1
|
Ragionieri L, Verdonck R, Verlinden H, Marchal E, Vanden Broeck J, Predel R. Schistocerca neuropeptides - An update. JOURNAL OF INSECT PHYSIOLOGY 2022; 136:104326. [PMID: 34767790 DOI: 10.1016/j.jinsphys.2021.104326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/26/2021] [Accepted: 11/02/2021] [Indexed: 05/26/2023]
Abstract
We compiled a comprehensive list of 67 precursor genes encoding neuropeptides and neuropeptide-like peptides using the Schistocerca gregaria genome and several transcriptome datasets. 11 of these 67 precursor genes have alternative transcripts, bringing the total number of S. gregaria precursors identified in this study to 81. Based on this precursor information, we used different mass spectrometry approaches to identify the putative mature, bioactive peptides processed in the nervous system of S. gregaria. The thereby generated dataset for S. gregaria confirms significant conservation of the entire neuropeptidergic gene set typical of insects and also contains precursors typical of Polyneoptera only. This is in striking contrast to the substantial losses of peptidergic systems in some holometabolous species. The neuropeptidome of S. gregaria, apart from species-specific sequences within the known range of variation, is quite similar to that of Locusta migratoria and even to that of less closely related Polyneoptera. With the S. gregaria peptidomics data presented here, we have thus generated a very useful source of information that could also be relevant for the study of other polyneopteran species.
Collapse
Affiliation(s)
- Lapo Ragionieri
- University of Cologne, Department of Biology, Institute for Zoology, Zülpicher Str. 47b, 50674 Cologne, Germany.
| | - Rik Verdonck
- Division of Animal Physiology and Neurobiology, Zoological Institute, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium; Centre for Environmental Sciences, Environmental Biology, Hasselt University, Diepenbeek, Belgium
| | - Heleen Verlinden
- Division of Animal Physiology and Neurobiology, Zoological Institute, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | - Elisabeth Marchal
- Division of Animal Physiology and Neurobiology, Zoological Institute, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | - Jozef Vanden Broeck
- Division of Animal Physiology and Neurobiology, Zoological Institute, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium.
| | - Reinhard Predel
- University of Cologne, Department of Biology, Institute for Zoology, Zülpicher Str. 47b, 50674 Cologne, Germany.
| |
Collapse
|
2
|
Gui SH, Taning CNT, Smagghe G. Myosuppressin influences fecundity in the Colorado potato beetle, Leptinotarsa decemlineata. INSECT SCIENCE 2021; 28:1191-1201. [PMID: 32705747 DOI: 10.1111/1744-7917.12855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/07/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Insect neuropeptides regulate various physiological processes, such as reproduction, feeding, growth and development, and have been considered as viable targets in the development of alternative strategies for pest control. Amongst these neuropeptides is myosuppressin (MS), a very conserved neuropeptide that has been reported to regulate cardiac and skeletal muscle contractility, feeding and pupal diapause in insects. In this study, we investigated the involvement of MS in fecundity in a notorious defoliator of potato and other solanaceous plants, the Colorado potato beetle (CPB), Leptinotarsa decemlineata. We identified an MS-precursor-encoding transcript in the L. decemlineata transcriptomic database and then evaluated its transcript levels in various CPB tissues. MS transcript levels were found to be highest in the central nervous system, gut and muscle of CPB males and females. To investigate the role of MS in fecundity, MS was silenced in adult CPBs through RNA interference (RNAi). This resulted in a significant reduction in oviposition (over 80%) and oocyte size (69%) in the treated beetles compared to the controls. Also, the reduction in oviposition in treated females was confirmed to be dependent on MS knockdown and independent of male fertilization. Furthermore, MS-knockdown in females resulted in decreased levels of ecdysteroid hormone titers and the transcript levels of its receptor. Interestingly, the injection of 20-hydroxyecdysone into females following MS knockdown could rescue ovary development. Altogether, this study highlights the important role played by MS in regulating fecundity in CPB.
