2
|
Hong Y, Zhou X, Li Q, Chen J, Wei Y, Long C, Shen L, Zheng X, Li D, Wang X, Yu C, Wu S, Wei G. X-box binding protein 1 caused an imbalance in pyroptosis and mitophagy in immature rats with di-(2-ethylhexyl) phthalate-induced testis toxicity. Genes Dis 2024; 11:935-951. [PMID: 37692514 PMCID: PMC10491871 DOI: 10.1016/j.gendis.2023.02.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/08/2023] [Indexed: 03/29/2023] Open
Abstract
As a widely used plasticizer, di-(2-ethylhexyl) phthalate (DEHP) is known to induce significant testicular injury. However, the potential mechanism and effects of pubertal exposure to DEHP on testis development remain unclear. In vivo, postnatal day (PND) 21 male rats were gavaged with 0, 250, and 500 mg/kg DEHP for ten days. Damage to the seminiferous epithelium and disturbed spermatogenesis were observed after DEHP exposure. Meanwhile, oxidative stress-induced injury and pyroptosis were activated. Both endoplasmic reticulum (ER) stress and mitophagy were involved in this process. Monoethylhexyl phthalate (MEHP) was used as the biometabolite of DEHP in vitro. The GC-1 and GC-2 cell lines were exposed to 0, 100 μM, 200 μM, and 400 μM MEHP for 24 h. Reactive oxygen species (ROS) generation, oxidative stress damage, ER stress, mitophagy, and pyroptosis were significantly increased after MEHP exposure. The ultrastructure of the ER and mitochondria was destroyed. X-box binding protein 1 (XBP1) was observed to be activated and translocated into the nucleus. ROS generation was inhibited by acetylcysteine. The levels of antioxidative stress, ER stress, mitophagy, and pyroptosis were decreased as well. After the administration of the ER stress inhibitor 4-phenyl-butyric acid, both mitophagy and pyroptosis were inhibited. Toyocamycin-induced XBP1 down-regulation decreased the levels of mitophagy and pyroptosis. The equilibrium between pyroptosis and mitophagy was disturbed by XBP1 accumulation. In summary, our findings confirmed that DEHP induced a ROS-mediated imbalance in pyroptosis and mitophagy in immature rat testes via XBP1. Moreover, XBP1 might be the key target in DEHP-related testis dysfunction.
Collapse
Affiliation(s)
- Yifan Hong
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Xiazhu Zhou
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Qi Li
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Jing Chen
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Yuexin Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Chunlan Long
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Lianju Shen
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Xiangqin Zheng
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Dinggang Li
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Xia Wang
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Chenjun Yu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Shengde Wu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Guanghui Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| |
Collapse
|
4
|
Du J, Zhang X, Zhang J, Huo S, Li B, Wang Q, Song M, Shao B, Li Y. Necroptosis and NLPR3 inflammasome activation mediated by ROS/JNK pathway participate in AlCl 3-induced kidney damage. Food Chem Toxicol 2023; 178:113915. [PMID: 37393014 DOI: 10.1016/j.fct.2023.113915] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 07/03/2023]
Abstract
Aluminum (Al) is a common environmental pollutant that can induce kidney damage. However, the mechanism is not clear. In the present study, to explored the exact mechanism of AlCl3-induced nephrotoxicity, C57BL/6 N male mice and HK-2 cells were used as experimental subjects. Our results showed that Al induced reactive oxygen species (ROS) overproduction, c-Jun N-terminal kinase (JNK) signaling activation, RIPK3-dependent necroptosis, NLRP3 inflammasome activation, and kidney damage. In addition, inhibiting JNK signaling could downregulate the protein expressions of necroptosis and NLRP3 inflammasome, thereby alleviating kidney damage. Meanwhile, clearing ROS effectively inhibited JNK signaling activation, which in turn inhibited necroptosis and NLRP3 inflammasome activation, ultimately alleviating kidney damage. In conclusion, these findings suggest that necroptosis and NLPR3 inflammasome activation mediated by ROS/JNK pathway participate in AlCl3-induced kidney damage.
Collapse
Affiliation(s)
- Jiayu Du
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xuliang Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jian Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Siming Huo
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Bo Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Qi Wang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Miao Song
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Bing Shao
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yanfei Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
7
|
Wei H, Li D, Luo Y, Wang Y, Lin E, Wei X. Aluminum exposure induces nephrotoxicity via fibrosis and apoptosis through the TGF-β1/Smads pathway in vivo and in vitro. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114422. [PMID: 36521267 DOI: 10.1016/j.ecoenv.2022.114422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/06/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Aluminum (Al), the most common element in nature, can enter the body through various routes. Unfortunately, excessive accumulation of Al in the body can cause chronic toxicity. In this study, rats were randomly allocated to 4 groups and intraperitoneally injected with AlCl3 solution at 0, 5, 10, and 20 mg/(kg·d), respectively, for 4 weeks. The kidney function of rats and Al contents in the kidney were measured, and the pathological structural changes and apoptosis of the kidney were observed. Meanwhile, the expression of fibrosis- and apoptosis-related proteins was detected with western blot. For the in vitro assay, HK-2 cells were used to construct a model to evaluate the effects of Al exposure on cell viability, cell apoptosis, and the expression of fibrosis- and apoptosis-related proteins. Additionally, the TGF-β1/Smads pathway was also altered in HK-2 cells, followed by the measurement of changes in apoptosis and fibrosis-related proteins. The results revealed that Al could accumulate in kidney tissues, then leading to histopathological changes and kidney function impairment, promoting renal tubular cell apoptosis and renal collagen fiber deposition, and also elevating the expression of TGF-β1/Smads pathway-related proteins. In vitro experiments also exhibited that Al exposure increased apoptosis and the expression of fibrosis-related factors in HK-2 cells, accompanied by activation of the TGF-β1/Smads pathway. Further modulation of the TGF-β1/Smads pathway manifested that activation of the TGF-β1/Smads pathway facilitated Al-induced apoptosis and fibrosis-related factor expression, while inhibition of the pathway negated this effect of Al. In conclusion, the findings of the present study illustrate that Al exposure damages kidney function and facilitate apoptosis and kidney fibrosis, which may be achieved through the activation of the TGF-β1/Smads pathway. This study provides a new theoretical basis for the study of nephrotoxicity induced by excessive Al exposure.
Collapse
Affiliation(s)
- Hua Wei
- Department of General Medicine, Affiliated Hospital of YouJiang Medical University for Nationalities, Zhongshan No 2 Road 18, Baise 533000, China
| | - Dong Li
- Department of Oncology, Affiliated Hospital of YouJiang Medical University for Nationalities, Zhongshan No 2 Road 18, Baise 533000, China
| | - Yueling Luo
- Department of Health Supervision Center, Affiliated Hospital of YouJiang Medical University for Nationalities, Zhongshan No 2 Road 18, Baise 533000, China
| | - Yingchuan Wang
- Department of General Medicine, Affiliated Hospital of YouJiang Medical University for Nationalities, Zhongshan No 2 Road 18, Baise 533000, China
| | - Erbing Lin
- Department of General Medicine, Affiliated Hospital of YouJiang Medical University for Nationalities, Zhongshan No 2 Road 18, Baise 533000, China
| | - Xi Wei
- Department of Health Supervision Center, Affiliated Hospital of YouJiang Medical University for Nationalities, Zhongshan No 2 Road 18, Baise 533000, China.
| |
Collapse
|