1
|
Yang K, Li HQ, Hu MQ, Ma MX, Gu YQ, Yang QY, Iqbal Choudhary M, Liang H, Chen ZF. Sm(Ⅲ), Gd(Ⅲ), and Eu(Ⅲ) complexes with 8-hydroxyquinoline derivatives as potential anticancer agents via inhibiting cell proliferation, blocking cell cycle, and inducing apoptosis in NCI-H460 cells. Drug Dev Res 2024; 85:e22265. [PMID: 39358925 DOI: 10.1002/ddr.22265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/04/2024] [Accepted: 08/29/2024] [Indexed: 10/04/2024]
Abstract
Four lanthanide complexes with 8-hydroxyquinoline-2-aldehyde-2-hydrazinopyridine (H-L1), 8-hydroxyquinoline-2-aldehyde-2-hydrazimidazole (H-L2): [Sm(L1)2][Sm(L1)(NO3)3]·CHCl3·2CH3OH (1), [Gd(L1)2][Gd(L1)(NO3)3]·CHCl3·2CH3OH (2), [Sm(L2)(NO3)2]2·CH3OH (3), and [Eu(L2)(NO3)2]2·CH3OH (4) were synthesized and characterized. In vitro cytotoxicity evaluation showed that the ligands and four lanthanide complexes exhibited cytotoxicity to the five tested tumor cell lines. Among them, complex 1 showed the best antiproliferative activity against NCI-H460 tumor cells. Mechanistic studies demonstrated that complex 1 arrested the cell cycle of NCI-H460 cells in G1 phase and induced mitochondria-mediated apoptosis, which resulted in the loss of mitochondrial membrane potential, enhanced intracellular Ca2+ levels and reactive oxygen species generation. In addition, complex 1 affected the expression levels of intracellular apoptosis-related proteins and activated the caspase-3/9 in NCI-H460 cells. Therefore, complex 1 is a potential anticancer agent.
Collapse
Affiliation(s)
- Kun Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China
| | - Huan-Qing Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China
| | - Mei-Qi Hu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China
| | - Meng-Xue Ma
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China
| | - Yun-Qiong Gu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China
| | - Qi-Yuan Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China
| | - Muhammad Iqbal Choudhary
- International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China
| | - Zhen-Feng Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China
| |
Collapse
|
2
|
Yuan J, Lan HR, Xing AP, Zeng D, Hao YT, Song JY, Lu JX, Zhang B, Wang J, Zhang ZQ. Novel tetranuclear grid-like Zn(II) complexes derived from dihydrazone pyrimidine derivatives as antitumor agents. Dalton Trans 2024; 53:2193-2206. [PMID: 38193212 DOI: 10.1039/d3dt02833j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Due to the antitumor properties, Zn(II) complexes have attracted more and more attention. Herein, three novel tetranuclear Zn(II) complexes 1-3 based on dihydrazone pyrimidine derivatives H2L1-H2L3 were synthesized and characterized using IR spectroscopy, 1H NMR spectroscopy, single crystal X-ray diffraction analysis, XRD, TG and elemental analysis. Single crystal X-ray diffraction analysis revealed that 1-3 all displayed a [2 × 2] grid-like topology. The stability in solution, lipophilicity, confocal imaging and antitumor activities were investigated. Complexes 1-3 displayed high structural stability, membrane permeability and different lipophilicities. They can target mitochondria due to the cation charge. The MTT assay indicated that all of them exhibited stronger antiproliferative activity than the corresponding derivatives H2L1-H2L3 and the well-known cisplatin against all the selected tumor cells (BGC-823, BEL-7402, MCF-7 and A549), with IC50 values ranging from 2.83 μM to 7.97 μM. AO/EB double staining, flow cytometry and ROS detection suggested that complexes 1 and 2 could induce BGC-823 apoptosis in a dose-dependent manner. UV-Vis spectra, CD spectra, viscosity analysis and molecular docking revealed that complexes 1 and 2 interact with DNA mainly via partial intercalation and groove binding. Tetranuclear [2 × 2] grid-like Zn(II) complexes have the potential to be promising antitumor agents in the future.
