1
|
Liu Y, Pan R, Ouyang Y, Gu W, Xiao T, Yang H, Tang L, Wang H, Xiang B, Chen P. Pyroptosis in health and disease: mechanisms, regulation and clinical perspective. Signal Transduct Target Ther 2024; 9:245. [PMID: 39300122 DOI: 10.1038/s41392-024-01958-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024] Open
Abstract
Pyroptosis is a type of programmed cell death characterized by cell swelling and osmotic lysis, resulting in cytomembrane rupture and release of immunostimulatory components, which play a role in several pathological processes. Significant cellular responses to various stimuli involve the formation of inflammasomes, maturation of inflammatory caspases, and caspase-mediated cleavage of gasdermin. The function of pyroptosis in disease is complex but not a simple angelic or demonic role. While inflammatory diseases such as sepsis are associated with uncontrollable pyroptosis, the potent immune response induced by pyroptosis can be exploited as a therapeutic target for anti-tumor therapy. Thus, a comprehensive review of the role of pyroptosis in disease is crucial for further research and clinical translation from bench to bedside. In this review, we summarize the recent advancements in understanding the role of pyroptosis in disease, covering the related development history, molecular mechanisms including canonical, non-canonical, caspase 3/8, and granzyme-mediated pathways, and its regulatory function in health and multiple diseases. Moreover, this review also provides updates on promising therapeutic strategies by applying novel small molecule inhibitors and traditional medicines to regulate pyroptosis. The present dilemmas and future directions in the landscape of pyroptosis are also discussed from a clinical perspective, providing clues for scientists to develop novel drugs targeting pyroptosis.
Collapse
Affiliation(s)
- Yifan Liu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
- Department of Oncology, Xiangya Hospital, Central South University, 87th Xiangya road, Changsha, 410008, Hunan province, China
| | - Renjie Pan
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
| | - Yuzhen Ouyang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
- Department of Neurology, Xiangya Hospital, Central South University, 87th Xiangya road, Changsha, 410008, Hunan province, China
| | - Wangning Gu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
| | - Tengfei Xiao
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
| | - Hongmin Yang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
| | - Ling Tang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
| | - Hui Wang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China.
| | - Bo Xiang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China.
| | - Pan Chen
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China.
| |
Collapse
|
2
|
Jiao Y, Li W, Yang W, Wang M, Xing Y, Wang S. Icaritin Exerts Anti-Cancer Effects through Modulating Pyroptosis and Immune Activities in Hepatocellular Carcinoma. Biomedicines 2024; 12:1917. [PMID: 39200381 PMCID: PMC11351763 DOI: 10.3390/biomedicines12081917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/07/2024] [Accepted: 08/16/2024] [Indexed: 09/02/2024] Open
Abstract
Icaritin (ICT), a natural compound extracted from the dried leaves of the genus Epimedium, possesses antitumor and immunomodulatory properties. However, the mechanisms through which ICT modulates pyroptosis and immune response in hepatocellular carcinoma (HCC) remain unclear. This study demonstrated that ICT exhibits pyroptosis-inducing and anti-hepatocarcinoma effects. Specifically, the caspase1-GSDMD and caspase3-GSDME pathways were found to be involved in ICT-triggered pyroptosis. Furthermore, ICT promoted pyroptosis in co-cultivation of HepG2 cells and macrophages, regulating the release of inflammatory cytokines and the transformation of macrophages into a proinflammatory phenotype. In the Hepa1-6+Luc liver cancer model, ICT treatment significantly increased the expression of cleaved-caspase1, cleaved-caspase3, and granzyme B, modulated cytokine secretion, and stimulated CD8+ T cell infiltration, resulting in a reduction in tumor growth. In conclusion, the findings in this research suggested that ICT may modulate cell pyroptosis in HCC and subsequently regulate the immune microenvironment of the tumor. These observations may expand the understanding of the pharmacological mechanism of ICT, as well as the therapy of liver cancer.
