1
|
Li G, Chen J, Xie Y, Yang Y, Niu Y, Chen X, Zeng X, Zhou L, Liu Y. White light increases anticancer effectiveness of iridium(III) complexes toward lung cancer A549 cells. J Inorg Biochem 2024; 259:112652. [PMID: 38945112 DOI: 10.1016/j.jinorgbio.2024.112652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/29/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
Anticancer activity has been extensively studies. In this article, three ligands 2-(6-bromobenzo[d][1,3]dioxol-5-yl)-1H-imidazo[4,5-f][1,10]phenanthroline (BDIP), 2-(7-methoxybenzo[d][1,3]dioxol-5-yl)-1H-imidazo[4,5-f][1,10]phenanthroline (MDIP), 2-(6-nitrobenzo[d][1,3]dioxol-5-yl)-1H-imidazo[4,5-f][1,10]phenanthroline (NDIP) and their iridium(III) complexes: [Ir(ppy)2(BDIP)](PF6) (ppy = deprotonated 2-phenylpyridine, 3a), [Ir(ppy)2(MDIP)](PF6) (3b) and [Ir(ppy)2(NDIP)](PF6) (3c) were synthesized. The cytotoxicity of 3a, 3b, 3c against Huh7, A549, BEL-7402, HepG2, HeLa, and non-cancer NIH3T3 was tested using 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) method. The results obtained from the MTT test stated clearly that these complexes demonstrated moderate or non-cytotoxicity toward Huh7, BEL-7402, HepG2 and HeLa except A549 cells. To improve the anticancer efficacy, we used white light to irradiate the mixture of cells and complexes for 30 min, the anticancer activity of the complexes was greatly enhanced. Particularly, 3a and 3b exhibited heightened capability to inhibit A549 cells proliferation with IC50 (half maximal inhibitory concentration) values of 0.7 ± 0.3 μM and 1.8 ± 0.1 μM, respectively. Cellular uptake has shown that 3a and 3b can be accumulated in the cytoplasm. Wound healing and colony forming showed that 3a and 3b significantly hinder the cell migration and growth in the S phase. The complexes open mitochondrial permeability transition pore (MPTP) channel and cause the decrease of membrane potential, release of cytochrome C, activation of caspase 3, and finally lead to apoptosis. In addition, 3a and 3b cause autophagy, increase the lipid peroxidation and lead to ferroptosis. Also, 3a and 3b increase the expression of calreticulin (CRT), high mobility group box 1 (HMGB1), heat shock protein 70 (HSP70), thereby inducing immunogenic cell death.
Collapse
Affiliation(s)
- Gechang Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Jing Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yufeng Xie
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yan Yang
- Department of Pharmacy, Guangdong Second Provincial General Hospital, 510317, PR China.
| | - Yajie Niu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Xiaolan Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Xiandong Zeng
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Lin Zhou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yunjun Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| |
Collapse
|
2
|
Botter E, Caligiuri I, Rizzolio F, Visentin F, Scattolin T. Liposomal Formulations of Metallodrugs for Cancer Therapy. Int J Mol Sci 2024; 25:9337. [PMID: 39273286 PMCID: PMC11394711 DOI: 10.3390/ijms25179337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
The search for new antineoplastic agents is imperative, as cancer remains one of the most preeminent causes of death worldwide. Since the discovery of the therapeutic potential of cisplatin, the study of metallodrugs in cancer chemotherapy acquired increasing interest. Starting from cisplatin derivatives, such as oxaliplatin and carboplatin, in the last years, different compounds were explored, employing different metal centers such as iron, ruthenium, gold, and palladium. Nonetheless, metallodrugs face several drawbacks, such as low water solubility, rapid clearance, and possible side toxicity. Encapsulation has emerged as a promising strategy to overcome these issues, providing both improved biocompatibility and protection of the payload from possible degradation in the biological environment. In this respect, liposomes, which are spherical vesicles characterized by an aqueous core surrounded by lipid bilayers, have proven to be ideal candidates due to their versatility. In fact, they can encapsulate both hydrophilic and hydrophobic drugs, are biocompatible, and their properties can be tuned to improve the selective delivery to tumour sites exploiting both passive and active targeting. In this review, we report the most recent findings on liposomal formulations of metallodrugs, with a focus on encapsulation techniques and the obtained biological results.