Collapse
Affiliation(s)
- Shun-Hua Gui
- Laboratory of Agrozoology, Department of Plants and Corps, Ghent University, Ghent, Belgium
| | | | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Corps, Ghent University, Ghent, Belgium
| |
Collapse
|
3
|
Qiao H, Jiang S, Xiong Y, Zhang W, Xu L, Jin S, Gong Y, Wu Y, Fu H. Molecular cloning, characterization and functional analysis of two neuropeptide F genes from the oriental river prawn (Macrobrachium nipponense). Comp Biochem Physiol A Mol Integr Physiol 2020; 253:110844. [PMID: 33186705 DOI: 10.1016/j.cbpa.2020.110844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/05/2020] [Accepted: 11/08/2020] [Indexed: 10/23/2022]
Abstract
In invertebrates, neuropeptide F (NPF) has many regulatory functions, similar to NPY, its homologous peptide. In this study, two neuropeptide F genes were identified in Macrobrachium nipponense: Mn-NPF1 and Mn-NPF2. Mn-NPF2 shared the same amino acid sequence with Mn-NPF1, except for a 37 amino acid insert in the middle of the NPF region. The quantitative-PCR (qPCR) results indicated that Mn-NPF1 expression was positively correlated with ovarian maturation, whereas Mn-NPF2 had opposing expression patterns. Both Mn-NPFs were poorly expressed at early embryonic stages, but enhanced expression levels were observed up to day 10 after hatching, when the gonads began to differentiate. Ovary in situ hybridization (ISH) analyses showed that both Mn-NPFs were present at all stages, but were differentially localized to distinct compartments. Temperature gradient studies showed that both Mn-NPFs were implicated in the seasonal regulation of reproduction. A double-stranded (ds) RNA-Mn-NPF2 injection led to a significant 38.5% increase in the vitellogenin (VG) transcript (P < 0.05). These results demonstrated that Mn-NPF2 plays an important role in inhibiting ovarian maturation.
Collapse
Affiliation(s)
- Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, People's Republic of China
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, People's Republic of China
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, People's Republic of China
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, People's Republic of China
| | - Lei Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, People's Republic of China
| | - Shubo Jin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, People's Republic of China
| | - Yongsheng Gong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, People's Republic of China
| | - Yan Wu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, People's Republic of China
| | - Hongtuo Fu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, People's Republic of China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, People's Republic of China.
| |
Collapse
|
4
|
Distribution of neuropeptide F in the ventral nerve cord and its possible role on testicular development and germ cell proliferation in the giant freshwater prawn, Macrobrachium rosenbergii. Cell Tissue Res 2019; 376:471-484. [PMID: 30778730 DOI: 10.1007/s00441-019-02999-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 01/21/2019] [Indexed: 02/03/2023]
Abstract
Neuropeptide F in invertebrates is a homolog of neuropeptide Y in mammals and it is a member of FMRFamide-related peptides. In arthropods, such as insects, there are two types of neuropeptide F comprising long neuropeptide F (NPF) and short neuropeptide F (sNPF). Both NPFs are known to play a crucial role in the regulations of foraging, feeding-related behaviors, circadian rhythm, stress responses, aggression and reproduction in invertebrates. We have earlier found that in the giant freshwater prawn, Macrobrachium rosenbergii, there are three isoforms of NPF and four isoforms of sNPF and that NPFs are expressed in the eyestalks and brain. In the present study, we investigate further the tissue distribution of NPF-I in the ventral nerve cord (VNC) and its role in the development of testes in small male (SM) Macrobrachium rosenbergii. By immunolocalization, using the rabbit polyclonal antibody against NPF-I as a probe, we could detect NPF-I immunoreactivity in the neuropils and neuronal clusters of the subesophageal ganglia (SEG), thoracic ganglia (TG) and abdominal ganglia (AG) of the SM prawns. In functional assays, the administrations of synthetic NPF-I (KPDPTQLAAMADALKYLQELDKYYSQVSRPRFamide) and sNPF (APALRLRFamide) peptides significantly increased the growth rates of SM prawns and significantly increased the gonadosomatic index (GSI) and proliferations of early germ cells in the seminiferous tubules of their testes. It is, therefore, suggestive that NPFs may play critical roles in energy homeostasis towards promoting growth as well as testicular development in prawns that could be applied in the aquaculture of this species.