Collapse
Affiliation(s)
- Yuanyuan Jiao
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Poyanghu Road, Jinghai District, Tianjin 301617, China;
- Bioinformatics Center of AMMS, Taiping Road, Haidian District, Beijing 100850, China; (W.L.); (W.Y.); (M.W.)
| | - Wenqian Li
- Bioinformatics Center of AMMS, Taiping Road, Haidian District, Beijing 100850, China; (W.L.); (W.Y.); (M.W.)
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Daxue Road, Jinan 250355, China
| | - Wen Yang
- Bioinformatics Center of AMMS, Taiping Road, Haidian District, Beijing 100850, China; (W.L.); (W.Y.); (M.W.)
| | - Mingyu Wang
- Bioinformatics Center of AMMS, Taiping Road, Haidian District, Beijing 100850, China; (W.L.); (W.Y.); (M.W.)
| | - Yaling Xing
- Bioinformatics Center of AMMS, Taiping Road, Haidian District, Beijing 100850, China; (W.L.); (W.Y.); (M.W.)
| | - Shengqi Wang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Poyanghu Road, Jinghai District, Tianjin 301617, China;
- Bioinformatics Center of AMMS, Taiping Road, Haidian District, Beijing 100850, China; (W.L.); (W.Y.); (M.W.)
| |
Collapse
|
3
|
Pereira D, Alves N, Sousa Â, Valente JFA. Metal-based approaches to fight cervical cancer. Drug Discov Today 2024; 29:104073. [PMID: 38944184 DOI: 10.1016/j.drudis.2024.104073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/11/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
Cervical cancer (CC) is one of the leading causes of death among women worldwide. The current treatments for this cancer consist of invasive methods such as chemotherapeutic drugs, radiation, immunotherapy and surgery, which could lead to severe side effects and hinder the patient's life quality. Although metal-based therapies, including cisplatin and ruthenium-based compounds, offer promising alternatives, they lack specificity and harm healthy cells. Combining metal nanoparticles with standard approaches has demonstrated remarkable efficacy and safety in the fight against CC. Overall, this review is intended to show the latest advancements and insights into metal-based strategies, creating a promising path for more effective and safer treatments in the battle against CC.
Collapse
Affiliation(s)
- Diana Pereira
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; CDRSP-IPL-Centre for Rapid and Sustainable Product Development, Polytechnic Institute of Leiria, Marinha Grande, 2430-028 Leiria, Portugal
| | - Nuno Alves
- CDRSP-IPL-Centre for Rapid and Sustainable Product Development, Polytechnic Institute of Leiria, Marinha Grande, 2430-028 Leiria, Portugal
| | - Ângela Sousa
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal.
| | - Joana F A Valente
- CDRSP-IPL-Centre for Rapid and Sustainable Product Development, Polytechnic Institute of Leiria, Marinha Grande, 2430-028 Leiria, Portugal.
