1
|
He W, Zhan T, Han H, Xu Y. Optimization of Deep Eutectic Solvents Enables Green and Efficient Cryopreservation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:624-637. [PMID: 38114446 DOI: 10.1021/acs.langmuir.3c02808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Cryopreservation presents significant opportunities for biomedical applications including cell therapy, tissue engineering, and assisted reproduction. Dimethyl sulfoxide (DMSO), the most commonly used cryoprotectant (CPA), can be added to cells to prevent cryogenic damage. However, the toxicity of cryoprotectants restrains its further development in many areas with safety concerns such as clinical treatment. Therefore, the development of low-toxicity cryoprotectants is essential for medical research. This work reports deep eutectic solvents (DES) as naturally biocompatible osmoprotectants for green and efficient cryopreservation of human umbilical cord mesenchymal stem cells (HuMSC), which may be an ideal alternative to DMSO. The six types of DESs were explored for thermal properties, toxicity, and permeability in cells. Raman spectroscopy and viscosity studies showed that DES exhibited an improved hydrogen-bonding system as the temperature decreased. By optimizing the freezing process (cooling rate, incubation time, and loading procedure) of DES, the viability of mouse embryonic fibroblast cells (NIH-3T3) after thawing was significantly improved. The HuMSC were successfully preserved with no significant difference (p > 0.05) in cell viability (94.65%) after thawing compared with DMSO, which preserved the cell differentiation function and improved the cell proliferation rate. The mechanism of DES in cryopreservation was investigated, and it was found that DES could bind water molecules and effectively inhibit the growth of ice crystals during ice recrystallization, reducing mechanical damage to cells. This study highlights the excellent performance of DES as a low-toxicity CPA for stem cell preservation, which may be a significant advance for future clinical cell therapy.
Collapse
Affiliation(s)
- Wei He
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai 200093, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai 200093, China
| | - Taijie Zhan
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai 200093, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai 200093, China
| | - Hengxin Han
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai 200093, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai 200093, China
| | - Yi Xu
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai 200093, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai 200093, China
| |
Collapse
|
2
|
Li X, Li JY, Manzoor MF, Lin QY, Shen JL, Liao L, Zeng XA. Natural deep eutectic solvent: A promising eco-friendly food bio-inspired antifreezing. Food Chem 2023; 437:137808. [PMID: 39491255 DOI: 10.1016/j.foodchem.2023.137808] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/27/2023] [Accepted: 10/17/2023] [Indexed: 11/05/2024]
Abstract
Bio-antifreezing is a green and highly effective strategy to inhibit ice nucleation. Bio-inspired antifreezing faces the severe challenges of significant toxicity and complex manufacturing procedures. Bio-inspired antifreezing natural deep eutectic solvent (Ba-NADES) could be an efficient and low or no-toxicity approach for the frozen food industry. Ba-NADES form a strong hydrogen bond network system under cold conditions, capably reducing the melting point of the system below the freezing point and effectively inhibiting ice growth. It has efficaciously alleviated freeze injury by Ba-NADES. The review highlights the current strategies of bio-inspired antifreezing, cold resistance behavior in organisms, and the existing applications of Ba-NADES. It updated information concerning their mechanisms for antifreezing. It emphasizes that the role of water on the antifreezing quality of NADES is worthy of further investigation for more extensive food applications. This work will provide a comprehensive overview of NADES antifreezing.
Collapse
Affiliation(s)
- Xue Li
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, Guangdong 528225, People's Republic of China; Department of Food Science, Foshan University, Foshan, Guangdong 528000, People's Republic of China
| | - Jia-Ying Li
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, Guangdong 528225, People's Republic of China; Department of Food Science, Foshan University, Foshan, Guangdong 528000, People's Republic of China
| | - Muhammad Faisal Manzoor
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, Guangdong 528225, People's Republic of China; Department of Food Science, Foshan University, Foshan, Guangdong 528000, People's Republic of China
| | - Qiu-Ya Lin
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, Guangdong 528225, People's Republic of China; Department of Food Science, Foshan University, Foshan, Guangdong 528000, People's Republic of China
| | - Jia-Ling Shen
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, Guangdong 528225, People's Republic of China; Department of Food Science, Foshan University, Foshan, Guangdong 528000, People's Republic of China
| | - Lan Liao
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, Guangdong 528225, People's Republic of China; Department of Food Science, Foshan University, Foshan, Guangdong 528000, People's Republic of China.
| | - Xin-An Zeng
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, Guangdong 528225, People's Republic of China; Department of Food Science, Foshan University, Foshan, Guangdong 528000, People's Republic of China.
| |
Collapse
|
3
|
Schebeck M, Schopf A, Ragland GJ, Stauffer C, Biedermann PHW. Evolutionary ecology of the bark beetles Ips typographus and Pityogenes chalcographus. BULLETIN OF ENTOMOLOGICAL RESEARCH 2023; 113:1-10. [PMID: 36239260 DOI: 10.1017/s0007485321000353] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ips typographus (L.) and Pityogenes chalcographus (L.) (Coleoptera: Curculionidae) are two common bark beetle species on Norway spruce in Eurasia. Multiple biotic and abiotic factors affect the life cycles of these two beetles, shaping their ecology and evolution. In this article, we provide a comprehensive and comparative summary of selected life-history traits. We highlight similarities and differences in biotic factors, like host range, interspecific competition, host colonization, reproductive behaviour and fungal symbioses. Moreover, we focus on the species' responses to abiotic factors and compare their temperature-dependent development and flight behaviour, cold adaptations and diapause strategies. Differences in biotic and abiotic traits might be the result of recent, species-specific evolutionary histories, particularly during the Pleistocene, with differences in glacial survival and postglacial recolonization. Finally, we discuss future research directions to understand ecological and evolutionary pathways of the two bark beetle species, for both basic research and applied forest management.