Collapse
Affiliation(s)
- Eleonora Botter
- Department of Molecular Sciences and Nanosystems, Università Ca' Foscari Campus Scientifico, Via Torino 155, 30174 Venezia-Mestre, Italy
| | - Isabella Caligiuri
- Pathology Unit, Department of Molecular Biology and Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy
| | - Flavio Rizzolio
- Department of Molecular Sciences and Nanosystems, Università Ca' Foscari Campus Scientifico, Via Torino 155, 30174 Venezia-Mestre, Italy
- Pathology Unit, Department of Molecular Biology and Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy
| | - Fabiano Visentin
- Department of Molecular Sciences and Nanosystems, Università Ca' Foscari Campus Scientifico, Via Torino 155, 30174 Venezia-Mestre, Italy
| | - Thomas Scattolin
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
3
|
Bhagya N, Chandrashekar KR. Liposome encapsulated anticancer drugs on autophagy in cancer cells - current and future perspective. Int J Pharm 2023:123105. [PMID: 37279869 DOI: 10.1016/j.ijpharm.2023.123105] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/08/2023]
Abstract
Autophagy act as a double-edged sword in cancer with both tumor promoting and inhibiting roles. Under normal conditions of autophagy, the damaged cell organelles and other debris degrade inside the lysosome to provide energy and macromolecular precursors. However, enhanced autophagy can lead to apoptosis and programmed cell death highlighting its significance in cancer therapy. Liposome-based drug delivery systems for treating cancer patients have significant advantages over their non-formulated or free drug counterparts which could be effectively used to manipulate autophagy pathway in cancer patients. In the current review, drug uptake by the cells and its role in autophagy-mediated cancer cell death are discussed. Besides, the challenges and translational difficulties associated with the use of liposome-based chemotherapeutic drugs in clinical trials and in biomedical applications are also discussed.
Collapse
Affiliation(s)
- N Bhagya
- Yenepoya Research Center, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka 575018, India.
| | - K R Chandrashekar
- Yenepoya Pharmacy and Ayush Research Centre (YEN PARC), Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka 575018, India
| |
Collapse
|
4
|
Chen Y, Li W, Yang Y, Zhong R, Hu H, Huang C, Chen J, Liang L, Liu Y. Significant increase of anticancer efficacy in vitro and in vivo of liposome entrapped ruthenium(II) polypyridyl complexes. Eur J Med Chem 2023; 257:115541. [PMID: 37295162 DOI: 10.1016/j.ejmech.2023.115541] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/23/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
Two polypyridyl ruthenium(II) complexes [Ru(DIP)2(BIP)](PF6)2 (DIP = 4,7-diphenyl-1,10-phenanthrolie, BIP = 2-(1,1'-biphenyl-4-yl)-1H-imidazo[4,5-f][1,10]phenanthroline, Ru1) and [Ru(DIP)2(CBIP)](PF6)2 (CBIP = 2-(4'-chloro-1,1'-biphenyl-4-yl)-1H-imidazo[4,5-f][1,10]phenanthroline, Ru2) were synthesized. The cytotoxic activities in vitro of Ru1, Ru2 toward B16, A549, HepG2, SGC-7901, HeLa, BEL-7402, non-cancer LO2 were investigated using MTT method (3-(4,5-dimethylthiazole)-2,5-diphenltetraazolium bromide). Unexpectedly, Ru1, Ru2 can't prevent these cancer cells proliferation. To improve the anti-cancer effect, we used liposomes to entrap the complexes Ru1, Ru2 to form Ru1lipo, Ru2lipo. As expectation, Ru1lipo and Ru2lipo exhibit high anti-cancer efficacy, especially, Ru1lipo (IC50 3.4 ± 0.1 μM), Ru2lipo (IC50 3.5 ± 0.1 μM) display strong ability to block the cell proliferation in SGC-7901. The cell colony, wound healing, and cell cycle distribution show that the complexes can validly inhibit the cell growth at G2/M phase. Apoptotic studied with Annex V/PI doubling method showed that Ru1lipo and Ru2lipo can effectively induce apoptosis. Reactive oxygen species (ROS), malondialdehyde, glutathione and GPX4 demonstrate that Ru1lipo and Ru2lipo improve ROS and malondialdehyde levels, inhibit generation of glutathione, and finally result in a ferroptosis. Ru1lipo and Ru2lipo interact on the lysosomes and mitochondria and damage mitochondrial dysfunction. Additionally, Ru1lipo and Ru2lipo increase intracellular Ca2+ concentration and induce autophagy. The RNA-sequence and molecular docking were performed, the expression of Bcl-2 family was investigated by Western blot analysis. Antitumor in vivo experiments confirm that 1.23 mg/kg, 2.46 mg/kg of Ru1lipo possesses a high inhibitory rate of 53.53% and 72.90% to prevent tumor growth, hematoxylin-eosin (H&E) results show that Ru1lipo doesn't cause chronic organ damage and strongly promotes the necrosis of solid tumor. Taken together, we conclude that Ru1lipo and Ru2lipo cause cell death through the following pathways: autophagy, ferroptosis, ROS-regulated mitochondrial dysfunction, and blocking the PI3K/AKT/mTOR.