| |
Collapse
|
4
|
Huang C, Yuan Y, Li G, Tian S, Hu H, Chen J, Liang L, Wang Y, Liu Y. Mitochondria-targeted iridium(III) complexes encapsulated in liposome induce cell death through ferroptosis and gasdermin-mediated pyroptosis. Eur J Med Chem 2024; 265:116112. [PMID: 38183779 DOI: 10.1016/j.ejmech.2023.116112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024]
Abstract
This paper unveils a novel perspective on synthesis and characterization of the ligand 5-bromo-2-amino-2'-(phenyl-1H-imidazo[4,5-f][1,10]phenanthroline) (BAPIP), and its iridium(III) complexes [Ir(PPY-)2(BAPIP)](PF6) (1a, with PPY- as deprotonated 2-phenylpyridine), [Ir(PIQ-)2(BAPIP)](PF6) (1b, piq- denoting deprotonated 1-phenylisoquinoline), and [Ir(BZQ-)2(BAPIP)](PF6) (1c, bzq- signifying deprotonated benzo[h]quinoline). Systematic evaluation of the cytotoxicity of 1a, 1b, and 1c across diverse cell lines encompassing B16, HCT116, HepG2, A549, HeLa, and LO2 using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. Unexpectedly, compounds 1b and 1c demonstrated no cytotoxicity against the above cell lines. Motivated by the pursuit of heightened anti-proliferative potential, a strategic encapsulation approach yielded liposomes 1alip, 1blip, and 1clip. As expectation, 1alip, 1blip, and 1clip displayed remarkable anti-proliferative efficacy, particularly noteworthy in A549 cells, exhibiting IC50 values of 4.9 ± 1.0, 5.9 ± 0.1, and 7.6 ± 0.2 μM, respectively. Moreover, our investigation illuminated the mitochondrial accumulation of these liposomal entities, 1alip, 1blip, and 1clip, evoking apoptosis through the mitochondrial dysfunction mediated by reactive oxygen species (ROS). The ferroptosis was confirmed by decrease in glutathione (GSH) concentrations, the downregulation of glutathione peroxidase 4 (GPX4), increase of high mobility group protein 1 (HMGB1), and lipid peroxidation. Simultaneously, pyroptosis as another mode of cell death was undertaken. RNA-sequencing was employed to investigate intricate signalling pathways. In vivo examination provided tangible evidence of 1alip in effectively curbing tumor growth. Collectively, this study provides a multifaceted mode of cellular demise orchestrated by 1a, 1alip, 1blip, and 1clip, involving pathways encompassing apoptosis, ferroptosis, and pyroptosis.
Collapse
Affiliation(s)
- Chunxia Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yuhan Yuan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Foshan women and children hospital, Foshan, 528000, China
| | - Gechang Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Shuang Tian
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Huiyan Hu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jing Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Lijuan Liang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yi Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yunjun Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
5
|
Liu W, Peng J, Xiao M, Cai Y, Peng B, Zhang W, Li J, Kang F, Hong Q, Liang Q, Yan Y, Xu Z. The implication of pyroptosis in cancer immunology: Current advances and prospects. Genes Dis 2023; 10:2339-2350. [PMID: 37554215 PMCID: PMC10404888 DOI: 10.1016/j.gendis.2022.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 11/18/2022] Open
Abstract
Pyroptosis is a regulated cell death pathway involved in numerous human diseases, especially malignant tumors. Recent studies have identified multiple pyroptosis-associated signaling molecules, like caspases, gasdermin family and inflammasomes. In addition, increasing in vitro and in vivo studies have shown the significant linkage between pyroptosis and immune regulation of cancers. Pyroptosis-associated biomarkers regulate the infiltration of tumor immune cells, such as CD4+ and CD8+ T cells, thus strengthening the sensitivity to therapeutic strategies. In this review, we explained the relationship between pyroptosis and cancer immunology and focused on the significance of pyroptosis in immune regulation. We also proposed the future application of pyroptosis-associated biomarkers in basic research and clinical practices to address malignant behaviors. Exploration of the underlying mechanisms and biological functions of pyroptosis is critical for immune response and cancer immunotherapy.
