1
|
Pietras N, Frąckowiak D, Kownacki I. Ball-Milling toward Nickel(II) Diphosphine Complexes for Direct Use in Catalysis. CHEMSUSCHEM 2024:e202400545. [PMID: 38860859 DOI: 10.1002/cssc.202400545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/09/2024] [Accepted: 06/11/2024] [Indexed: 06/12/2024]
Abstract
Mechanochemistry turned out to be a powerful synthetic tool enabling the first efficient synthesis of nickel(II) complexes with diphosphines. It has been demonstrated that solventless ball-milling of nickel(II) halides with diphosphines leads to the [NiX2(diphosphine)] type compounds, which can be directly used in catalysis without any purification. Moreover, it was confirmed that despite the presence of impurities in the resulting complexes, their catalytic activity remains identical to those obtained via traditional solvent-based methods.
Collapse
Affiliation(s)
- Natalia Pietras
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Dawid Frąckowiak
- Center for Advanced Technologies, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614, Poznań, Poland
| | - Ireneusz Kownacki
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
- Center for Advanced Technologies, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614, Poznań, Poland
| |
Collapse
|
2
|
Mishra A, Mishra GK, Anamika, Singh N, Kant R, Kumar K. The rigidity and chelation effect of ligands on the hydrogen evolution reaction catalyzed by Ni(II) complexes. Dalton Trans 2024; 53:1680-1690. [PMID: 38167900 DOI: 10.1039/d3dt03932c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
With increasing interest in nickel-based electrocatalysts, three heteroleptic Ni(II) dithiolate complexes with the general formula [Ni(II)L(L')2] (1-3), L = 2-(methylene-1,1'-dithiolato)-5,5'-dimethylcyclohexane-1,3-dione and L' = triphenylphosphine (1), 1,1'-bis(diphenylphosphino)ferrocene (DPPF) (2), and 1,2-bis(diphenylphosphino)ethane (DPPE) (3), have been synthesized and characterized by various spectroscopic techniques (UV-vis, IR, 1H, and 31P{1H} NMR) as well as the electrochemical method. The molecular structure of complex 2 has also been determined by single-crystal X-ray crystallography. The crystal structure of complex 2 reveals a distorted square planar geometry around the nickel metal ion with a NiP2S2 core. The cyclic voltammograms reveal a small difference in the redox properties of complexes (ΔE° = 130 mV) while the difference in the catalytic half-wave potential becomes substantial (ΔEcat/2 = 670 mV) in the presence of 15 mM CF3COOH. The common S^S-dithiolate ligand provides stability, while the rigidity effect of other ligands (DPPE (3) > DPPF (2) > PPh3 (1)) regulates the formation of the transition state, resulting in the NiIII-H intermediate in the order of 1 > 2 > 3. The foot-of-the-wave analysis supports the widely accepted ECEC mechanism for Ni-based complexes with the first protonation step as a rate-determining step. The electrocatalytic proton reduction activity follows in the order of complex 1 > 2 > 3. The comparatively lower overpotential and higher turnover frequency of complex 1 are attributed to the flexibility of the PPh3 ligand, which favours the easy formation of a transition state.
Collapse
Affiliation(s)
- Anjali Mishra
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| | | | - Anamika
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| | - Nanhai Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| | - Rama Kant
- Department of Chemistry, University of Delhi, Delhi-110007, India.