Collapse
Affiliation(s)
- Yichuan Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Wenlong Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Yan Yang
- Department of Pharmacy, Guangdong Second Provincial General Hospital, 510317, PR China.
| | - Ruitong Zhong
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Huiyan Hu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Chunxia Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Jing Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Lijuan Liang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Yunjun Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| |
Collapse
|
5
|
Hu G, Lv M, Guo B, Huang Y, Su Z, Qian Y, Xue X, Liu HK. Immunostimulation with chemotherapy of a ruthenium-arene complex via blockading CD47 signal in chronic myelogenous leukemia cells. J Inorg Biochem 2023; 243:112195. [PMID: 36996696 DOI: 10.1016/j.jinorgbio.2023.112195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/26/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023]
Abstract
Combination of novel immunomodulation and traditional chemotherapy has become a new tendency in cancer treatment. Increasing evidence suggests that blocking the "don't eat me" signal transmitted by the CD47 can promote the phagocytic ability of macrophages to cancer cells, which might be promising for improved cancer chemoimmunotherapy. In this work, we conjugated CPI-alkyne modified by Devimistat (CPI-613) with ruthenium-arene azide precursor Ru-N3 by copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction to construct Ru complex CPI-Ru. CPI-Ru exhibited satisfactory cytotoxicity towards the K562 cells while nearly non-toxic towards the normal HLF cells. CPI-Ru has been demonstrated to cause severe damage to mitochondria and DNA, ultimately inducing cancer cell death through the autophagic pathway. Moreover, CPI-Ru could significantly downregulate the expression of CD47 on the surface of K562 accompanied by the enhanced immune response by targeting the blockade of CD47. This work provides a new strategy for utilizing metal-based anticancer agents to block CD47 signal to achieve chemoimmunotherapy in chronic myeloid leukemia treatment.
Collapse
Affiliation(s)
- Guojing Hu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Mengdi Lv
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Binglian Guo
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yuanlei Huang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Zhi Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yong Qian
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xuling Xue
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Hong-Ke Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
6
|
Yuan Y, Zhang Y, Chen J, Huang C, Liu H, Li W, Liang L, Wang Y, Liu Y. Synthesis, biological evaluation of novel iridium(III) complexes targeting mitochondria toward melanoma B16 cells. Eur J Med Chem 2023; 247:115046. [PMID: 36577214 DOI: 10.1016/j.ejmech.2022.115046] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
A new ligand 2-(1E,3E,5E,7E)-2,6-dimethyl-8-(2,6,6-trimethylcyclohex-1-yl)octa-1,2,5,7-tetraen-1-yl)-1H-imidazo[4,5-f][1,10]phenanthroline (DTOIP) was synthesized and combined with [Ir(ppy)2Cl]2·2H2O (ppy = deprotonated Hppy: 2-phenylpyridine), [Ir(piq)2Cl]2·2H2O (piq = deprotonated Hpiq: 1-phenylisoquinoline) and [Ir(bzq)2Cl]2·2H2O (bzq = deprotonated Hbzq: benzo[h]quinolone) to form [Ir(ppy)2(DTOIP)](PF6) (Ir1), [Ir(piq)2(DTOIP)](PF6) (Ir2), and [Ir(bzq)2(DTOIP)](PF6) (Ir3), respectively. The complexes were characterized by elemental analysis, high-resolution mass spectrometry (HRMS), 1H NMR and 13C NMR. The antiproliferative activity of the complexes toward B16, BEL-7402, Eca-109 and normal LO2 cells was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. Complexes Ir1, Ir2 and Ir3 showed high antiproliferative activity against B16 cells with a low IC50 values of 0.4 ± 0.1, 2.0 ± 0.1 and 1.4 ± 0.09 μM, respectively. Three-dimensional (3D) in vitro cell models also demonstrated that the iridium(III) complexes have a remarkable cytotoxicity to B16 cells. The experiments of cellular uptake, mitochondrial localization, and intracellular distribution of the drugs proved that the three iridium(III) complexes can enter the mitochondria, leading to the loss of mitochondrial membrane potential (MMP), decreased glutathione (GSH) levels, causing an increase of intracellular ROS content, and DNA damage, finally inducing apoptosis. RNA-sequence and bioinformatics analyses were used to analyze the differentially expressed genes and enriched biology processes. Antitumor in vivo demonstrated that complex Ir1 (5 mg/kg) exhibits a high efficacy to inhibit the tumor growth with an inhibitory rate of 71.67%. These results show that the complexes may be potent anticancer candidate drugs.