Collapse
Affiliation(s)
- Wei Liu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Orthopedic Surgery, The Second Hospital University of South China, Hengyang, Hunan 421001, China
| | - Jinwu Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Pathology, Xiangya Changde Hospital, Changde, Hunan 415000, China
| | - Muzhang Xiao
- Department of Burn and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yuan Cai
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Bi Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Wenqin Zhang
- Department of Pathology, Xiangya Changde Hospital, Changde, Hunan 415000, China
| | - Jianbo Li
- Department of Pathology, Xiangya Changde Hospital, Changde, Hunan 415000, China
| | - Fanhua Kang
- Department of Pathology, Xiangya Changde Hospital, Changde, Hunan 415000, China
| | - Qianhui Hong
- Department of Pathology, Xiangya Changde Hospital, Changde, Hunan 415000, China
| | - Qiuju Liang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Pathology, Xiangya Changde Hospital, Changde, Hunan 415000, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
6
|
Wang ZF, Huang XQ, Wu RC, Xiao Y, Zhang SH. Antitumor studies evaluation of triphenylphosphine ruthenium complexes with 5,7-dihalo-substituted-8-quinolinoline targeting mitophagy pathways. J Inorg Biochem 2023; 248:112361. [PMID: 37659141 DOI: 10.1016/j.jinorgbio.2023.112361] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/05/2023] [Accepted: 08/22/2023] [Indexed: 09/04/2023]
Abstract
Both ruthenium-containing complexes and 8-quinolinoline compounds have emerged as a potential novel agent for malignant tumor therapy. Here, three triphenylphosphine ruthenium complexes, [Ru(ZW1)(PPh3)2Cl2] (PPh3 = triphenylphosphine) (RuZ1), [Ru(ZW2)(PPh3)2Cl2] (RuZ2) and [Ru(ZW2)2(PPh3)Cl2]·CH2Cl2 (RuZ3) bearing 5,7-dichloro-8-quinolinol (H-ZW1) and 5,7-dichloro-8-hydroxyquinaldine (H-ZW2), have been synthesized, characterized and tested for their anticancer potential. We showed that triphenylphosphine ruthenium complexes RuZ1-RuZ3 impaired the cell viability of ovarian adenocarcinoma cisplatin-resistant SK-OV-3/DDP (SKO3CR) and SK-OV-3 (SKO3) cancer cells with greater selectivity and specificity than cisplatin. In addition, RuZ1-RuZ3 show higher excellent cytotoxicity than cisplatin towards SKO3CR cells, with IC50 values of 9.66 ± 1.08, 4.05 ± 0.67 and 7.18 ± 0.40 μM, respectively, in which the SKO3CR cells was the most sensitive to RuZ1-RuZ3. Depending on the substituent type, the antiproliferative ability of RuZ1-RuZ3 followed the trend: -CH3 > -H. However, RuZ1-RuZ3 have no obvious toxicity to normal cell HL-7702. Besides, RuZ1 and RuZ2 could induce mitophagy related-apoptosis pathways through suppression of mitochondrial membrane potential (ΔΨm), accumulation of [Ca2+] and reactive oxygen species (ROS), and regulation of LC3 II/LC3 I, Beclin-1, P62, FUNDC1, PINK1, Parkin, cleaved-caspase-3, caspase-9 and cytochrome c signaling pathway, and hindering the preparation of mitochondrial respiration complexes I and IV and ATP levels. Mechanistic study revealed that RuZ1 and RuZ2 induce apoptosis in SKO3CR cells via mitophagy related-apoptosis pathways induction and energy (ATP) generation disturbance. Taken together, the studied triphenylphosphine ruthenium complexes RuZ1-RuZ3 are promising chemotherapeutic agents with high effectiveness and low toxicity.
Collapse
Affiliation(s)
- Zhen-Feng Wang
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong, PR China; Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, Guilin University of Technology, Guilin, PR China
| | - Xiao-Qiong Huang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Run-Chun Wu
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Yu Xiao
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong, PR China.
| | - Shu-Hua Zhang
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong, PR China; Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, Guilin University of Technology, Guilin, PR China.