Collapse
Affiliation(s)
- Martin Schebeck
- Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences Vienna, BOKU, Vienna, Austria
| | - Axel Schopf
- Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences Vienna, BOKU, Vienna, Austria
| | - Gregory J Ragland
- Department of Integrative Biology, University of Colorado - Denver, Denver, CO, USA
| | - Christian Stauffer
- Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences Vienna, BOKU, Vienna, Austria
| | - Peter H W Biedermann
- Faculty of Environment and Natural Resources, University of Freiburg, Freiburg, Germany
| |
Collapse
|
4
|
Chen SY, Zhao RN, Li Y, Li HP, Xie MH, Liu JF, Yang MF, Wu CX. Cold tolerance strategy and cryoprotectants of Megabruchidius dorsalis in different temperature and time stresses. Front Physiol 2023; 13:1118955. [PMID: 36714316 PMCID: PMC9873968 DOI: 10.3389/fphys.2022.1118955] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 12/30/2022] [Indexed: 01/13/2023] Open
Abstract
The honey locusts (genus Gleditsia) are a genus of high-value trees in Asia. Seed beetle, Megabruchidius dorsalis (Fåhraeus) (Col.: Chrysomelidae: Bruchinae), is a Gleditsia oligophagous pest that causes severe yield reduction. To understand the cold tolerance of M. dorsalis adults, this study investigated its cold tolerance strategy and the influence of low temperatures on its physiology and biochemistry. The low-temperature treatments were divided into three groups: long-term temperature acclimation (Group 1; 15°C, or 20°C, or 25°C, or 28°C [control check, CK] for 10 days), short-term low-temperature exposure (Group 2; 0°C or 4°C for 2 h), and long-term low-temperature induction (Group 3; 0°C or 4°C for 1, 3, or 5 d). The supercooling point (SCP; temperature at which spontaneous nucleation and ice lattice growth begin), freezing point (FP; temperature at which insect fluids freeze), low lethal temperature (LLT; temperature at which all individuals are killed), water, lipid, glycerol, and total sugars contents were measured under different temperature stresses. The results showed that M. dorsalis adults were a freeze-avoidant species. The SCP and LLT at 28°C were -10.62°C and -19.48°C, respectively. The SCP and FP of long-term temperature acclimation (15°C, or 20°C, or 25°C) were significantly lower than that of the control group (28°C). The water content of the long-term low temperature induction (0°C) group was significantly lower than that of the control group. The lipid and glycerol content in the acclimated group at 20°C and 25°C were significantly higher than in the control group. M. dorsalis adults may maintain their biofluids in a supercooled state via cryoprotectant accumulation and cryoprotective dehydration to prevent ice nucleation. This study provides a theoretical basis for future research on overwintering and potential distribution and related prediction of M. dorsalis adults.
Collapse
Affiliation(s)
- Si-Yu Chen
- College of Forestry, Guizhou University, Guiyang, Guizhou, China
| | - Ru-Na Zhao
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Scientific Observing and Experiment Station of Crop Pest Guiyang, Ministry of Agriculture, Institute of Entomology, Guizhou University, Guiyang, China
| | - You Li
- Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Vector-Borne Virus Research Center, Fuzhou, China
| | - He-Ping Li
- College of Forestry, Guizhou University, Guiyang, Guizhou, China
| | - Ming-Hui Xie
- College of Forestry, Guizhou University, Guiyang, Guizhou, China
| | - Jian-Feng Liu
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Scientific Observing and Experiment Station of Crop Pest Guiyang, Ministry of Agriculture, Institute of Entomology, Guizhou University, Guiyang, China
| | - Mao-Fa Yang
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Scientific Observing and Experiment Station of Crop Pest Guiyang, Ministry of Agriculture, Institute of Entomology, Guizhou University, Guiyang, China,College of Tobacco Science, Guizhou University, Guiyang, China
| | - Cheng-Xu Wu
- College of Forestry, Guizhou University, Guiyang, Guizhou, China,*Correspondence: Cheng-Xu Wu,
| |
Collapse
|
5
|
Tian Y, Sun DW, Xu L, Fan TH, Zhu Z. Bio-inspired eutectogels enabled by binary natural deep eutectic solvents (NADESs): Interfacial anti-frosting, freezing-tolerance, and mechanisms. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107568] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
6
|
Vatanparast M, Sajjadian SM, Park Y. Glycerol biosynthesis plays an essential role in mediating cold tolerance the red imported fire ant, Solenopsis invicta. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 109:e21861. [PMID: 34904747 DOI: 10.1002/arch.21861] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/25/2021] [Accepted: 11/28/2021] [Indexed: 06/14/2023]
Abstract
The red imported fire ant (RIFA), Solenopsis invicta Buren is native to South America and known as a global problematic invasive species. At low temperatures, several investigations have demonstrated an increase in glycerol as a primary rapid cold hardening (RCH) component and an increase in the supercooling point. Two genes, glycerol-3-phosphate dehydrogenase (GPDH) and glycerol kinase (GK), have been identified as being involved in the glycerol production process. In this study, one GPDH and two GK sequences were extracted from RIFA transcriptome analysis (Si-GPDH, Si-GK1, and Si-GK2). All three genes were expressed in different body parts and different tissues of S. invicta that Si-GK2 showed a higher expression level than the others. According to gene expression levels by qRT-PCR analysis, the highest expression levels of three genes were observed in fat body tissues. After 1 h of exposure to low temperatures (5°C or lower), the mRNA levels of these genes significantly increased, according to expression analyses. RNA interference (RNAi) of Si-GPDH or Si-GK1 and Si-GK2 exhibited a significant downregulation at the mRNA level. The mortality rate of treated RIFA by double-stranded RNA (dsRNA) specific to GPDH and GK2 significantly increased at low temperatures. This study indicates that GPDH and GK2 as glycerol biosynthesis genes in RIFA have a high expression level to synthesize a high level of glycerol as an RCH factor and they play crucial roles in survival during the cold period.
Collapse
Affiliation(s)
- Mohammad Vatanparast
- Plant Quarantine Technology Center, Animal and Plant Quarantine Agency, Gimcheon, South Korea
| | - Seyedeh Minoo Sajjadian
- Plant Quarantine Technology Center, Animal and Plant Quarantine Agency, Gimcheon, South Korea
| | - Youngjin Park
- Plant Quarantine Technology Center, Animal and Plant Quarantine Agency, Gimcheon, South Korea
| |
Collapse
|
7
|
Schebeck M, Dobart N, Ragland GJ, Schopf A, Stauffer C. Facultative and obligate diapause phenotypes in populations of the European spruce bark beetle Ips typographus. JOURNAL OF PEST SCIENCE 2022; 95:889-899. [PMID: 35221845 PMCID: PMC8860814 DOI: 10.1007/s10340-021-01416-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 05/07/2023]
Abstract
UNLABELLED The bark beetle Ips typographus is the most destructive insect pest in Norway spruce-dominated forests. Its potential to establish multiple generations per year (multivoltinism) is one major trait that makes this beetle a severe pest. Ips typographus enters diapause to adjust its life cycle to seasonally changing environments. Diapause is characterized by developmental and reproductive arrest; it prolongs generation time and thus affects voltinism. In I. typographus a facultative, photoperiod-regulated diapause in the adult stage has been described. In addition, the presence of an obligate, photoperiod-independent, diapause has been hypothesized. The diapause phenotype has important implications for I. typographus voltinism, as populations with obligate diapausing individuals would be univoltine. To test for the presence of different I. typographus diapause phenotypes, we exposed Central and Northern European individuals to a set of photoperiodic treatments. We used two ovarian traits (egg number and vitellarium size) that are associated with gonad development, to infer reproductive arrest and thus diapause. We found a distinct effect of photoperiod on ovarian development, with variable responses in Central and Northern European beetles. We observed obligate diapausing (independent of photoperiod) individuals in Northern Europe, and both facultative (photoperiod-regulated) as well as obligate diapausing individuals in Central Europe. Our results show within-species variation for diapause induction, an adaptation to match life cycles with seasonally fluctuating environmental conditions. As the diapause phenotype affects the potential number of generations per season, our data are the basis for assessing the risk of outbreaks of this destructive bark beetle. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10340-021-01416-w.