Collapse
|
5
|
Lenaerts C, Monjon E, Van Lommel J, Verbakel L, Vanden Broeck J. Peptides in insect oogenesis. CURRENT OPINION IN INSECT SCIENCE 2019; 31:58-64. [PMID: 31109674 DOI: 10.1016/j.cois.2018.08.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 08/11/2018] [Accepted: 08/27/2018] [Indexed: 06/09/2023]
Abstract
The physiological control of reproduction in insects depends on a combination of environmental and internal cues. In the adult stage, insects become sexually mature and generate gametes. In females, the latter process is designated as oogenesis. Peptides are a versatile class of extracellular signalling molecules that regulate many processes, including oogenesis. At present, the best documented physiological control mechanism of insect oogenesis is the insulin-related peptide signalling pathway. It regulates different stages of the process and provides a functional link between nutritional status and reproduction. Several other peptides have been shown to exert gonadoregulatory activities, but in most cases their exact mode of action still has to be unravelled and their effects on oogenesis could be direct or indirect. Some regulatory peptides, such as the Drosophila sex peptide, are being transferred from the male to the female during the mating process.
Collapse
Affiliation(s)
- Cynthia Lenaerts
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium
| | - Emilie Monjon
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium
| | - Joachim Van Lommel
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium
| | - Lina Verbakel
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium
| | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium.
| |
Collapse
|
6
|
Heck MJ, Hatle JD. Interaction of neuropeptide F and diet levels effects carbonyl levels in grasshoppers. Exp Gerontol 2018; 113:186-192. [PMID: 30316813 PMCID: PMC6233717 DOI: 10.1016/j.exger.2018.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/16/2018] [Accepted: 09/30/2018] [Indexed: 10/28/2022]
Affiliation(s)
- Matthew J Heck
- University of North Florida, Dept of Biology, Jacksonville, FL 32224, USA
| | - John D Hatle
- University of North Florida, Dept of Biology, Jacksonville, FL 32224, USA.
| |
Collapse
|
7
|
Thongrod S, Wanichanon C, Kankuan W, Siangcham T, Phadngam S, Morani F, Isidoro C, Sobhon P. Autophagy-Associated Shrinkage of the Hepatopancreas in Fasting Male Macrobrachium rosenbergii Is Rescued by Neuropeptide F. Front Physiol 2018; 9:613. [PMID: 29910737 PMCID: PMC5992412 DOI: 10.3389/fphys.2018.00613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/07/2018] [Indexed: 12/20/2022] Open
Abstract
Invertebrate neuropeptide F-I (NPF-I), much alike its mammalian homolog neuropeptide Y, influences several physiological processes, including circadian rhythms, cortical excitability, stress response, and food intake behavior. Given the role of autophagy in the metabolic stress response, we investigated the effect of NPF-1 on autophagy during fasting and feeding conditions in the hepatopancreas and muscle tissues of the male giant freshwater prawn Macrobrachium rosenbergii. Starvation up-regulated the expression of the autophagy marker LC3 in both tissues. Yet, based on the relative levels of the autophagosome-associated LC3-II isoform and of its precursor LC3-I, the hepatopancreas was more responsive than the muscle to starvation-induced autophagy. Injection of NPF-I inhibited the autophagosome formation in the hepatopancreas of fasting prawns. Relative to the body weight, the muscle weight was not affected, while that of the hepatopancreas decreased upon starvation and NPF-1 treatment could largely prevent such weight loss. Thus, the hepatopancreas is the reserve organ for the nutrient homeostasis during starvation and NPF-I plays a crucial role in the balancing of energy expenditure and energy intake during starvation by modulating autophagy.