| |
Collapse
|
7
|
Peng T, Zhang C, Chen WJ, Zhao XF, Wu WB, Yang WJ, Liang RJ. Pyroptosis: the dawn of a new era in endometrial cancer treatment. Front Oncol 2023; 13:1277639. [PMID: 37965452 PMCID: PMC10642841 DOI: 10.3389/fonc.2023.1277639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023] Open
Abstract
Endometrial cancer (EC) is a malignancy of the inner epithelial lining of the uterus. While early-stage EC is often curable through surgery, the management of advanced, recurrent and metastatic EC poses significant challenges and is associated with a poor prognosis. Pyroptosis, an emerging form of programmed cell death, is characterized by the cleavage of gasdermin proteins, inducing the formation of extensive gasdermin pores in the cell membrane and the leakage of interleukin-1β (IL-1β) and interleukin-18 (IL-18), consequently causing cell swelling, lysis and death. It has been found to be implicated in the occurrence and progression of almost all tumors. Recent studies have demonstrated that regulating tumor cells pyroptosis can exploit synergies function with traditional tumor treatments. This paper provides an overview of the research progress made in molecular mechanisms of pyroptosis. It then discusses the role of pyroptosis and its components in initiation and progression of endometrial cancer, emphasizing recent insights into the underlying mechanisms and highlighting unresolved questions. Furthermore, it explores the potential value of pyroptosis in the treatment of endometrial cancer, considering its current application in tumor radiotherapy, chemotherapy, targeted therapy and immunotherapy.
Collapse
Affiliation(s)
- Tian Peng
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chi Zhang
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Wen-Jun Chen
- School of Nursing, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Gynaecology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| | - Xue-Fei Zhao
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wei-Bo Wu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wei-Ji Yang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ruo-Jia Liang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Gynaecology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Chen JW, Chen S, Chen GQ. Recent advances in natural compounds inducing non-apoptotic cell death for anticancer drug resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:729-747. [PMID: 38239395 PMCID: PMC10792489 DOI: 10.20517/cdr.2023.78] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/22/2023] [Accepted: 10/10/2023] [Indexed: 01/22/2024]
Abstract
The induction of cell death is recognized as a potent strategy for cancer treatment. Apoptosis is an extensively studied form of cell death, and multiple anticancer drugs exert their therapeutic effects by inducing it. Nonetheless, apoptosis evasion is a hallmark of cancer, rendering cancer cells resistant to chemotherapy drugs. Consequently, there is a growing interest in exploring novel non-apoptotic forms of cell death, such as ferroptosis, necroptosis, pyroptosis, and paraptosis. Natural compounds with anticancer properties have garnered significant attention due to their advantages, including a reduced risk of drug resistance. Over the past two decades, numerous natural compounds have been discovered to exert anticancer and anti-resistance effects by triggering these four non-apoptotic cell death mechanisms. This review primarily focuses on these four non-apoptotic cell death mechanisms and their recent advancements in overcoming drug resistance in cancer treatment. Meanwhile, it highlights the role of natural compounds in effectively addressing cancer drug resistance through the induction of these forms of non-apoptotic cell death.
Collapse
Affiliation(s)
- Jia-Wen Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, Guangdong, China
| | - Sibao Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, Guangdong, China
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China
| | - Guo-Qing Chen
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, Guangdong, China
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China
| |
Collapse
|
9
|
Wang J, Hua S, Bao H, Yuan J, Zhao Y, Chen S. Pyroptosis and inflammasomes in cancer and inflammation. MedComm (Beijing) 2023; 4:e374. [PMID: 37752941 PMCID: PMC10518439 DOI: 10.1002/mco2.374] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
Nonprogrammed cell death (NPCD) and programmed cell death (PCD) are two types of cell death. Cell death is significantly linked to tumor development, medication resistance, cancer recurrence, and metastatic dissemination. Therefore, a comprehensive understanding of cell death is essential for the treatment of cancer. Pyroptosis is a kind of PCD distinct from autophagy and apoptosis in terms of the structure and function of cells. The defining features of pyroptosis include the release of an inflammatory cascade reaction and the expulsion of lysosomes, inflammatory mediators, and other cellular substances from within the cell. Additionally, it displays variations in osmotic pressure both within and outside the cell. Pyroptosis, as evidenced by a growing body of research, is critical for controlling the development of inflammatory diseases and cancer. In this paper, we reviewed the current level of knowledge on the mechanism of pyroptosis and inflammasomes and their connection to cancer and inflammatory diseases. This article presents a theoretical framework for investigating the potential of therapeutic targets in cancer and inflammatory diseases, overcoming medication resistance, establishing nanomedicines associated with pyroptosis, and developing risk prediction models in refractory cancer. Given the link between pyroptosis and the emergence of cancer and inflammatory diseases, pyroptosis-targeted treatments may be a cutting-edge treatment strategy.