Collapse
Affiliation(s)
- Martin Schebeck
- Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, Vienna, BOKU, Vienna, Austria
| | - Nina Dobart
- Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, Vienna, BOKU, Vienna, Austria
| | - Gregory J. Ragland
- Department of Integrative Biology, University of Colorado-Denver, Denver, CO USA
| | - Axel Schopf
- Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, Vienna, BOKU, Vienna, Austria
| | - Christian Stauffer
- Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, Vienna, BOKU, Vienna, Austria
| |
Collapse
|
8
|
Mikucki EE, Lockwood BL. Local thermal environment and warming influence supercooling and drive widespread shifts in the metabolome of diapausing Pieris rapae butterflies. J Exp Biol 2021; 224:272603. [PMID: 34694403 DOI: 10.1242/jeb.243118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/21/2021] [Indexed: 11/20/2022]
Abstract
Global climate change has the potential to negatively impact biological systems as organisms are exposed to novel temperature regimes. Increases in annual mean temperature have been accompanied by disproportionate rates of change in temperature across seasons, and winter is the season warming most rapidly. Yet, we know relatively little about how warming will alter the physiology of overwintering organisms. Here, we simulated future warming conditions by comparing diapausing Pieris rapae butterfly pupae collected from disparate thermal environments and by exposing P. rapae pupae to acute and chronic increases in temperature. First, we compared internal freezing temperatures (supercooling points) of diapausing pupae that were developed in common-garden conditions but whose parents were collected from northern Vermont, USA, or North Carolina, USA. Matching the warmer winter climate of North Carolina, North Carolina pupae had significantly higher supercooling points than Vermont pupae. Next, we measured the effects of acute and chronic warming exposure in Vermont pupae and found that warming induced higher supercooling points. We further characterized the effects of chronic warming by profiling the metabolomes of Vermont pupae via untargeted LC-MS metabolomics. Warming caused significant changes in abundance of hundreds of metabolites across the metabolome. Notably, there were warming-induced shifts in key biochemical pathways, such as pyruvate metabolism, fructose and mannose metabolism, and β-alanine metabolism, suggesting shifts in energy metabolism and cryoprotection. These results suggest that warming affects various aspects of overwintering physiology in P. rapae and may be detrimental depending on the frequency and variation of winter warming events. Further research is needed to ascertain the extent to which the effects of warming are felt among a broader set of populations of P. rapae, and among other species, in order to better predict how insects may respond to changes in winter thermal environments.
Collapse
Affiliation(s)
- Emily E Mikucki
- Department of Biology, University of Vermont, Burlington, VT 05405, USA
| | - Brent L Lockwood
- Department of Biology, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
9
|
Zhang L, Zhang ZR, Zheng YQ, Zhang LJ, Wang MY, Wang XT, Yuan ML. Genome-wide gene expression profiles of the pea aphid (Acyrthosiphon pisum) under cold temperatures provide insights into body color variation. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 108:e21797. [PMID: 34272770 DOI: 10.1002/arch.21797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 06/13/2023]
Abstract
Cold temperatures are one of the factors influencing color polymorphisms in Acyrthosiphon pisum, resulting in a change from a red to greenish color. Here we characterized gene expression profiles of A. pisum under different low temperatures (1°C, 4°C, 8°C, and 14°C) and durations (3, 6, 12, and 24 h). The number of differentially expressed genes (DEGs) increased as temperatures decreased and time increased, but only a small number of significant DEGs were identified. Genes involved in pigment metabolism were downregulated. An interaction network analysis for 506 common DEGs in comparisons among aphids exposed to 1°C for four durations indicated that a cytochrome P450 gene (CYP, LOC112935894) significantly downregulated may interact with a carotenoid metabolism gene (LOC100574964), similar to other genes encoding CYP, lycopene dehydrogenase and fatty acid synthase. We proposed that the body color shift in A. pisum responding to low temperatures may be regulated by CYPs.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
- Department of Biology, The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, China
| | - Zhou-Rui Zhang
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
- Department of Biology, The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, China
| | - Yong-Qiang Zheng
- Developmental Biology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Li-Jun Zhang
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Meng-Yao Wang
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
- Developmental Biology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiao-Tong Wang
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Ming-Long Yuan
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| |
Collapse
|
10
|
Saeidi F, Mikani A, Moharramipour S. Thermal tolerance variations and physiological adjustments in a winter active and a summer active aphid species. J Therm Biol 2021; 98:102950. [PMID: 34016367 DOI: 10.1016/j.jtherbio.2021.102950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/24/2021] [Accepted: 03/31/2021] [Indexed: 01/02/2023]
Abstract
The Russian wheat aphid Diuraphis noxia (Kurdjumov) and melon aphid Aphis gossypii Glover are known as winter and summer active species, respectively. It is hypothesized that differences in the aphids' seasonal activities might be related to their response to temperature extremes and different physiological mechanisms. To study the aphids' thermal tolerance variations and mode of their physiological basis, they were cold acclimated at 20, 15, 10, 5, and 0 °C for 168 h (7 days) and heat acclimated at 20, 25, 30 °C for 168 h and 35 °C for 48 h. At the end of each thermal regime, survival at low and high temperatures was determined, and changes in sugars and polyols and heat shock protein 70 (Hsp70) were investigated. D. noxia was more cold-tolerant, while A. gossypii was a more heat-tolerant insect. The type and pattern of sugars and polyols were similar in both species under cold acclimation (ACC) and heat acclimation (HCC). In both species, glucose and mannitol were the major identified compounds involved in cold and heat tolerance. However, they showed different patterns of Hsp70 level, with D. noxia having a higher level of Hsp70 under ACC and A. gossypii having a higher level of Hsp70 under HCC. These results demonstrated that their differences in thermal tolerance might explain the seasonal activities of the aphids.