Collapse
Affiliation(s)
- Juan Yuan
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China.
| | - Hai-Rong Lan
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China.
| | - Ai-Ping Xing
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China.
| | - Dai Zeng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China.
| | - Ya-Ting Hao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China.
| | - Jun-Ying Song
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China.
| | - Jia-Xing Lu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China.
| | - Bin Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China.
| | - Jing Wang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China.
| | - Zhen-Qiang Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China.
| |
Collapse
|
3
|
Li L, Wu H, Wang J, Ji Z, Fang T, Lu H, Yan L, Shen F, Zhang D, Jiang Y, Ni T. Discovery of Novel 8-Hydroxyquinoline Derivatives with Potent In Vitro and In Vivo Antifungal Activity. J Med Chem 2023; 66:16364-16376. [PMID: 37975824 DOI: 10.1021/acs.jmedchem.3c01771] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Fungal pathogens can cause life-threatening infections, yet current antifungals are inadequate at treating many of these, highlighting the importance of novel drug discovery. Here, we report hit compound L14, a novel 8-hydroxyquinoline derivative with potent and broad-spectrum antifungal activity. In vitro experiments exhibited that L14 had better activity and lower cytotoxicity than that of clioquinol and showed synergy in combination with fluconazole (FLC). In a Candida albicans-infected murine model, L14 at 2 mg/kg showed better in vivo efficacy than clioquinol at reducing fungal burden and extending the survival of C. albicans-infected mice. In addition, L14 alone or in combination with FLC had significant inhibitory activity against hypha and biofilm formation. Overall, our data indicated that 8-hydroxyquinoline derivative L14 has favorable pharmacokinetics and acceptable safety profiles and could be further investigated as a promising antifungal hit compound.
Collapse
Affiliation(s)
- Liping Li
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai 200092, China
| | - Hao Wu
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai 200092, China
| | - Jiayin Wang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai 200092, China
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou 350112, China
| | - Zhe Ji
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai 200092, China
| | - Ting Fang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai 200092, China
| | - Hui Lu
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai 200092, China
| | - Lan Yan
- School of Pharmacy, Naval Medical University, PLA, No. 325 Guohe Road, Shanghai 200433, China
| | - Fuming Shen
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai 200092, China
| | - Dazhi Zhang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai 200092, China
- School of Pharmacy, Naval Medical University, PLA, No. 325 Guohe Road, Shanghai 200433, China
| | - Yuanying Jiang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai 200092, China
| | - Tingjunhong Ni
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
4
|
Patyal M, Kaur K, Bala N, Gupta N, Malik AK. Innovative lanthanide complexes: Shaping the future of cancer/ tumor chemotherapy. J Trace Elem Med Biol 2023; 80:127277. [PMID: 37572546 DOI: 10.1016/j.jtemb.2023.127277] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/14/2023]
Abstract
Developing new therapeutic and diagnostic metals and metal complexes is a stunning example of how inorganic chemistry is rapidly becoming an essential part of modern medicine. More study of bio-coordination chemistry is needed to improve the design of compounds with fewer harmful side effects. Metal-containing drugs are widely utilized in the treatment of cancer. Platinum complexes are effective against some cancers, but new coordination compounds are being created with improved pharmacological properties and a broader spectrum of anticancer action. The coordination complexes of the 15 lanthanides or rare earth elements in the periodic table are crucial for diagnosing and treating cancer. Understanding and treating cancer requires the detection of binding lanthanide (III) ions or complexes to DNA and breaking DNA by these complexes. Current advances in lanthanide-based coordination complexes as anticancer treatments over the past five years are discussed in this study.
