disease.
Collapse
|