1
|
Gatto CC, Cavalcante CDQO, Lima FC, Nascimento ÉCM, Martins JBL, Santana BLO, Gualberto ACM, Pittella-Silva F. Structural Design, Anticancer Evaluation, and Molecular Docking of Newly Synthesized Ni(II) Complexes with ONS-Donor Dithiocarbazate Ligands. Molecules 2024; 29:2759. [PMID: 38930825 PMCID: PMC11206525 DOI: 10.3390/molecules29122759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
The current article reports the investigation of three new Ni(II) complexes with ONS-donor dithiocarbazate ligands: [Ni(L1)PPh3] (1), [Ni(L2)PPh3] (2), and [Ni(L2)Py] (3). Single-crystal X-ray analyses revealed mononuclear complexes with a distorted square planar geometry and the metal centers coordinated with a doubly deprotonated dithiocarbazate ligand and coligand pyridine or triphenylphosphine. The non-covalent interactions were investigated by the Hirshfeld surface and the results revealed that the strongest interactions were π⋅⋅⋅π stacking interactions and non-classical hydrogen bonds C-H···H and C-H···N. Physicochemical and spectroscopic methods indicate the same structures in the solid state and solution. The toxicity effects of the free ligands and Ni(II) complexes were tested on the human breast cancer cell line MCF-7 and non-malignant breast epithelial cell line MCF-10A. The half-maximal inhibitory concentration (IC50) values, indicating that the compounds were potent in inhibiting cell growth, were obtained for both cell lines at three distinct time points. While inhibitory effects were evident in both malignant and non-malignant cells, all three complexes demonstrated lower IC50 values for malignant breast cell lines than their non-malignant counterparts, suggesting a stronger impact on cancerous cell lines. Furthermore, molecular docking studies were performed showing the complex (2) as a promising candidate for further therapeutic exploration.
Collapse
Affiliation(s)
- Claudia C. Gatto
- University of Brasilia, Institute of Chemistry, Laboratory of Inorganic Synthesis and Crystallography, Brasília 70910-900, DF, Brazil
| | - Cássia de Q. O. Cavalcante
- University of Brasilia, Institute of Chemistry, Laboratory of Inorganic Synthesis and Crystallography, Brasília 70910-900, DF, Brazil
| | - Francielle C. Lima
- University of Brasilia, Institute of Chemistry, Laboratory of Inorganic Synthesis and Crystallography, Brasília 70910-900, DF, Brazil
| | - Érica C. M. Nascimento
- University of Brasilia, Institute of Chemistry, Laboratory of Computational Chemistry, Brasília 70910-900, DF, Brazil; (É.C.M.N.); (J.B.L.M.)
| | - João B. L. Martins
- University of Brasilia, Institute of Chemistry, Laboratory of Computational Chemistry, Brasília 70910-900, DF, Brazil; (É.C.M.N.); (J.B.L.M.)
| | - Brunna L. O. Santana
- University of Brasilia, Faculty of Health Sciences and Medicine, Laboratory of Molecular Pathology of Cancer, Brasília 70910-900, DF, Brazil; (B.L.O.S.); (F.P.-S.)
| | - Ana C. M. Gualberto
- University of Brasilia, Faculty of Health Sciences and Medicine, Laboratory of Molecular Pathology of Cancer, Brasília 70910-900, DF, Brazil; (B.L.O.S.); (F.P.-S.)
| | - Fabio Pittella-Silva
- University of Brasilia, Faculty of Health Sciences and Medicine, Laboratory of Molecular Pathology of Cancer, Brasília 70910-900, DF, Brazil; (B.L.O.S.); (F.P.-S.)
| |
Collapse
|
2
|
Break MKB, Fung TY, Koh MZ, Ho WY, Tahir MIM, Elfar OA, Syed RU, Khojali WMA, Alluhaibi TM, Huwaimel B, Wiart C, Khoo TJ. Synthesis, Crystal Structure, Antibacterial and In Vitro Anticancer Activity of Novel Macroacyclic Schiff Bases and Their Cu (II) Complexes Derived from S-Methyl and S-Benzyl Dithiocarbazate. Molecules 2023; 28:5009. [PMID: 37446670 DOI: 10.3390/molecules28135009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
A series of novel macroacyclic Schiff base ligands and their Cu (II) complexes were synthesised via reacting dicarbonyls of varying chain lengths with S-methyl dithiocarbazate (SMDTC) and S-benzyl dithiocarbazate (SBDTC) followed by coordination with Cu (II) ions. X-ray crystal structures were obtained for compound 4, an SBDTC-diacetyl analogue, and Cu7, an SMDTC-hexanedione Cu (II) complex. Anticancer evaluation of the compounds showed that Cu1, an SMDTC-glyoxal complex, demonstrated the highest cytotoxic activity against MCF-7 and MDA-MB-231 breast cancer cells with IC50 values of 1.7 µM and 1.4 µM, respectively. There was no clear pattern observed between the effect of chain length and cytotoxic activity; however, SMDTC-derived analogues were more active than SBDTC-derived analogues against MDA-MB-231 cells. The antibacterial assay showed that K. rhizophila was the most susceptible bacteria to the compounds, followed by S. aureus. Compound 4 and the SMDTC-derived analogues 3, 5, Cu7 and Cu9 possessed the highest antibacterial activity. These active analogues were further assessed, whereby 3 possessed the highest antibacterial activity with an MIC of <24.4 µg/mL against K. rhizophila and S. aureus. Further antibacterial studies showed that at least compounds 4 and 5 were bactericidal. Thus, Cu1 and 3 were the most promising anticancer and antibacterial agents, respectively.