Collapse
Affiliation(s)
- Meenakshi Patyal
- Department of Chemistry, Punjabi University, Patiala, Punjab, India
| | - Kirandeep Kaur
- Department of Chemistry, Punjabi University, Patiala, Punjab, India
| | - Neeraj Bala
- Department of Chemistry, Patel Memorial National College, Punjab, India
| | - Nidhi Gupta
- Department of Chemistry, Punjabi University, Patiala, Punjab, India.
| | | |
Collapse
|
5
|
Romanova J, Lyapchev R, Kolarski M, Tsvetkov M, Elenkova D, Morgenstern B, Zaharieva J. Molecular Design of Luminescent Complexes of Eu(III): What Can We Learn from the Ligands. Molecules 2023; 28:molecules28104113. [PMID: 37241855 DOI: 10.3390/molecules28104113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
The luminescent metal-organic complexes of rare earth metals are advanced materials with wide application potential in chemistry, biology, and medicine. The luminescence of these materials is due to a rare photophysical phenomenon called antenna effect, in which the excited ligand transmits its energy to the emitting levels of the metal. However, despite the attractive photophysical properties and the intriguing from a fundamental point of view antenna effect, the theoretical molecular design of new luminescent metal-organic complexes of rare earth metals is relatively limited. Our computational study aims to contribute in this direction, and we model the excited state properties of four new phenanthroline-based complexes of Eu(III) using the TD-DFT/TDA approach. The general formula of the complexes is EuL2A3, where L is a phenanthroline with -2-CH3O-C6H4, -2-HO-C6H4, -C6H5 or -O-C6H5 substituent at position 2 and A is Cl- or NO3-. The antenna effect in all newly proposed complexes is estimated as viable and is expected to possess luminescent properties. The relationship between the electronic properties of the isolated ligands and the luminescent properties of the complexes is explored in detail. Qualitative and quantitative models are derived to interpret the ligand-to-complex relation, and the results are benchmarked with respect to available experimental data. Based on the derived model and common molecular design criteria for efficient antenna ligands, we choose phenanthroline with -O-C6H5 substituent to perform complexation with Eu(III) in the presence of NO3¯. Experimental results for the newly synthesized Eu(III) complex are reported with a luminescent quantum yield of about 24% in acetonitrile. The study demonstrates the potential of low-cost computational models for discovering metal-organic luminescent materials.
Collapse
Affiliation(s)
- Julia Romanova
- Faculty of Chemistry and Pharmacy, Sofia University, James Bourchier 1 Blvd., 1164 Sofia, Bulgaria
| | - Rumen Lyapchev
- Faculty of Chemistry and Pharmacy, Sofia University, James Bourchier 1 Blvd., 1164 Sofia, Bulgaria
| | - Mihail Kolarski
- Faculty of Chemistry and Pharmacy, Sofia University, James Bourchier 1 Blvd., 1164 Sofia, Bulgaria
| | - Martin Tsvetkov
- Faculty of Chemistry and Pharmacy, Sofia University, James Bourchier 1 Blvd., 1164 Sofia, Bulgaria
| | - Denitsa Elenkova
- Faculty of Chemistry and Pharmacy, Sofia University, James Bourchier 1 Blvd., 1164 Sofia, Bulgaria
| | - Bernd Morgenstern
- Department of Chemistry, Saarland University, 66123 Saarbrücken, Germany
| | - Joana Zaharieva
- Faculty of Chemistry and Pharmacy, Sofia University, James Bourchier 1 Blvd., 1164 Sofia, Bulgaria
| |
Collapse
|
6
|
Ansari MF, Khan HY, Tabassum S, Arjmand F. Advances in anticancer alkaloid-derived metallo-chemotherapeutic agents in the last decade: Mechanism of action and future prospects. Pharmacol Ther 2023; 241:108335. [PMID: 36567056 DOI: 10.1016/j.pharmthera.2022.108335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/05/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Metal-based complexes have occupied a pioneering niche in the treatment of many chronic diseases, including various types of cancers. Despite the phenomenal success of cisplatin for the treatment of many solid malignancies, a limited number of metallo-drugs are in clinical use against cancer chemotherapy till date. While many other prominent platinum and non‑platinum- based metallo-drugs (e.g. NAMI-A, KP1019, carboplatin, oxaliplatin, titanocene dichloride, casiopeinas® etc) have entered clinical trials, many have failed at later stages of R&D due to deleterious toxic effects, intrinsic resistance and poor pharmacokinetic response and low therapeutic efficacy. Nonetheless, research in the area of medicinal inorganic chemistry has been increasing exponentially over the years, employing novel target based drug design strategies aimed at improving pharmacological outcomes and at the same time mitigating the side-effects of these drug entities. Over the last few decades, natural products became one of the key structural motifs in the anticancer drug development. Many eminent researchers in the area of medicinal chemistry are devoted to develop new 3d-transition metal-based anticancer drugs/repurpose the existing bioactive compounds derived from myriad pharmacophores such as coumarins, flavonoids, chromones, alkaloids etc. Metal complexes of natural alkaloids and their analogs such as luotonin A, jatrorrhizine, berberine, oxoaporphine, 8-oxychinoline etc. have gained prominence in the anticancer drug development process as the naturally occurring alkaloids can be anti-proliferative, induce apoptosis and exhibit inhibition of angiogenesis with better healing effect. While some of them are inhibitors of ERK signal-regulated kinases, others show activity based on cyclooxygenases-2 (COX-2) and telomerase inhibition. However, the targets of these alkaloid complexes are still unclear, though it is well-established that they demonstrate anticancer potency by interfering with multiple pathways of tumorigenesis and tumor progression both in vitro and in vivo. Over the last decade, many significant advances have been made towards the development of natural alkaloid-based metallo-drug therapeutics for intervention in cancer chemotherapy that have been summarized below and reviewed in this article.
Collapse
Affiliation(s)
| | - Huzaifa Yasir Khan
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Sartaj Tabassum
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Farukh Arjmand
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, UP, India.
| |
Collapse
|
7
|
Liu QY, Qi YY, Cai DH, Liu YJ, He L, Le XY. Sparfloxacin - Cu(II) - aromatic heterocyclic complexes: synthesis, characterization and in vitro anticancer evaluation. Dalton Trans 2022; 51:9878-9887. [PMID: 35713093 DOI: 10.1039/d2dt00077f] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Two new copper(II) complexes of sparfloxacin (sf), [Cu(Hsf)(HPB)(H2O)](ClO4)2 (1) and [Cu(Hsf)(PBT)(H2O)](ClO4)2 (2) (where HPB = 2-(2'-pyridyl)benzimidazole and PBT = 2-(4'-pyridyl) benzothiazole), have been synthesized and characterized by physicochemical and spectroscopic techniques. The oil-water partition coefficient (log P) values of complexes 1 and 2 were 1.47 and 1.71, respectively. By studying the interaction between the complexes and DNA, it was found that the complexes could bind to DNA through an intercalation mode. Moreover, both complexes were evaluated for antitumor activity, revealing that the complexes displayed good inhibitory activity toward the tested cancer cell lines (human lung carcinoma A549 cells, human hepatocellular carcinoma Bel-7402 cells and human esophageal carcinoma Eca-109 cells), but showed relatively low toxicity against normal human hepatic LO2 cells. In particular, the antitumor mechanism of the complexes on Eca-109 cells was investigated by morphological analysis, apoptosis analysis and determination of cell cycle arrest, mitochondrial membrane potential, reactive oxygen species (ROS) levels, and release of cytochrome c and Ca2+. The results demonstrated that the complexes could induce loss of intracellular mitochondrial functions and increase of ROS levels, which led to an increase of Ca2+ levels and the release of cytochrome c into the cytoplasm. In addition, the cell cycle was arrested in the G2/M phase, and western blot analysis showed that the caspase family was activated. These results fully proved that the complexes could induce apoptosis through DNA damage and loss of mitochondrial functions, accompanied by the regulation of endogenous proteins.