Collapse
Affiliation(s)
- Sirorat Thongrod
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand.,Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Chaitip Wanichanon
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Wilairat Kankuan
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand.,Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Tanapan Siangcham
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Suratchanee Phadngam
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Federica Morani
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand.,Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand
| |
Collapse
|
8
|
Hiroyoshi S, Reddy GVP, Mitsuhashi J. Effects of juvenile hormone analogue (methoprene) and 20-hydroxyecdysone on reproduction in Polygonia c-aureum (Lepidoptera: Nymphalidae) in relation to adult diapause. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 203:635-647. [DOI: 10.1007/s00359-017-1179-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 01/16/2023]
|
9
|
Cunningham CB, VanDenHeuvel K, Khana DB, McKinney EC, Moore AJ. The role of neuropeptide F in a transition to parental care. Biol Lett 2017; 12:rsbl.2016.0158. [PMID: 27095268 DOI: 10.1098/rsbl.2016.0158] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/17/2016] [Indexed: 11/12/2022] Open
Abstract
The genetics of complex social behaviour can be dissected by examining the genetic influences of component pathways, which can be predicted based on expected evolutionary precursors. Here, we examine how gene expression in a pathway that influences the motivation to eat is altered during parental care that involves direct feeding of larvae. We examine the expression of neuropeptide F, and its receptor, in the burying beetle Nicrophorus vespilloides, which feeds pre-digested carrion to its begging larvae. We found that the npf receptor was greatly reduced during active care. Our research provides evidence that feeding behaviour was a likely target during the evolution of parental care in N. vespilloides Moreover, dissecting complex behaviours into ethologically distinct sub-behaviours is a productive way to begin to target the genetic mechanisms involved in the evolution of complex behaviours.
Collapse
Affiliation(s)
| | | | - Daven B Khana
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | | | - Allen J Moore
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
10
|
Schoofs L, De Loof A, Van Hiel MB. Neuropeptides as Regulators of Behavior in Insects. ANNUAL REVIEW OF ENTOMOLOGY 2017; 62:35-52. [PMID: 27813667 DOI: 10.1146/annurev-ento-031616-035500] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Neuropeptides are by far the largest and most diverse group of signaling molecules in multicellular organisms. They are ancient molecules important in regulating a multitude of processes. Their small proteinaceous character allowed them to evolve and radiate quickly into numerous different molecules. On average, hundreds of distinct neuropeptides are present in animals, sometimes with unique classes that do not occur in distantly related species. Acting as neurotransmitters, neuromodulators, hormones, or growth factors, they are extremely diverse and are involved in controlling growth, development, ecdysis, digestion, diuresis, and many more physiological processes. Neuropeptides are also crucial in regulating myriad behavioral actions associated with feeding, courtship, sleep, learning and memory, stress, addiction, and social interactions. In general, behavior ensures that an organism can survive in its environment and is defined as any action that can change an organism's relationship to its surroundings. Even though the mode of action of neuropeptides in insects has been vigorously studied, relatively little is known about most neuropeptides and only a few model insects have been investigated. Here, we provide an overview of the roles neuropeptides play in insect behavior. We conclude that multiple neuropeptides need to work in concert to coordinate certain behaviors. Additionally, most neuropeptides studied to date have more than a single function.