Collapse
Affiliation(s)
- Yuhan Yuan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Yuanyuan Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Jing Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Chunxia Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Haimei Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Wenlong Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Lijuan Liang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Yi Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Yunjun Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| |
Collapse
|
7
|
Xie FL, Wang Y, Zhu JW, Xu HH, Guo QF, Wu Y, Liu SH. Anticancer mechanism studies of iridium(III) complexes inhibiting osteosarcoma HOS cells proliferation. J Inorg Biochem 2022; 237:112011. [PMID: 36252336 DOI: 10.1016/j.jinorgbio.2022.112011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 01/18/2023]
Abstract
Three iridium (III) polypyridine complexes [Ir(bzq)2(maip)](PF6) (Ir1,bzq = benzo[h]quinoline, maip = 3-aminophenyl-1H-imidazo[4,5-f][1,10]phenanthroline), [Ir(bzq)2(apip)](PF6) (Ir2, apip = 2-aminophenyl-1H-imidazo[4,5-f][1,10]phenanthroline) and [Ir(bzq)2(paip)](PF6) (Ir3, paip = 4-aminophenyl-1H-imidazo[4,5-f][1,10]phenanthroline) were synthesized and characterized. The cytotoxic activities of the three complexes against human osteosarcoma HOS, U2OS, MG63 and normal LO2 cells were evaluated by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) method. The results showed that Ir1-3 exhibited moderate antitumor activity against HOS with IC50 of 21.8 ± 0. 4 μM,10.5 ± 1.8 μM and 7.4 ± 0.4 μM, respectively. We found that Ir1-3 can effectively inhibit HOS cells growth and blocked the cell cycle at the G0/G1 phase. Further studies revealed that complexes can increase intracellular reactive oxygen species (ROS) and Ca2+, which accompanied by mitochondria-mediated intrinsic apoptosis pathway. In addition, autophagy was also investigated. Taken together, the complexes induce HOS apoptosis through a ROS-mediated mitochondrial dysfunction pathway and inhibition of the PI3K (phosphatidylinositol 3-kinase)/AKT (protein kinase B)/mTOR (mammalian target of rapamycin) signaling pathway. This study provides useful help for understanding the anticancer mechanism of iridium (III) complexes toward osteosarcoma treatment.
Collapse
Affiliation(s)
- Fu-Li Xie
- Department of Orthopaedics, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, PR China; Guangzhou First People's Hospital, Guangzhou, Guangdong 510180, PR China
| | - Yan Wang
- Department of Orthopaedics, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, PR China; Guangzhou First People's Hospital, Guangzhou, Guangdong 510180, PR China
| | - Jian-Wei Zhu
- Department of Orthopaedics, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, PR China; Guangzhou First People's Hospital, Guangzhou, Guangdong 510180, PR China
| | - Hui-Hua Xu
- Department of Orthopaedics, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, PR China; Guangzhou First People's Hospital, Guangzhou, Guangdong 510180, PR China
| | - Qi-Feng Guo
- Department of Orthopaedics, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, PR China; Guangzhou First People's Hospital, Guangzhou, Guangdong 510180, PR China.
| | - Yong Wu
- Department of Oncology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, PR China; Guangzhou First People's Hospital, Guangzhou, Guangdong 510180, PR China.
| | - Si-Hong Liu
- Department of Orthopaedics, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, PR China; Guangzhou First People's Hospital, Guangzhou, Guangdong 510180, PR China.
| |
Collapse
|
8
|
Li W, Wu X, Liu H, Shi C, Yuan Y, Bai L, Liao X, Zhang Y, Liu Y. Enhanced in vitro cytotoxicity and antitumor activity in vivo of iridium(III) complexes liposomes targeting endoplasmic reticulum and mitochondria. J Inorg Biochem 2022; 233:111868. [DOI: 10.1016/j.jinorgbio.2022.111868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/05/2022] [Accepted: 05/17/2022] [Indexed: 01/05/2023]
|
9
|
Szłapa-Kula A, Palion-Gazda J, Ledwon P, Erfurt K, Machura B. A fundamental role of solvent polarity and remote substitution of 2-(4-R-phenyl)-1H-imidazo[4,5-f][1,10]phenanthroline framework in controlling of ground- and excited-state properties of Re(I) chromophores [ReCl(CO) 3(R-C 6H 4-imphen)]. Dalton Trans 2022; 51:14466-14481. [DOI: 10.1039/d2dt02439j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of Re(I) carbonyl chromophores with 1H-imidazo[4,5-f][1,10]phenanthroline (imphen) ligand functionalized with electron-donating amine groups attached to the imidazole ring via phenylene linkage was designed to investigate the impact of...
Collapse
|