Collapse
Affiliation(s)
- Qi-Yan Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, People's Republic of China. .,Department of Applied Chemistry, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Yong-Yu Qi
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, People's Republic of China.
| | - Dai-Hong Cai
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, People's Republic of China.
| | - Yun-Jun Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China.
| | - Liang He
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, People's Republic of China. .,Department of Applied Chemistry, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Xue-Yi Le
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, People's Republic of China. .,Department of Applied Chemistry, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| |
Collapse
|
8
|
Prachayasittikul V, Pingaew R, Prachayasittikul S, Prachayasittikul V. 8-Hydroxyquinolines: A Promising Pharmacophore Potentially Developed as Disease-Modifying Agents for Neurodegenerative Diseases: A Review. HETEROCYCLES 2022. [DOI: 10.3987/rev-22-sr(r)6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Liu G, Wu S, Liu W, Gao G, Zhang Y, Gao E, Zhu M. Three novel spiral chain Nd (III) Eu (III) Sm (III)complexes bridged by 1,1 '(1,4‐phenylene‐bis [methylene])‐bis (pyridine‐3‐carboxylicaicd): Synthesis, structural characterization, and antitumor activity. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Gongchi Liu
- International Key Laboratory of Liaoning Inorganic Molecule‐Based Chemical and Department of Coordination Chemistry Shenyang University of Chemical Technology Shenyang China
| | - Shuangyan Wu
- International Key Laboratory of Liaoning Inorganic Molecule‐Based Chemical and Department of Coordination Chemistry Shenyang University of Chemical Technology Shenyang China
| | - Wei Liu
- International Key Laboratory of Liaoning Inorganic Molecule‐Based Chemical and Department of Coordination Chemistry Shenyang University of Chemical Technology Shenyang China
| | - Guoxu Gao
- International Key Laboratory of Liaoning Inorganic Molecule‐Based Chemical and Department of Coordination Chemistry Shenyang University of Chemical Technology Shenyang China
| | - Ying Zhang
- International Key Laboratory of Liaoning Inorganic Molecule‐Based Chemical and Department of Coordination Chemistry Shenyang University of Chemical Technology Shenyang China
| | - Enjun Gao
- School of Chemical Engineering University of Science and Technology Liaoning Anshan China
| | - Mingchang Zhu
- International Key Laboratory of Liaoning Inorganic Molecule‐Based Chemical and Department of Coordination Chemistry Shenyang University of Chemical Technology Shenyang China
- Key Laboratory of Resource Chemical Technology and Materials, (Ministry of Education) Shenyang University Chemical Technology Shenyang China
| |
Collapse
|
10
|
Pivarcsik T, Dömötör O, Mészáros JP, May NV, Spengler G, Csuvik O, Szatmári I, Enyedy ÉA. 8-Hydroxyquinoline-Amino Acid Hybrids and Their Half-Sandwich Rh and Ru Complexes: Synthesis, Anticancer Activities, Solution Chemistry and Interaction with Biomolecules. Int J Mol Sci 2021; 22:ijms222011281. [PMID: 34681939 PMCID: PMC8570331 DOI: 10.3390/ijms222011281] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/10/2021] [Accepted: 10/14/2021] [Indexed: 12/26/2022] Open
Abstract
Solution chemical properties of two novel 8-hydroxyquinoline-D-proline and homo-proline hybrids were investigated along with their complex formation with [Rh(η5-C5Me5)(H2O)3]2+ and [Ru(η6-p-cymene)(H2O)3]2+ ions by pH-potentiometry, UV-visible spectrophotometry and 1H NMR spectroscopy. Due to the zwitterionic structure of the ligands, they possess excellent water solubility as well as their complexes. The complexes exhibit high solution stability in a wide pH range; no significant dissociation occurs at physiological pH. The hybrids and their Rh(η5-C5Me5) complexes displayed enhanced cytotoxicity in human colon adenocarcinoma cell lines and exhibited multidrug resistance selectivity. In addition, the Rh(η5-C5Me5) complexes showed increased selectivity to the chemosensitive cancer cells over the normal cells; meanwhile, the Ru(η6-p-cymene) complexes were inactive, most likely due to arene loss. Interaction of the complexes with human serum albumin (HSA) and calf-thymus DNA (ct-DNA) was investigated by capillary electrophoresis, fluorometry and circular dichroism. The complexes are able to bind strongly to HSA and ct-DNA, but DNA cleavage was not observed. Changing the five-membered proline ring to the six-membered homoproline resulted in increased lipophilicity and cytotoxicity of the Rh(η5-C5Me5) complexes while changing the configuration (L vs. D) rather has an impact on HSA or ct-DNA binding.