Collapse
Affiliation(s)
- Jie‐Lin Wang
- Department of Obstetrics and GynecologyGuangzhou Key Laboratory of Targeted Therapy for Gynecologic OncologyGuangdong Provincial Key Laboratory of Major Obstetric DiseasesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Department of Gynecologic Oncology Research OfficeGuangzhou Key Laboratory of Targeted Therapy for Gynecologic OncologyGuangdong Provincial Key Laboratory of Major Obstetric DiseasesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Sheng‐Ni Hua
- Department of Radiation OncologyZhuhai Peoples HospitalZhuhai Hospital Affiliated with Jinan UniversityZhuhaiChina
| | - Hai‐Juan Bao
- Department of Obstetrics and GynecologyGuangzhou Key Laboratory of Targeted Therapy for Gynecologic OncologyGuangdong Provincial Key Laboratory of Major Obstetric DiseasesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Department of Gynecologic Oncology Research OfficeGuangzhou Key Laboratory of Targeted Therapy for Gynecologic OncologyGuangdong Provincial Key Laboratory of Major Obstetric DiseasesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Jing Yuan
- Department of Obstetrics and GynecologyGuangzhou Key Laboratory of Targeted Therapy for Gynecologic OncologyGuangdong Provincial Key Laboratory of Major Obstetric DiseasesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Department of Gynecologic Oncology Research OfficeGuangzhou Key Laboratory of Targeted Therapy for Gynecologic OncologyGuangdong Provincial Key Laboratory of Major Obstetric DiseasesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Yang Zhao
- Department of Obstetrics and GynecologyGuangzhou Key Laboratory of Targeted Therapy for Gynecologic OncologyGuangdong Provincial Key Laboratory of Major Obstetric DiseasesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Department of Gynecologic Oncology Research OfficeGuangzhou Key Laboratory of Targeted Therapy for Gynecologic OncologyGuangdong Provincial Key Laboratory of Major Obstetric DiseasesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Shuo Chen
- Department of Obstetrics and GynecologyGuangzhou Key Laboratory of Targeted Therapy for Gynecologic OncologyGuangdong Provincial Key Laboratory of Major Obstetric DiseasesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Department of Gynecologic Oncology Research OfficeGuangzhou Key Laboratory of Targeted Therapy for Gynecologic OncologyGuangdong Provincial Key Laboratory of Major Obstetric DiseasesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
10
|
Jin X, Ma Y, Liu D, Huang Y. Role of pyroptosis in the pathogenesis and treatment of diseases. MedComm (Beijing) 2023; 4:e249. [PMID: 37125240 PMCID: PMC10130418 DOI: 10.1002/mco2.249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/16/2023] [Accepted: 03/07/2023] [Indexed: 05/02/2023] Open
Abstract
Programmed cell death (PCD) is regarded as a pathological form of cell death with an intracellular program mediated, which plays a pivotal role in maintaining homeostasis and embryonic development. Pyroptosis is a new paradigm of PCD, which has received increasing attention due to its close association with immunity and disease. Pyroptosis is a form of inflammatory cell death mediated by gasdermin that promotes the release of proinflammatory cytokines and contents induced by inflammasome activation. Recently, increasing evidence in studies shows that pyroptosis has a crucial role in inflammatory conditions like cardiovascular diseases (CVDs), cancer, neurological diseases (NDs), and metabolic diseases (MDs), suggesting that targeting cell death is a potential intervention for the treatment of these inflammatory diseases. Based on this, the review aims to identify the molecular mechanisms and signaling pathways related to pyroptosis activation and summarizes the current insights into the complicated relationship between pyroptosis and multiple human inflammatory diseases (CVDs, cancer, NDs, and MDs). We also discuss a promising novel strategy and method for treating these inflammatory diseases by targeting pyroptosis and focus on the pyroptosis pathway application in clinics.