Collapse
Affiliation(s)
- Mohammed Khaled Bin Break
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail 55473, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Hail, Hail 55473, Saudi Arabia
| | - Tan Yew Fung
- School of Pharmacy, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih 43500, Selangor, Malaysia
| | - May Zie Koh
- Division of Biomedical Sciences, School of Pharmacy, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih 43500, Selangor, Malaysia
| | - Wan Yong Ho
- Division of Biomedical Sciences, School of Pharmacy, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih 43500, Selangor, Malaysia
| | | | - Omar Ashraf Elfar
- School of Pharmacy, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih 43500, Selangor, Malaysia
| | - Rahamat Unissa Syed
- Medical and Diagnostic Research Centre, University of Hail, Hail 55473, Saudi Arabia
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 55473, Saudi Arabia
| | - Weam M A Khojali
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail 55473, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Hail, Hail 55473, Saudi Arabia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Omdurman Islamic University, Omdurman 14415, Sudan
| | - Turki Mubarak Alluhaibi
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail 55473, Saudi Arabia
| | - Bader Huwaimel
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail 55473, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Hail, Hail 55473, Saudi Arabia
| | - Christophe Wiart
- Institute for Tropical Biology & Conservation, University Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Teng-Jin Khoo
- School of Pharmacy, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih 43500, Selangor, Malaysia
| |
Collapse
|
3
|
Cavalcante CDQO, da Mota THA, de Oliveira DM, Nascimento ÉCM, Martins JBL, Pittella-Silva F, Gatto CC. Dithiocarbazate ligands and their Ni(II) complexes with potential biological activity: Structural, antitumor and molecular docking study. Front Mol Biosci 2023; 10:1146820. [PMID: 36968279 PMCID: PMC10034969 DOI: 10.3389/fmolb.2023.1146820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/14/2023] [Indexed: 03/09/2023] Open
Abstract
In the search for new metal complexes with antitumor potential, two dithiocarbazate ligands derived from 1,1,1-trifluoro-2,4-pentanedione (H2L1) and (H2L2) and four Ni(II) complexes, [Ni(L1)PPh3] (1), [Ni(L1)Py] (2), [Ni(L2)PPh3] (3), and [Ni(L2)Py] (4), were successfully synthesized and investigated by physical-chemistry and spectroscopic methods. The crystal structure of the H2L1 and the Ni(II) complexes has been elucidated by single-crystal X-ray diffraction. The obtained structure from H2L1 confirms the cyclization reaction and formation of the pyrazoline derivative. The results showed square planar geometry to the metal centers, in which dithiocarbazates coordinated by the ONS donor system and a triphenylphosphine or pyridine molecule complete the coordination sphere. Hirshfeld surface analysis by dnorm function was investigated and showed π–π stacking interactions upon the molecular packing of H2L1 and non-classical hydrogen bonds for all compounds. Fingerprint plots showed the main interactions attributed to H⋅H C⋅H, O⋅H, Br⋅H, and F⋅H, with contacts contributing between 1.9% and 38.2%. The mass spectrometry data indicated the presence of molecular ions [M + H]+ and characteristic fragmentations of the compounds, which indicated the same behavior of the compounds in solution and solid state. Molecular docking simulations were studied to evaluate the properties and interactions of the free dithiocarbazates and their Ni(II) complexes with selected proteins and DNA. These results were supported by in vitro cytotoxicity assays against four cancer cell lines, showing that the synthesized metal complexes display promising biological activity.