Collapse
Affiliation(s)
- Fatemeh Saeidi
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, P. O. Box: 14115-336, Tehran, Iran.
| | - Azam Mikani
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, P. O. Box: 14115-336, Tehran, Iran.
| | - Saeid Moharramipour
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, P. O. Box: 14115-336, Tehran, Iran.
| |
Collapse
|
11
|
Zhao D, Zheng C, Shi F, Xu Y, Zong S, Tao J. Expression analysis of genes related to cold tolerance in Dendroctonus valens. PeerJ 2021; 9:e10864. [PMID: 33854828 PMCID: PMC7953874 DOI: 10.7717/peerj.10864] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 01/08/2021] [Indexed: 01/21/2023] Open
Abstract
Pine beetles are well known in North America for their widespread devastation of pine forests. However, Dendroctonus valens LeConte is an important invasive forest pest in China also. Adults and larvae of this bark beetle mainly winter at the trunks and roots of Pinus tabuliformis and Pinus sylvestris; larvae, in particular, result in pine weakness or even death. Since the species was introduced from the United States to Shanxi in 1998, its distribution has spread northward. In 2017, it invaded a large area at the junction of Liaoning, Inner Mongolia and Hebei provinces, showing strong cold tolerance. To identify genes relevant to cold tolerance and the process of overwintering, we sequenced the transcriptomes of wintering and non-wintering adult and larval D. valens using the Illumina HiSeq platform. Differential expression analysis methods for other non-model organisms were used to compare transcript abundances in adults and larvae at two time periods, followed by the identification of functions and metabolic pathways related to genes associated with cold tolerance. We detected 4,387 and 6,091 differentially expressed genes (DEGs) between sampling dates in larvae and adults, respectively, and 1,140 common DEGs, including genes encoding protein phosphatase, very long-chain fatty acids protein, cytochrome P450, and putative leucine-rich repeat-containing proteins. In a Gene Ontology (GO) enrichment analysis, 1,140 genes were assigned to 44 terms, with significant enrichment for cellulase activity, hydrolase activity, and carbohydrate metabolism. Kyoto Encyclopedia of Genes and Genomes (KEGG) classification and enrichment analyses showed that the lysosomal and purine metabolism pathways involved the most DEGs, the highly enriched terms included autophagy-animal, pentose and glucuronate interconversions and lysosomal processes. We identified 140 candidate genes associated with cold tolerance, including genes with established roles in this trait (e.g., genes encoding trehalose transporter, fructose-1,6-bisphosphatase, and trehalase). Our comparative transcriptome analysis of adult and larval D. valens in different conditions provides basic data for the discovery of key genes and molecular mechanisms underlying cold tolerance.
Collapse
Affiliation(s)
- Dongfang Zhao
- Key Laboratory of Beijing for the Control of Forest Pests, Beijing Forestry University, Beijing, China
| | - Chunchun Zheng
- Key Laboratory of Beijing for the Control of Forest Pests, Beijing Forestry University, Beijing, China
| | - Fengming Shi
- Key Laboratory of Beijing for the Control of Forest Pests, Beijing Forestry University, Beijing, China
| | - Yabei Xu
- Key Laboratory of Beijing for the Control of Forest Pests, Beijing Forestry University, Beijing, China
| | - Shixiang Zong
- Key Laboratory of Beijing for the Control of Forest Pests, Beijing Forestry University, Beijing, China
| | - Jing Tao
- Key Laboratory of Beijing for the Control of Forest Pests, Beijing Forestry University, Beijing, China
| |
Collapse
|
12
|
Dynamic transcriptome profiling exploring cold tolerance in forensically important blow fly, Aldrichina grahami (Diptera: Calliphoridae). BMC Genomics 2020; 21:92. [PMID: 31996132 PMCID: PMC6988367 DOI: 10.1186/s12864-020-6509-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/20/2020] [Indexed: 01/14/2023] Open
Abstract
Background Aldrichina grahami (Diptera: Calliphoridae) is a forensically important fly, which has been widely applied to practical legal investigations. Unlike other necrophagous flies, A. grahami exhibits cold tolerance which helps to maintain its activity during low-temperature months, when other species are usually not active. Hence, A. grahami is considered an important forensic insect especially in cold seasons. In this study, we aim to explore the molecular mechanisms of cold tolerance of A. grahami through transcriptome. Results We collected eggs and larvae (first-instar, second-instar and third-instar) at three different temperatures (4 °C, 12 °C and 20 °C) and performed RNA-seq analyses. The differentially expressed genes (DEGs) associated with the cold-tolerance were screened out. The Venn analysis of DEGs from egg to third-instar larvae at three different temperatures showed there were 9 common genes. Candidate biological processes and genes were identified which refer to growth, and development of different temperatures, especially the chitin and cuticle metabolic process. The series-clusters showed crucial and unique trends when the temperature changed. Moreover, by comparing the results of growth and developmental transcriptomes from different temperatures, we found that DEGs belonging to the family of larval cuticle proteins (LCP), pupal cuticle protein (CUP), and heat shock proteins (HSP) have certain differences. Conclusions This study identified functional genes and showed differences in the expression pattern of diverse temperatures. The DEGs series-clusters with increasing or decreasing trends were analyzed which may play an important role in cold-tolerance. Moreover, the findings in LCP, CUP and HSP showed more possible modulations in a cold environment. This work will provide valuable information for the future investigation of the molecular mechanism of cold tolerance in A. grahami.
Collapse
|
13
|
Thompson KM, Huber DPW, Murray BW. Autumn shifts in cold tolerance metabolites in overwintering adult mountain pine beetles. PLoS One 2020; 15:e0227203. [PMID: 31914144 PMCID: PMC6948739 DOI: 10.1371/journal.pone.0227203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 12/13/2019] [Indexed: 12/03/2022] Open
Abstract
The mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Curculionidae) is a major forest pest of pines in western North America. Beetles typically undergo a one-year life cycle with larval cold hardening in preparation for overwintering. Two-year life cycle beetles have been observed but not closely studied. This study tracks cold-hardening and preparation for overwintering by adult mountain pine beetles in their natal galleries. Adults were collected in situ between September and December 2016 for a total of nine time points during 91 days. Concentrations of 41 metabolites in these pooled samples were assessed using quantitative nuclear magnetic resonance (NMR). Levels of glycerol and proline increased significantly with lowering temperature during the autumn. Newly eclosed mountain pine beetles appear to prepare for winter by generating the same cold-tolerance compounds found in other insect larvae including mountain pine beetle, but high on-site mortality suggested that two-year life cycle adults have a less efficacious acclimation process. This is the first documentation of cold acclimation metabolite production in overwintering new adult beetles and is evidence of physiological plasticity that would allow evolution by natural selection of alternate life cycles (shortened or lengthened) under a changing climate or during expansion into new geoclimatic areas.