Collapse
Affiliation(s)
- Liliane Schoofs
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, 3000 Leuven, Belgium; , ,
| | - Arnold De Loof
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, 3000 Leuven, Belgium; , ,
| | - Matthias Boris Van Hiel
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, 3000 Leuven, Belgium; , ,
| |
Collapse
|
11
|
Thongrod S, Changklungmoa N, Chansela P, Siangcham T, Kruangkum T, Suwansa-Ard S, Saetan J, Sroyraya M, Tinikul Y, Wanichanon C, Sobhon P. Characterization and tissue distribution of neuropeptide F in the eyestalk and brain of the male giant freshwater prawn, Macrobrachium rosenbergii. Cell Tissue Res 2016; 367:181-195. [DOI: 10.1007/s00441-016-2538-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 11/16/2016] [Indexed: 10/20/2022]
|
12
|
Caers J, Van Hiel MB, Peymen K, Zels S, Van Rompay L, Van Den Abbeele J, Schoofs L, Beets I. Characterization of a neuropeptide F receptor in the tsetse fly, Glossina morsitans morsitans. JOURNAL OF INSECT PHYSIOLOGY 2016; 93-94:105-111. [PMID: 27677695 DOI: 10.1016/j.jinsphys.2016.09.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 09/21/2016] [Accepted: 09/22/2016] [Indexed: 06/06/2023]
Abstract
Neuropeptides related to mammalian neuropeptide Y (NPY) and insect neuropeptide F (NPF) are conserved throughout Metazoa and intimately involved in a wide range of biological processes. In insects NPF is involved in regulating feeding, learning, stress and reproductive behavior. Here we identified and characterized an NPF receptor of the tsetse fly, Glossina morsitans morsitans, the sole transmitter of Trypanosoma parasites causing sleeping sickness. We isolated cDNA sequences encoding tsetse NPF (Glomo-NPF) and its receptor (Glomo-NPFR), and examined their spatial and temporal expression patterns using quantitative PCR. In tsetse flies, npfr transcripts are expressed throughout development and most abundantly in the central nervous system, whereas low expression is found in the flight muscles and posterior midgut. Expression of npf, by contrast, shows low transcript levels during development but is strongly expressed in the posterior midgut and brain of adult flies. Expression of Glomo-npf and its receptor in the brain and digestive system suggests that NPF may have conserved neuromodulatory or hormonal functions in tsetse flies, such as in the regulation of feeding behavior. Cell-based activity studies of the Glomo-NPFR showed that Glomo-NPF activates the receptor up to nanomolar concentrations. The molecular data of Glomo-NPF and Glomo-NPFR paves the way for further investigation of its functions in tsetse flies.
Collapse
Affiliation(s)
- Jelle Caers
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, Leuven, Belgium.
| | - Matthias B Van Hiel
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, Leuven, Belgium.
| | - Katleen Peymen
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, Leuven, Belgium.
| | - Sven Zels
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, Leuven, Belgium.
| | - Liesbeth Van Rompay
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, Leuven, Belgium.
| | - Jan Van Den Abbeele
- Unit of Veterinary Protozoology, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium; Laboratory of Zoophysiology, Department of Physiology, University of Ghent, Krijgslaan 281, 9000 Ghent, Belgium.
| | - Liliane Schoofs
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, Leuven, Belgium.
| | - Isabel Beets
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
13
|
Sedra L, Lange AB. Cloning and expression of long neuropeptide F and the role of FMRFamide-like peptides in regulating egg production in the Chagas vector, Rhodnius prolixus. Peptides 2016; 82:1-11. [PMID: 27189503 DOI: 10.1016/j.peptides.2016.05.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/04/2016] [Accepted: 05/06/2016] [Indexed: 10/21/2022]
Abstract
Long neuropeptide F (NPF) is a neuropeptide implicated in the control of feeding, digestion and reproduction in various insect species. Here we have isolated the cDNA sequence encoding NPF in Rhodnius prolixus (RhoprNPF). The RhoprNPF gene is composed of 3 exons and 2 introns, one of which is present in the peptide coding region. RhoprNPF is 42 amino acids long and has the characteristic RFamide C-terminus, which is common of FMRFamide-like peptides (FLPs). Quantitative PCR (qPCR) shows that RhoprNPF mRNA is present in higher amounts in fifth instars than in adults, implying that it may play a role in growth and development. In situ hybridization shows that the RhoprNPF transcript is present in median neurosecretory cells (MNSCs) in the brain, cells in the fifth instar hindgut and cells along the longitudinal muscle fibers of the adult female lateral oviducts. Injection of the last 8 amino acids of RhoprNPF (truncated RhoprNPF, AVAGRPRFa), which is considered to be the active core sequence for biological activity, into mated, fed, female adult R. prolixus decreased the number of eggs found in the ovaries as well as increased the number of eggs laid. This suggests that RhoprNPF may play a role in accelerating the process of ovulation from the ovary of the female R. prolixus. An increase in oogenesis was observed following the injection of other FLPs such as RhoprShortNPF, GNDNFMRFamide and AKDNFIRFamide, whereas the FLP, RhoprMS, and the allatostatin, RhoprAST-2, inhibited egg production.