Collapse
Affiliation(s)
- Cássia de Q. O. Cavalcante
- University of Brasília, Institute of Chemistry, Laboratory of Inorganic Synthesis and Crystallography, Brasília, DF, Brazil
| | - Tales H. A. da Mota
- University of Brasília, Faculdade UnB Ceilândia, Multidisciplinary Laboratory of Human Health, Brasília, DF, Brazil
| | - Diêgo M. de Oliveira
- University of Brasília, Faculdade UnB Ceilândia, Multidisciplinary Laboratory of Human Health, Brasília, DF, Brazil
| | - Érica C. M. Nascimento
- University of Brasília, Institute of Chemistry, Laboratory of Computational Chemistry, Brasília, DF, Brazil
| | - João B. L. Martins
- University of Brasília, Institute of Chemistry, Laboratory of Computational Chemistry, Brasília, DF, Brazil
| | - Fabio Pittella-Silva
- University of Brasília, Faculty of Health Sciences and Medicine, Laboratory of Molecular Cancer Pathology, Brasília, DF, Brazil
| | - Claudia C. Gatto
- University of Brasília, Institute of Chemistry, Laboratory of Inorganic Synthesis and Crystallography, Brasília, DF, Brazil
- *Correspondence: Claudia C. Gatto,
| |
Collapse
|
4
|
Mushtaq A, Iqbal M, Ali S, Tahir MN. Centrosymmetric paddlewheel copper(II) complexes as potent intercalators: synthesis, crystal structure description and DNA-binding studies. Supramol Chem 2022. [DOI: 10.1080/10610278.2022.2137412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Afifa Mushtaq
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Iqbal
- Department of Chemistry, Bacha Khan University, Charsadda, 24420, Pakistan
| | - Saqib Ali
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | | |
Collapse
|
5
|
Sanad SG, Shebl M. Association thermodynamic parameters for nano Cu(NO 3) 2·2.5H 2O with ligands at different temperatures. RSC Adv 2022; 12:28902-28909. [PMID: 36320751 PMCID: PMC9555013 DOI: 10.1039/d2ra05933a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023] Open
Abstract
Association thermodynamic parameters are important because they give information about the nature of ion-ion interaction in solution, the dielectric constant of the medium and the intermolecular hydrogen bonding between the solvent molecules. The different association thermodynamic parameters for nano copper(ii) nitrate hemi pentahydrate in the presence of 4,6-diacetylresorcinol and 4,6-bis(1-hydrazonoethyl)benzene-1,3-diol as ligands were calculated. Conductance measurements were used in different concentrations of binary mixed solvents (DMF and water) at different temperatures, 293.15, 303.15, 313.15 and 323.15 K. A comparison between association thermodynamic parameter data such as association constants (K A), degree of dissociation (α), free energies of association (ΔG A), enthalpies of association (ΔH A) and entropies of association (ΔS A) in the case of using the two ligands was done. Different calculated thermodynamic parameters indicate that the association is more favorable with 4,6-diacetylresorcinol as a ligand than 4,6-bis(1-hydrazonoethyl)benzene-1,3-diol due to the large size of 6-bis(1-hydrazonoethyl)benzene-1,3-diol.
Collapse
Affiliation(s)
- Sameh G Sanad
- Department of Chemistry, Faculty of Education, Ain Shams University, Roxy Cairo Egypt
| | - Magdy Shebl
- Department of Chemistry, Faculty of Education, Ain Shams University, Roxy Cairo Egypt
| |
Collapse
|
6
|
Almeida CM, S. Marcon PH, Nascimento ÉCM, Martins JBL, Chagas MAS, Fujimori M, De Marchi PGF, França EL, Honorio‐França AC, Gatto CC. Organometallic Gold (III) and Platinum (II) Complexes with Thiosemicarbazone: structural behavior, anticancer activity, and molecular docking. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Carolane M. Almeida
- Laboratory of Inorganic Synthesis and Crystallography University of Brasilia (IQ‐UnB). Campus Universitário Darcy Ribeiro Brasília DF Brazil
| | - Pedro H. S. Marcon
- Laboratory of Inorganic Synthesis and Crystallography University of Brasilia (IQ‐UnB). Campus Universitário Darcy Ribeiro Brasília DF Brazil
| | - Érica C. M. Nascimento
- Laboratory of Computational Chemistry University of Brasilia (IQ‐UnB). Campus Universitário Darcy Ribeiro Brasília DF Brazil
| | - João B. L. Martins
- Laboratory of Computational Chemistry University of Brasilia (IQ‐UnB). Campus Universitário Darcy Ribeiro Brasília DF Brazil
| | - Marcio A. S. Chagas
- Institute of Biological and Health Science, Federal University of Mato Grosso Barra do Garças Brazil
| | - Mahmi Fujimori
- Institute of Biological and Health Science, Federal University of Mato Grosso Barra do Garças Brazil
| | - Patrícia G. F. De Marchi
- Institute of Biological and Health Science, Federal University of Mato Grosso Barra do Garças Brazil
| | - Eduardo L. França
- Institute of Biological and Health Science, Federal University of Mato Grosso Barra do Garças Brazil
| | | | - Claudia C. Gatto
- Laboratory of Inorganic Synthesis and Crystallography University of Brasilia (IQ‐UnB). Campus Universitário Darcy Ribeiro Brasília DF Brazil
| |
Collapse
|
7
|
Samy F, Shebl M. Co (II), Ni (II) and Cu (II) complexes of 4,6‐bis(2‐hydroxynaphthalen‐1‐yl)methyl‐ene)hydrazono)ethyl)benzene‐1,3‐diol: Synthesis, spectroscopic, biological and theoretical studies. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Fatma Samy
- Department of Chemistry, Faculty of Education Ain Shams University Cairo Egypt
| | - Magdy Shebl
- Department of Chemistry, Faculty of Education Ain Shams University Cairo Egypt
| |
Collapse
|