Collapse
Affiliation(s)
- Kirsten M. Thompson
- Natural Resources and Environmental Studies, University of Northern British Columbia, Prince George, British Columbia, Canada
- * E-mail:
| | - Dezene P. W. Huber
- Natural Resources and Environmental Studies, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Brent W. Murray
- Natural Resources and Environmental Studies, University of Northern British Columbia, Prince George, British Columbia, Canada
| |
Collapse
|
14
|
|
15
|
Sherpa S, Blum MGB, Després L. Cold adaptation in the Asian tiger mosquito's native range precedes its invasion success in temperate regions. Evolution 2019; 73:1793-1808. [DOI: 10.1111/evo.13801] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/06/2019] [Accepted: 06/14/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Stéphanie Sherpa
- Université Grenoble Alpes CNRS, UMR 5553 LECA F‐38000 Grenoble France
| | - Michael G. B. Blum
- Université Grenoble Alpes CNRS, UMR 5525 TIMC‐IMAG F‐38000 Grenoble France
| | - Laurence Després
- Université Grenoble Alpes CNRS, UMR 5553 LECA F‐38000 Grenoble France
| |
Collapse
|
16
|
Tasty rewards for ants: differences in elaiosome and seed metabolite profiles are consistent across species and reflect taxonomic relatedness. Oecologia 2018; 188:753-764. [PMID: 30218325 DOI: 10.1007/s00442-018-4254-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/27/2018] [Indexed: 10/28/2022]
Abstract
Diaspores of myrmecochorous plants consist of a seed (or fruit) and an attached appendage (elaiosome) which attracts ants. The elaiosome is a food resource for ants, whereas the seed is an energy source for subsequent germination and plant establishment. Although myrmecochory occurs in many phylogenetically unrelated lineages, multiple phylogenetic lineages display similar variation in elaiosome and seed metabolite composition due to convergent evolution. We focused on four families (Amaryllidaceae, Boraginaceae, Papaveraceae and Poaceae) each represented by two species from different genera. Diaspores of three populations per species were sampled and concentrations of 60 metabolites from five groups (amino acids, fatty acids, organic acids, polyols and sugars) were determined for both elaiosomes and seeds. Variability in metabolite composition was decomposed by hierarchical ANOVA and variation partitioning using redundancy analysis (reflecting both species nested within families, crossed with seed vs. elaiosome). Differences in the metabolite composition of elaiosomes and seeds were consistent across multiple phylogenetic origins (with more pronounced differences at the level of individual metabolites than at the level of metabolite groups) and supported the idea of convergent evolution under strong selection pressure. Elaiosomes contained higher amounts of easily digestible metabolites (especially amino acids) than seeds. Fatty acids were not more concentrated in elaiosomes, which contradicts the literal translation of "elaiosome" (= oil body). The differentiation of metabolite composition closely reflected taxonomic relatedness, particularly at the family level. Differences among populations within species were small, so the metabolite composition can thus be considered as a trait with relatively low intraspecific variability.
Collapse
|
17
|
Studies on chill coma recovery in the ladybird, Harmonia axyridis: Ontogenetic profile, effect of repeated cold exposures, and capacity to predict winter survival. J Therm Biol 2018; 74:275-280. [DOI: 10.1016/j.jtherbio.2018.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 01/15/2023]
|
18
|
Ditrich T. Supercooling point is an individually fixed metric of cold tolerance in Pyrrhocoris apterus. J Therm Biol 2018; 74:208-213. [DOI: 10.1016/j.jtherbio.2018.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 03/12/2018] [Accepted: 04/04/2018] [Indexed: 11/25/2022]
|
19
|
Feng Y, Zhang L, Li W, Yang X, Zong S. Cold Hardiness of Overwintering Larvae of Sphenoptera sp. (Coleoptera: Buprestidae) in Western China. JOURNAL OF ECONOMIC ENTOMOLOGY 2018; 111:247-251. [PMID: 29182780 DOI: 10.1093/jee/tox304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Indexed: 06/07/2023]
Abstract
An undetermined species of Sphenoptera sp. is an important pest of Artemisia ordosica Krasch, and recently, an outbreak of this insect has spread throughout Ningxia, Inner Mongolia, Shanxi, and other regions in western China. The cold hardiness of overwintering larvae of Sphenoptera sp. was determined by measuring their supercooling point (SCP) and their mortality at sub-zero temperatures. Additionally, quantitative changes in sugars and low molecular weight sugar alcohols in larvae were determined following exposure of larvae to low temperatures. Mean SCP of overwintering larvae (i.e., collected in January) was -30.2 ± 0.60°C. The mortality rate of larvae approached 100% at -30°C, whereas mortality rates of larvae in the higher temperature treatments were generally less than 25%. Five sugars and sugar alcohols (i.e., glycerol, fructose, glucose, inositol, and trehalose) were detected in larvae. When larvae were exposed to low temperatures for 4 h, inositol, trehalose and total content was generally higher at the highest incubation temperature (-10°C) than at lower incubation temperatures. Following a longer exposure (30 d), content of fructose, glucose, trehalose and total content generally increased with decreasing temperature down to -25°C. Thus it appears that Sphenoptera sp. larvae are freeze avoidant, and their cold hardiness may be achieved by accumulation low molecular weight sugars and sugar alcohols.
Collapse
Affiliation(s)
- Yuqian Feng
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, P. R. China
| | - Lu Zhang
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, P. R. China
| | - Wenbo Li
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, P. R. China
| | - Xuan Yang
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, P. R. China
| | - Shixiang Zong
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, P. R. China
| |
Collapse
|
20
|
Community structure of gut bacteria of Dendroctonus armandi (Coleoptera: Curculionidae: Scolytinae) larvae during overwintering stage. Sci Rep 2017; 7:14242. [PMID: 29079773 PMCID: PMC5660234 DOI: 10.1038/s41598-017-14724-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 10/16/2017] [Indexed: 02/01/2023] Open
Abstract
Survival rate at low temperature becomes a crucial strategy since temperature change often leads to fluctuations in the insect population. Microbes play important roles in the process of resisting low temperature. In this study, we analyzed gut bacterial communities from Chinese white pine beetle Dendroctonus armandi which remained overwintering process under natural conditions from October 2015 to January 2016, monthly, in the Qinling Mountains, Shaanxi, China using Illumina MiSeq sequencing. A total of 835,227 high-quality sequences and 48 singleton operational taxonomic units were obtained. Gut bacterial communities showed variation in relative abundance during the overwintering stage. As ambient temperature declined, Proteobacteria (mostly γ-proteobacteria) became the predominant phylum in the larvae guts, and followed with Actinobacteria and Firmicutes, respectively. In particular, there was no Deinococcus-Thermus in January 2016. Thermoleophilia appeared in November and December 2015, but not for October 2015 and January 2016, nor did δ-proteobacteria. By contrast, gut bacterial community compositions increased in relative abundance in November and December 2015. This study provided initial evidence that gut bacterial communities were associated with the larvae overwintering process at low temperature. Moreover, no complementary studies combining overwintering process of Coleoptera insect and high-throughput sequencing were carried out, paying particular attention to insect in cold season.