Collapse
Affiliation(s)
- Laura Sedra
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada.
| | - Angela B Lange
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada.
| |
Collapse
|
14
|
Fu KY, Li Q, Zhou LT, Meng QW, Lü FG, Guo WC, Li GQ. Knockdown of juvenile hormone acid methyl transferase severely affects the performance of Leptinotarsa decemlineata (Say) larvae and adults. PEST MANAGEMENT SCIENCE 2016; 72:1231-1241. [PMID: 26299648 DOI: 10.1002/ps.4103] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 07/22/2015] [Accepted: 08/13/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Juvenile hormone (JH) plays a critical role in the regulation of metamorphosis in Leptinotarsa decemlineata, a notorious defoliator of potato. JH acid methyltransferase (JHAMT) is involved in one of the final steps of JH biosynthesis. RESULTS A putative JHAMT cDNA (LdJHAMT) was cloned. Two double-stranded RNAs (dsRNAs) (dsJHAMT1 and dsJHAMT2) against LdJHAMT were constructed and bacterially expressed. Experiments were conducted to investigate the effectiveness of RNAi in both second- and fourth-instar larvae. Dietary introduction of dsJHAMT1 and dsJHAMT2 successfully knocked down the target gene, lowered JH titre in the haemolymph and reduced the transcript of Krüppel homologue 1 gene. Ingestion of dsJHAMT caused larval death and weight loss, shortened larval developmental period and impaired pupation. Moreover, the dsJHAMT-fed pupae exhibited lower adult emergence rates. The resulting adults weighed an average of 50 mg less than the control group, and the females did not deposit eggs. Application of pyriproxyfen to the dsJHAMT-fed insects rescued all the negative effects. CONCLUSIONS LdJHAMT expresses functional JHAMT enzyme. The RNAi targeting LdJHAMT could be used for control of L. decemlineata. © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kai-Yun Fu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Qian Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Li-Tao Zhou
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Qing-Wei Meng
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Feng-Gong Lü
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Wen-Chao Guo
- Department of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Guo-Qing Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
15
|
Suwansa-ard S, Thongbuakaew T, Wang T, Zhao M, Elizur A, Hanna PJ, Sretarugsa P, Cummins SF, Sobhon P. In silico Neuropeptidome of Female Macrobrachium rosenbergii Based on Transcriptome and Peptide Mining of Eyestalk, Central Nervous System and Ovary. PLoS One 2015; 10:e0123848. [PMID: 26023789 PMCID: PMC4449106 DOI: 10.1371/journal.pone.0123848] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 03/08/2015] [Indexed: 01/13/2023] Open
Abstract
Macrobrachium rosenbergii is the most economically important of the cultured freshwater crustacean species, yet there is currently a deficiency in genomic and transcriptomic information for research requirements. In this study, we present an in silico analysis of neuropeptide genes within the female M. rosenbergii eyestalk, central nervous system, and ovary. We could confidently predict 37 preproneuropeptide transcripts, including those that encode bursicons, crustacean cardioactive peptide, crustacean hyperglycemic hormones, eclosion hormone, pigment-dispersing hormones, diuretic hormones, neuropeptide F, neuroparsins, SIFamide, and sulfakinin. These transcripts are most prominent within the eyestalk and central nervous system. Transcript tissue distribution as determined by reverse transcription-polymerase chain reaction revealed the presence of selected neuropeptide genes of interest mainly in the nervous tissues while others were additionally present in the non-nervous tissues. Liquid chromatography-mass spectrometry analysis of eyestalk peptides confirmed the presence of the crustacean hyperglycemic hormone precursor. This data set provides a strong foundation for further studies into the functional roles of neuropeptides in M. rosenbergii, and will be especially helpful for developing methods to improve crustacean aquaculture.