Collapse
Affiliation(s)
- Xiangyu Jin
- Wuxi School of MedicineJiangnan UniversityJiangsuChina
| | - Yinchu Ma
- Wuxi School of MedicineJiangnan UniversityJiangsuChina
| | - Didi Liu
- Wuxi School of MedicineJiangnan UniversityJiangsuChina
| | - Yi Huang
- Wuxi School of MedicineJiangnan UniversityJiangsuChina
| |
Collapse
|
11
|
Wang D, Wan X. Progress in the study of molecular mechanisms of cell pyroptosis in tumor therapy. Int Immunopharmacol 2023; 118:110143. [PMID: 37030114 DOI: 10.1016/j.intimp.2023.110143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023]
Abstract
Pyroptosis, also known as cellular inflammatory necrosis, is a programmed cell death mediated by the Gasdermin family of proteins. The mechanisms by which pyroptosis occurs are divided into the GSDMD-mediated Caspase-1 and Caspase-4/-5/-11-dependent classical inflammatory vesicle pathway and the GSDME-mediated Caspase-3 and granzyme-dependent non-classical inflammatory vesicle pathways, among others. Recent studies have shown that pyroptosis has both inhibitory and promotive effects on tumor development. Pyroptosis induction also plays a dual role in antitumor immunotherapy: on the one hand, it suppresses antitumor immunity by promoting the release of inflammatory factors, and on the other hand, it inhibits tumor cell proliferation by triggering antitumor inflammatory responses. In addition, cell scorching plays an essential role in chemotherapy. It has been found that natural drugs modulating the induction of cell scorch are necessary to treat tumors. Therefore, studying the specific mechanisms of cell pyroptosis in different tumors can provide more ideas for developing oncology drugs. In this paper, we review the molecular mechanisms of pyroptosis and the role of pyroptosis in tumor development and treatment to provide new targets for clinical tumor treatment, prognosis, and antitumor drug development.
Collapse
|
12
|
Recent Trends in the Development of Novel Metal-Based Antineoplastic Drugs. Molecules 2023; 28:molecules28041959. [PMID: 36838947 PMCID: PMC9965607 DOI: 10.3390/molecules28041959] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/11/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Since the accidental discovery of the anticancer properties of cisplatin more than half a century ago, significant efforts by the broad scientific community have been and are currently being invested into the search for metal complexes with antitumor activity. Coordination compounds of transition metals such as platinum (Pt), ruthenium (Ru) and gold (Au) have proven their effectiveness as diagnostic and/or antiproliferative agents. In recent years, experimental work on the potential applications of elements including lanthanum (La) and the post-transition metal gallium (Ga) in the field of oncology has been gaining traction. The authors of the present review article aim to help the reader "catch up" with some of the latest developments in the vast subject of coordination compounds in oncology. Herewith is offered a review of the published scientific literature on anticancer coordination compounds of Pt, Ru, Au, Ga and La that has been released over the past three years with the hope readers find the following article informative and helpful.