Collapse
|
21
|
Morin MD, Frigault JJ, Lyons PJ, Crapoulet N, Boquel S, Storey KB, Morin PJ. Amplification and quantification of cold-associated microRNAs in the Colorado potato beetle (Leptinotarsa decemlineata) agricultural pest. INSECT MOLECULAR BIOLOGY 2017; 26:574-583. [PMID: 28574638 DOI: 10.1111/imb.12320] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The Colorado potato beetle [Leptinotarsa decemlineata (Say)] is an important insect pest that can inflict considerable damage to potato plants. This insect can survive extended periods of cold exposure, and yet the molecular switches underlying this phenomenon have not been fully elucidated. A better characterization of this process would highlight novel vulnerabilities associated with L. decemlineata that could serve as targets for the management of this devastating pest. Using high-throughput sequencing, the current work reveals a cold-associated signature group of microRNAs (miRNAs) in control (15 °C) and -5 °C-exposed L. decemlineata. The results show 42 differentially expressed miRNAs following cold exposure including miR-9a-3p, miR-210-3p, miR-276-5p and miR-277-3p. Functional analysis of predicted targets associated with these cold-responsive miRNAs notably linked these changes with vital metabolic and cellular processes. Overall, this study highlights the miRNAs probably responsible for facilitating cold adaptation in L. decemlineata and implicates miRNAs as a key molecular target to consider in the development of novel pest management strategies against these insects.
Collapse
Affiliation(s)
- M D Morin
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
| | - J J Frigault
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
| | - P J Lyons
- Atlantic Cancer Research Institute, Moncton, NB, Canada
| | - N Crapoulet
- Atlantic Cancer Research Institute, Moncton, NB, Canada
| | - S Boquel
- Agriculture and Agri-Food Canada, Fredericton Research and Development Centre, Fredericton, NB, Canada
| | - K B Storey
- Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - P Jr Morin
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
| |
Collapse
|
22
|
Schebeck M, Hansen EM, Schopf A, Ragland GJ, Stauffer C, Bentz BJ. Diapause and overwintering of two spruce bark beetle species. PHYSIOLOGICAL ENTOMOLOGY 2017; 42:200-210. [PMID: 28979060 PMCID: PMC5599993 DOI: 10.1111/phen.12200] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 05/08/2017] [Accepted: 05/10/2017] [Indexed: 05/22/2023]
Abstract
Diapause, a strategy to endure unfavourable conditions (e.g. cold winters) is commonly found in ectothermic organisms and is characterized by an arrest of development and reproduction, a reduction of metabolic rate, and an increased resistance to adversity. Diapause, in addition to adaptations for surviving low winter temperatures, significantly influences phenology, voltinism and ultimately population growth. We review the literature on diapause and overwintering behaviour of two bark beetle species that affect spruce-dominated forests in the northern hemisphere, and describe and compare how these strategies can influence population dynamics. The European spruce bark beetle Ips typographus (L.) (Coleoptera, Curculionidae) is the most important forest pest of Norway spruce in Europe. It enters an adult reproductive diapause that might be either facultative or obligate. Obligate diapausing beetles are considered strictly univoltine, entering this dormancy type regardless of environmental cues. Facultative diapausing individuals enter diapause induced by photoperiod, modified by temperature, thus being potentially multivoltine. The spruce beetle Dendroctonus rufipennis (Kirby) (Coleoptera: Curculionidae) infests all spruce species in its natural range in North America. A facultative prepupal diapause is averted by relatively warm temperatures, resulting in a univoltine life cycle, whereas cool temperatures induce prepupal diapause leading to a semivoltine cycle. An adult obligate diapause in D. rufipennis could limit bi- or multivoltinism. We discuss and compare the influence of diapause and overwinter survival on voltinism and population dynamics of these two species in a changing climate and provide an outlook on future research.
Collapse
Affiliation(s)
- Martin Schebeck
- Department of Forest and Soil SciencesBoku, University of Natural Resources and Life SciencesViennaAustria
| | | | - Axel Schopf
- Department of Forest and Soil SciencesBoku, University of Natural Resources and Life SciencesViennaAustria
| | - Gregory J. Ragland
- Department of Integrative BiologyUniversity of Colorado DenverDenverColoradoU.S.A.
| | - Christian Stauffer
- Department of Forest and Soil SciencesBoku, University of Natural Resources and Life SciencesViennaAustria
| | - Barbara J. Bentz
- Rocky Mountain Research StationUSDA Forest ServiceLoganUtahU.S.A.
| |
Collapse
|
23
|
Seidl R, Rammer W. Climate change amplifies the interactions between wind and bark beetle disturbances in forest landscapes. LANDSCAPE ECOLOGY 2017; 32:1485-1498. [PMID: 28684889 PMCID: PMC5494037 DOI: 10.1007/s10980-016-0396-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
CONTEXT Growing evidence suggests that climate change could substantially alter forest disturbances. Interactions between individual disturbance agents are a major component of disturbance regimes, yet how interactions contribute to their climate sensitivity remains largely unknown. OBJECTIVES Here, our aim was to assess the climate sensitivity of disturbance interactions, focusing on wind and bark beetle disturbances. METHODS We developed a process-based model of bark beetle disturbance, integrated into the dynamic forest landscape model iLand (already including a detailed model of wind disturbance). We evaluated the integrated model against observations from three wind events and a subsequent bark beetle outbreak, affecting 530.2 ha (3.8 %) of a mountain forest landscape in Austria between 2007 and 2014. Subsequently, we conducted a factorial experiment determining the effect of changes in climate variables on the area disturbed by wind and bark beetles separately and in combination. RESULTS iLand was well able to reproduce observations with regard to area, temporal sequence, and spatial pattern of disturbance. The observed disturbance dynamics was strongly driven by interactions, with 64.3 % of the area disturbed attributed to interaction effects. A +4 °C warming increased the disturbed area by +264.7 % and the area-weighted mean patch size by +1794.3 %. Interactions were found to have a ten times higher sensitivity to temperature changes than main effects, considerably amplifying the climate sensitivity of the disturbance regime. CONCLUSIONS Disturbance interactions are a key component of the forest disturbance regime. Neglecting interaction effects can lead to a substantial underestimation of the climate change sensitivity of disturbance regimes.
Collapse
Affiliation(s)
- Rupert Seidl
- Department of Forest- and Soil Sciences, Institute of Silviculture, University of Natural Resources and Life Sciences (BOKU) Vienna, Peter Jordan Straße 82, 1190 Vienna, Austria
| | - Werner Rammer
- Department of Forest- and Soil Sciences, Institute of Silviculture, University of Natural Resources and Life Sciences (BOKU) Vienna, Peter Jordan Straße 82, 1190 Vienna, Austria
| |
Collapse
|
24
|
Cold tolerance and silencing of three cold-tolerance genes of overwintering Chinese white pine larvae. Sci Rep 2016; 6:34698. [PMID: 27703270 PMCID: PMC5050449 DOI: 10.1038/srep34698] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 09/19/2016] [Indexed: 01/30/2023] Open
Abstract
The values of physiological indices and the enzymes activities involved in the overwintering stage were studied in D. armandi larvae in each month from October 2014 to March 2015. The sorbitol, trehalose and glycerol values initially tended to increase as the ambient temperature decreased, before declining until the end of the winter. The activities of four enzymes (SOD, CAT, LDH and AchE) decreased, whereas POD, PK and MDH showed opposite trends in activity. Other enzyme activities (those of TPS, SDH and GLK) were low during the overwintering period and later increased and stabilized during spring. In this study, a polymerase chain reaction (PCR) genes of SDH, TPS and GLK was utilized to identify DarmSDH, DarmTPS and DarmGLK in D. armandi. They were found to be abundantly expressed during the overwintering stage by quantitative real-time PCR (qRT-PCR) analyses; by contrast, these three genes showed higher expression levels in December 2014 than in May 2015. The qRT-PCR results demonstrated that the reduction of mRNA expression levels was significant in DarmSDH-, DarmTPS- and DarmGLK-dsRNA-treated D. armandi compared with water-injected and non-injected controls. The mortality responses at low temperature were also increased in the dsRNA-treated D. armandi compared with the controls.