| | - Kamlesh Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
3
|
Zhao PH, Gu XL, Tan X, Jin B, Guo Y. Bulky oxadithiolate-bridged [FeFe]‑hydrogenase mimics [Fe 2(μ-R 2odt)(CO) 4(κ 2-diphosphine)] (R = Ph and H) with chelating diphosphines. J Inorg Biochem 2022; 235:111933. [PMID: 35863295 DOI: 10.1016/j.jinorgbio.2022.111933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/18/2022] [Accepted: 07/11/2022] [Indexed: 12/29/2022]
Abstract
In order to develop an attractive generation of bulky oxadithiolate-bridged [FeFe]‑hydrogenase mimics with chelating diphosphines, two new series of asymmetrically diphosphine-substituted diiron model complexes [Fe2(μ-R2odt)(CO)4(κ2-diphosphine)] (3-5) with bulky Ph2odt bridge and their reference counterparts (6-8) with common odt bridge were obtained from the Me3NO-assisted substitutions of diiron hexacarbonyl precursors [Fe2(μ-R2odt)(CO)6] (R2odt = (SCHR)2O, R = Ph (1) and H (2)) with different diphosphines such as (Ph2P)2NBn (labelled PNBnP, Bn = benzyl), (Ph2PCH2)2NBn (PCNBnCP), and (Ph2PCH2)2CH2 (DPPP)), respectively. All the as-prepared complexes have been characterized by elemental analysis, IR plus NMR spectroscopies, and particularly by X-ray crystallography for 3-8. It is interesting to note that complexes 3 and 6 chelating by small bite-angle PNBnP diphosphine have the favorable dibasal isomer whereas analogues 4, 5 and 7, 8 chelating by flexible backbone PCNBnCP or DPPP ligands possess the main apical-basal isomer in solution or in the solid state. Further, the electrochemical properties of two pairs of representative complexes 3, 6 and 5, 8 are explored and compared by cyclic voltammetry (CV) in the absence and presence of trifluoroacetic acid (CF3CO2H) as proton source, indicating that the complete protonations of 3, 6 and 5, 8 with higher concentration of CF3CO2H lead to two new catalytic waves for the electrocatalytic proton reduction to hydrogen (H2).
Collapse
Affiliation(s)
- Pei-Hua Zhao
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, PR China.
| | - Xiao-Li Gu
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, PR China
| | - Xiao Tan
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, PR China
| | - Bo Jin
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, PR China
| | - Yang Guo
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, PR China
| |
Collapse
|
4
|
Gui MS, Guan Y, Li YL, Zhao PH. Azadithiolate-bridged [FeFe]-hydrogenase mimics with bridgehead N-derivation: structural and electrochemical investigations. TRANSIT METAL CHEM 2022. [DOI: 10.1007/s11243-022-00508-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
5
|
Liu X, Ma Z, Jin B, Wang D, Zhao P. Substituent effects of tertiary phosphines on the structures and electrochemical performances of azadithiolato‐bridged diiron model complexes of [FeFe]‐hydrogenases. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xu‐Feng Liu
- School of Materials and Chemical Engineering Ningbo University of Technology Ningbo P. R. China
| | - Zhong‐Yi Ma
- School of Materials Science and Engineering North University of China Taiyuan P. R. China
| | - Bo Jin
- School of Materials Science and Engineering North University of China Taiyuan P. R. China
| | - Dong Wang
- School of Materials Science and Engineering North University of China Taiyuan P. R. China
| | - Pei‐Hua Zhao
- School of Materials Science and Engineering North University of China Taiyuan P. R. China
| |
Collapse
|
6
|
Chen FY, Li JR, Liu XF, Zhao PH. Structural and electrochemical investigations of new mononuclear nickel(II) dithiolate complexes bearing a pendant amine. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2036981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Fei-Yan Chen
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, PR China
| | - Jian-Rong Li
- School of Materials Science and Engineering, North University of China, Taiyuan, PR China
| | - Xu-Feng Liu
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, PR China
| | - Pei-Hua Zhao
- School of Materials Science and Engineering, North University of China, Taiyuan, PR China
| |
Collapse
|
7
|
Pal N, Naskar T, Majumdar A. Synthesis, structural diversity and redox reactions in 1, 2- Bis(diphenylphopshinoethane)Nickel(II)-Thiolate complexes. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2021.120738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Gu XL, Li JR, Jin B, Guo Y, Jing XB, Zhao PH. Phosphine-substituted diiron complexes Fe 2( μ-Rodt)(CO) 6−n(PPh 3) n (R = Ph, Me, H and n = 1, 2) featuring desymmetrized oxadithiolate bridges: structures, protonation, and electrocatalysis. NEW J CHEM 2021. [DOI: 10.1039/d1nj03398k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The influence of desymmetrized dithiolates (Rodt) and phosphine coordination modes (PPh3) on the structural, protophilic, and electrocatalytic features of diiron complexes 4–6 and 7–9 is described.
Collapse
Affiliation(s)
- Xiao-Li Gu
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, P. R. China
| | - Jian-Rong Li
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, P. R. China
| | - Bo Jin
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, P. R. China
| | - Yang Guo
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, P. R. China
| | - Xing-Bin Jing
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, P. R. China
| | - Pei-Hua Zhao
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, P. R. China
| |
Collapse
|