Collapse
|
13
|
Huang Q, Peng X, Li Q, Zhu J, Xue J, Jiang H. Construction and comprehensive analysis of a novel prognostic signature associated with pyroptosis molecular subtypes in patients with pancreatic adenocarcinoma. Front Immunol 2023; 14:1111494. [PMID: 36817451 PMCID: PMC9935619 DOI: 10.3389/fimmu.2023.1111494] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Background Treatment of cancer with pyroptosis is an emerging strategy. Molecular subtypes based on pyroptosis-related genes(PRGs) seem to be considered more conducive to individualized therapy. It is meaningful to construct a pyroptosis molecular subtypes-related prognostic signature (PMSRPS) to predict the overall survival (OS) of patients with pancreatic adenocarcinoma(PAAD) and guide treatment. Methods Based on the transcriptome data of 23 PRGs, consensus clustering was applied to divide the TCGA and GSE102238 combined cohort into three PRGclusters. Prognosis-related differentially expressed genes(DEGs) among PRGclusters were subjected to LASSO Cox regression analysis to determine a PMSRPS. External cohort and in vitro experiments were conducted to verify this PMSRPS. The CIBERSORT algorithm, the ESTIMATE algorithm and the Immunophenoscore (IPS) were used to analyze the infiltrating abundance of immune cells, the tumor microenvironment (TME), and the response to immunotherapy, respectively. Wilcoxon analysis was used to compare tumor mutational burden (TMB) and RNA stemness scores (RNAss) between groups. RT-qPCR and in vitro functional experiments were used for evaluating the expression and function of SFTA2. Results Based on three PRGclusters, 828 DEGs were obtained and a PMSRPS was subsequently constructed. In internal and external validation, patients in the high-risk group had significantly lower OS than those in the low-risk group and PMSRPS was confirmed to be an independent prognostic risk factor for patients with PAAD with good predictive performance. Immune cell infiltration abundance and TME scores indicate patients in the high-risk group have typical immunosuppressive microenvironment characteristics. Analysis of IPS suggests patients in the high-risk group responded better to novel immune checkpoint inhibitors (ICIs) than PD1/CTLA4. The high-risk group had higher TMB and RNAss. In addition, 10 potential small-molecule compounds were screened out. Finally, we found that the mRNA expression of SFTA2 gene with the highest risk coefficient in PMSRPS was significantly higher in PAAD than in paracancerous tissues, and knockdown of it significantly delayed the progression of PAAD. Conclusions PMSRPS can well predict the prognosis, TME and immunotherapy response of patients with PAAD, identify potential drugs, and provide treatment guidance based on individual needs.
Collapse
Affiliation(s)
- Qian Huang
- Department of General Practice, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China,Department of Geriatrics, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xingyu Peng
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qingqing Li
- Department of General Practice, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China,Department of Geriatrics, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jinfeng Zhu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ju Xue
- Department of Pathology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Hua Jiang
- Department of General Practice, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China,Department of Geriatrics, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China,*Correspondence: Hua Jiang,
| |
Collapse
|
14
|
Silva HVR, da Silva GÁF, Zavan B, Machado RP, de Araujo-Neto JH, Ellena JA, Ionta M, Barbosa MIF, Doriguetto AC. The nicotinamide ruthenium(II) complex induces the production of reactive oxygen species (ROS), cell cycle arrest, and apoptosis in melanoma cells. Polyhedron 2023. [DOI: 10.1016/j.poly.2022.116267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
15
|
Sulfonamides differing in the alkylamino substituent length – Synthesis, electrochemical characteristic, acid-base profile and complexation properties. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115868] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
16
|
Szłapa-Kula A, Palion-Gazda J, Ledwon P, Erfurt K, Machura B. A fundamental role of solvent polarity and remote substitution of 2-(4-R-phenyl)-1H-imidazo[4,5-f][1,10]phenanthroline framework in controlling of ground- and excited-state properties of Re(I) chromophores [ReCl(CO) 3(R-C 6H 4-imphen)]. Dalton Trans 2022; 51:14466-14481. [DOI: 10.1039/d2dt02439j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of Re(I) carbonyl chromophores with 1H-imidazo[4,5-f][1,10]phenanthroline (imphen) ligand functionalized with electron-donating amine groups attached to the imidazole ring via phenylene linkage was designed to investigate the impact of...
Collapse
|