Collapse
|
25
|
Cook‐Patton SC, Lehmann M, Parker JD. Convergence of three mangrove species towards freeze‐tolerant phenotypes at an expanding range edge. Funct Ecol 2015. [DOI: 10.1111/1365-2435.12443] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - John D. Parker
- Smithsonian Environmental Research Center Edgewater MD 21037 USA
| |
Collapse
|
26
|
Williams CM, Chick WD, Sinclair BJ. A cross‐seasonal perspective on local adaptation: metabolic plasticity mediates responses to winter in a thermal‐generalist moth. Funct Ecol 2014. [DOI: 10.1111/1365-2435.12360] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Caroline M. Williams
- Department of Integrative Biology University of California 3040 Valley Life Sciences Building #3140 Berkeley CA 94720‐3140 USA
| | - Wesley D. Chick
- Department of Biology, Biological and Geological Sciences Building University of Western Ontario 1151 Richmond St London ON N6A 5B7 Canada
| | - Brent J. Sinclair
- Department of Biology, Biological and Geological Sciences Building University of Western Ontario 1151 Richmond St London ON N6A 5B7 Canada
| |
Collapse
|
27
|
Koštál V, Miklas B, Doležal P, Rozsypal J, Zahradníčková H. Physiology of cold tolerance in the bark beetle, Pityogenes chalcographus and its overwintering in spruce stands. JOURNAL OF INSECT PHYSIOLOGY 2014; 63:62-70. [PMID: 24607639 DOI: 10.1016/j.jinsphys.2014.02.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 01/21/2014] [Accepted: 02/20/2014] [Indexed: 06/03/2023]
Abstract
The seasonal development of physiological features underlying gradual acquisition of relatively high cold tolerance in overwintering adults of the bark beetles, Pityogenes chalcographus was described. Prior to overwintering, the beetles accumulated carbohydrate reserves in the form of glycogen and trehalose. These reserves were partially converted to glycerol during peaking winter so that glycerol concentration reached 1.4M in average, which corresponds to approximately one quarter of the beetle dry mass. Whole body supercooling points decreased from -12.8°C in average at the beginning of dormancy (August) to -26.3°C in average during peaking winter (January). More than 75% of January-collected beetles survived at -5°C for 30days, at -15°C for 60days and more than 40% of them survived at -26°C for 12h. High resistance against inoculation of body fluids with external ice crystals, and low mortality, was observed when January-collected beetles were encased in an ice block for 14days. Thus, the physiological limits of cold tolerance measured at individual level in laboratory were safely sufficient for survival of P. chalcographus at any conceivable cold spell that may occur in Central Europe. In contrast, the field experiment showed that winter survival fluctuated between 23.8% and 69.2% at a population level depending on microclimatic conditions in different altitudes and overwintering locations (standing tree trunk or ground level). The meaning of laboratory-assessed physiological limits of cold tolerance for predictions of population winter survival in the field is discussed.
Collapse
Affiliation(s)
- Vladimír Koštál
- Institute of Entomology, Biology Centre ASCR, České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.
| | - Bořek Miklas
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Petr Doležal
- Institute of Entomology, Biology Centre ASCR, České Budějovice, Czech Republic
| | - Jan Rozsypal
- Institute of Entomology, Biology Centre ASCR, České Budějovice, Czech Republic
| | | |
Collapse
|
28
|
Coleman PC, Bale JS, Hayward SAL. Cross generation plasticity in cold hardiness is associated with diapause, but not the non-diapause developmental pathway, in the blowfly, Calliphora vicina. J Exp Biol 2014; 217:1454-61. [DOI: 10.1242/jeb.098053] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
Predicting insect responses to global climate change involves understanding cross generation effects of temperature. The majority of temperate insects overwinter in a state of diapause, a pre-emptive response to winter conditions associated with increased cold hardiness. Diapause is often induced following maternal adult detection of an environmental cue signifying the onset of winter, whilst diapause is initiated in a subsequent life-stage/generation. Continued global warming will expose adults to higher late-autumn temperatures, whilst diapause life-stages will still experience prolonged winter-cold. The cross generation effect of temperature was investigated by acclimating adult Calliphora vicina, to present day (15°C) and future (20°C) late-autumn conditions and assessing cold-hardiness in diapause (D15 and D20) and non-diapause (ND15 and ND 20) progeny. A cross generation plasticity in cold hardiness was associated with D but not ND larvae. D15 larvae exhibited an enhanced ability to suppress the internal freezing (SCP = -18.9±0.9°C) compared to D20 (-15.3±0.8°C), and displayed a greater tolerance of prolonged exposure to -4°C (LT50 26.0± 1.0 days and 11.4±1.1 days, respectively) and -8°C (5.1±1.1 days and 3.0 ±1.1 days, respectively). These changes were associated with a reduced glucose content in D15 (2.4±0.3 g mg-1) compared to D20 (3.0±0.3 g mg-1) larvae. In conclusion, C. vicina adults exposed to warmer autumn conditions during diapause induction will produce larvae with a reduced cold hardiness capacity, which could negatively impact winter survival. Given that maternal regulation of diapause is common among temperate insects this could be a widespread phenomenon.
Collapse
|
29
|
Moraiti CA, Nakas CT, Papadopoulos NT. Diapause termination of Rhagoletis cerasi pupae is regulated by local adaptation and phenotypic plasticity: escape in time through bet-hedging strategies. J Evol Biol 2013; 27:43-54. [PMID: 24192292 DOI: 10.1111/jeb.12273] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 09/29/2013] [Accepted: 09/30/2013] [Indexed: 12/01/2022]
Abstract
Persistence and thriving of univoltine, herbivore insect species of the temperate zone rely on obligate diapause response that ensures winter survival and synchronization with host phenology. We used a stenophagous fruit fly (Rhagoletis cerasi) with obligate pupae diapause to determine genetic and environmental effects on diapause intensity of geographically isolated populations with habitat heterogeneity. Pupae from two Greek and one German populations with various gene flow rates were exposed at five constant chilling temperatures (0-12 °C) for different durations and then incubated at a high temperature until all adults have emerged. Pupae diapause intensity differs among Greek and German populations, suggesting an adaptive response to habitat heterogeneity (mostly differences in phenology patterns of local host cultivars). Moderately warm winter temperatures, such as 8 °C, promote diapause termination in all three populations. Insufficient chilling (short duration or warmer temperatures) regulates the expression of prolonged dormancy. Interestingly, extended chilling (longer than required for terminating diapause) 'return' pupae to another (facultative) cycle of dormancy enabling adults to emerge during the next appropriate 'window of time'; a strategy first time reported for univoltine insects. Consequently, diapause duration of R. cerasi is determined both by i) the adaptive response to local climatic conditions (annual dormancy) and ii) the plastic responses to interannual climatic variability resulting in two types of long life cycles within populations, prolonged and facultative dormancy as response to insufficient chilling and extended exposure to chilling, respectively. Long life cycles are expressed as a part of dormancy bet-hedging strategies of R. cerasi populations.