Collapse
Affiliation(s)
- Tamás Pivarcsik
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm Tér 7, H-6720 Szeged, Hungary; (T.P.); (O.D.); (J.P.M.); (G.S.)
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm Tér 7, H-6720 Szeged, Hungary
| | - Orsolya Dömötör
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm Tér 7, H-6720 Szeged, Hungary; (T.P.); (O.D.); (J.P.M.); (G.S.)
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm Tér 7, H-6720 Szeged, Hungary
| | - János P. Mészáros
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm Tér 7, H-6720 Szeged, Hungary; (T.P.); (O.D.); (J.P.M.); (G.S.)
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm Tér 7, H-6720 Szeged, Hungary
| | - Nóra V. May
- Centre for Structural Science, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary;
| | - Gabriella Spengler
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm Tér 7, H-6720 Szeged, Hungary; (T.P.); (O.D.); (J.P.M.); (G.S.)
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis U. 6, H-6725 Szeged, Hungary
| | - Oszkár Csuvik
- Institute of Pharmaceutical Chemistry and Stereochemistry Research Group of Hungarian Academy of Sciences, University of Szeged, Eötvös U. 6, H-6720 Szeged, Hungary; (O.C.); (I.S.)
| | - István Szatmári
- Institute of Pharmaceutical Chemistry and Stereochemistry Research Group of Hungarian Academy of Sciences, University of Szeged, Eötvös U. 6, H-6720 Szeged, Hungary; (O.C.); (I.S.)
| | - Éva A. Enyedy
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm Tér 7, H-6720 Szeged, Hungary; (T.P.); (O.D.); (J.P.M.); (G.S.)
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm Tér 7, H-6720 Szeged, Hungary
- Correspondence:
| |
Collapse
|
11
|
A binuclear gadolinium complex of 8-hydroxyquinoline-2-carbaldehyde salicylhydrazone: structural characterisation and photoluminescence properties. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04589-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Yuan J, Yang HH, Li KH, Song JY, Lan HR, Kou HZ. Novel iron(III) complexes based on 2-hydrazinylpyrimidine derivative: Synthesis, characterization and preliminary evaluation of antitumor activity. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Gupta R, Luxami V, Paul K. Insights of 8-hydroxyquinolines: A novel target in medicinal chemistry. Bioorg Chem 2021; 108:104633. [PMID: 33513476 DOI: 10.1016/j.bioorg.2021.104633] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/15/2020] [Accepted: 01/04/2021] [Indexed: 12/20/2022]
Abstract
8-Hydroxyquinoline (8-HQ) is a significant heterocyclic scaffold in organic and analytical chemistry because of the properties of chromophore and is used to detect various metal ions and anions. But from the last 2 decades, this moiety has been drawn great attention of medicinal chemists due to its significant biological activities. Synthetic modification of 8-hydroxyquinoline is under exploration on large scale to develop more potent target-based broad spectrum drug molecules for the treatment of several life-threatening diseases such as anti-cancer, HIV, neurodegenerative disorders, etc. Metal chelation properties of 8-hydroxyquinoline and its derivatives also make these potent drug candidates for the treatment of various diseases. This review comprises 8-hydroxyquinoline derivatives reported in the literature in last five years (2016-2020) and we anticipate that it will assist medicinal chemists in the synthesis of novel and pharmacologically potent agents for various therapeutic targets, mainly anti-proliferative, anti-microbial, anti-fungal and anti-viral as well as for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Rohini Gupta
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147 004, India
| | - Vijay Luxami
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147 004, India
| | - Kamaldeep Paul
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147 004, India.
| |
Collapse
|