Collapse
Affiliation(s)
- C A Moraiti
- Department of Agriculture, Crop Production and Rural Environment, Laboratory of Entomology and Agricultural Zoology, University of Thessaly, N. Ionia (Volos), Greece
| | - C T Nakas
- Department of Agriculture, Crop Production and Rural Environment, Laboratory of Biometry, University of Thessaly, N. Ionia (Volos), Greece
| | - N T Papadopoulos
- Department of Agriculture, Crop Production and Rural Environment, Laboratory of Entomology and Agricultural Zoology, University of Thessaly, N. Ionia (Volos), Greece
| |
Collapse
|
30
|
Marini L, Lindelöw Å, Jönsson AM, Wulff S, Schroeder LM. Population dynamics of the spruce bark beetle: a long-term study. OIKOS 2013. [DOI: 10.1111/j.1600-0706.2013.00431.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Overwintering strategy and mechanisms of cold tolerance in the codling moth (Cydia pomonella). PLoS One 2013; 8:e61745. [PMID: 23613923 PMCID: PMC3629207 DOI: 10.1371/journal.pone.0061745] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 03/15/2013] [Indexed: 11/22/2022] Open
Abstract
Background The codling moth (Cydia pomonella) is a major insect pest of apples worldwide. Fully grown last instar larvae overwinter in diapause state. Their overwintering strategies and physiological principles of cold tolerance have been insufficiently studied. No elaborate analysis of overwintering physiology is available for European populations. Principal Findings We observed that codling moth larvae of a Central European population prefer to overwinter in the microhabitat of litter layer near the base of trees. Reliance on extensive supercooling, or freeze-avoidance, appears as their major strategy for survival of the winter cold. The supercooling point decreases from approximately −15.3°C during summer to −26.3°C during winter. Seasonal extension of supercooling capacity is assisted by partial dehydration, increasing osmolality of body fluids, and the accumulation of a complex mixture of winter specific metabolites. Glycogen and glutamine reserves are depleted, while fructose, alanine and some other sugars, polyols and free amino acids are accumulated during winter. The concentrations of trehalose and proline remain high and relatively constant throughout the season, and may contribute to the stabilization of proteins and membranes at subzero temperatures. In addition to supercooling, overwintering larvae acquire considerable capacity to survive at subzero temperatures, down to −15°C, even in partially frozen state. Conclusion Our detailed laboratory analysis of cold tolerance, and whole-winter survival assays in semi-natural conditions, suggest that the average winter cold does not represent a major threat for codling moth populations. More than 83% of larvae survived over winter in the field and pupated in spring irrespective of the overwintering microhabitat (cold-exposed tree trunk or temperature-buffered litter layer).
Collapse
|
32
|
Lester JD, Irwin JT. Metabolism and cold tolerance of overwintering adult mountain pine beetles (Dendroctonus ponderosae): evidence of facultative diapause? JOURNAL OF INSECT PHYSIOLOGY 2012; 58:808-815. [PMID: 22426083 DOI: 10.1016/j.jinsphys.2012.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Revised: 03/03/2012] [Accepted: 03/05/2012] [Indexed: 05/31/2023]
Abstract
We sought evidence for a distinct diapause in adult overwintering mountain pine beetles (Dendroctonus ponderosae Hopkins) by measuring metabolic rate and supercooling ability of field collected beetles throughout the year. Metabolic rates measured at 0, 5, and 10°C declined significantly from October through November, then rose slowly, reaching levels as high as those recorded in October by late May. From December to February metabolic rates were not correlated with minimum weekly phloem temperatures (R(2)=0.0%, P=0.592), but were correlated with phloem temperatures as winter advanced to spring (R(2)=44.8%, P=0.010), a pattern consistent with progression through the maintenance and termination phases of diapause. Supercooling points were also significantly lower in winter compared to fall and spring (F((8,143))=32.6, P<0.001) and were closely correlated with metabolic rates (R(2)>79% for all three temperatures). Dry mass declined linearly with winter progression (F((8,150))=8.34, P<0.001), explained by catabolism of metabolic reserves, with a concomitant accumulation of metabolic water (F((8,147))=35.24, P<0.001). The strong mid-winter metabolic suppression correlated with improved supercooling ability, coupled with their lack of response to variation in environmental temperature, are evidence of possible diapause in adult overwintering mountain pine beetles.
Collapse
Affiliation(s)
- Jack D Lester
- Department of Biological Sciences, Central Washington University, Ellensburg, WA 98926, USA.
| | | |
Collapse
|
33
|
O'Brien C, Bradshaw WE, Holzapfel CM. Testing for causality in covarying traits: genes and latitude in a molecular world. Mol Ecol 2011; 20:2471–6. [PMID: 21595769 DOI: 10.1111/j.1365-294x.2011.05133.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Many traits are assumed to have a causal (necessary) relationship with one another because of their common covariation with a physiological, ecological or geographical factor. Herein, we demonstrate a straightforward test for inferring causality using residuals from regression of the traits with the common factor. We illustrate this test using the covariation with latitude of a proxy for the circadian clock and a proxy for the photoperiodic timer in Drosophila and salmon. A negative result of this test means that further discussion of the adaptive significance of a causal connection between the covarying traits is unwarranted. A positive result of this test provides a point of departure that can then be used as a platform from which to determine experimentally the underlying functional connections and only then to discuss their adaptive significance.
Collapse
Affiliation(s)
- Conor O'Brien
- Center for Ecology and Evolutionary Biology, University of Oregon, Eugene, OR 97403-5289, USA
| | | | | |
Collapse
|
34
|
Koštál V, Renault D, Rozsypal J. Seasonal changes of free amino acids and thermal hysteresis in overwintering heteropteran insect, Pyrrhocoris apterus. Comp Biochem Physiol A Mol Integr Physiol 2011; 160:245-51. [DOI: 10.1016/j.cbpa.2011.06.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 06/09/2011] [Accepted: 06/09/2011] [Indexed: 10/18/2022]
|