Collapse
Affiliation(s)
- Saowaros Suwansa-ard
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Tipsuda Thongbuakaew
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Tianfang Wang
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Min Zhao
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Abigail Elizur
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Peter J. Hanna
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
- Pro Vice-Chancellor’s Office, Faculty of Science, Engineering and Built Environment, Deakin University, Geelong, Victoria, Australia
| | - Prapee Sretarugsa
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Scott F. Cummins
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
- * E-mail: (SFC); (P. Sobhon)
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
- * E-mail: (SFC); (P. Sobhon)
| |
Collapse
|
16
|
Santos D, Vanden Broeck J, Wynant N. Systemic RNA interference in locusts: reverse genetics and possibilities for locust pest control. CURRENT OPINION IN INSECT SCIENCE 2014; 6:9-14. [PMID: 32846691 DOI: 10.1016/j.cois.2014.09.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/10/2014] [Accepted: 09/18/2014] [Indexed: 06/11/2023]
Abstract
RNA interference (RNAi) is a biological process triggered by double stranded (ds)RNA that results in sequence-dependent mRNA degradation. Because of its high specificity, this post-transcriptional gene silencing mechanism is a widely used tool for reverse genetics in several insect species. In particular, locusts possess a very robust and sensitive RNAi response that has already been exploited to investigate a diverse range of important physiological processes. These orthopteran insects constitute important model organisms in several areas of entomology, but they can also become voracious swarming pests that threaten the agricultural production in large parts of the world. In comparison to the widely applied chemical insecticides, the RNAi-technology could contribute to the development of a novel generation of insecticides, with high species-specificity. In this article, we discuss the potential of the RNAi-technology in loss of function studies in locusts, as well as to control locust populations.
Collapse
Affiliation(s)
- Dulce Santos
- Molecular Developmental Physiology and Signal Transduction, Department of Animal Physiology and Neurobiology, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium
| | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction, Department of Animal Physiology and Neurobiology, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium
| | - Niels Wynant
- Molecular Developmental Physiology and Signal Transduction, Department of Animal Physiology and Neurobiology, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium.
| |
Collapse
|
17
|
Veenstra JA. The contribution of the genomes of a termite and a locust to our understanding of insect neuropeptides and neurohormones. Front Physiol 2014; 5:454. [PMID: 25477824 PMCID: PMC4237046 DOI: 10.3389/fphys.2014.00454] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 11/03/2014] [Indexed: 12/29/2022] Open
Abstract
The genomes of the migratory locust Locusta migratoria and the termite Zootermopsis nevadensis were mined for the presence of genes encoding neuropeptides, neurohormones, and their G-protein coupled receptors (GPCRs). Both species have retained a larger number of neuropeptide and neuropeptide GPCRs than the better known holometabolous insect species, while other genes that in holometabolous species appear to have a single transcript produce two different precursors in the locust, the termite or both. Thus, the recently discovered CNMa neuropeptide gene has two transcripts predicted to produce two structurally different CNMa peptides in the termite, while the locust produces two different myosuppressin peptides in the same fashion. Both these species also have a calcitonin gene, which is different from the gene encoding the calcitonin-like insect diuretic hormone. This gene produces two types of calcitonins, calcitonins A and B. It is also present in Lepidoptera and Coleoptera and some Diptera, but absent from mosquitoes and Drosophila. However, in holometabolous insect species, only the B transcript is produced. Their putative receptors were also identified. In contrast, Locusta has a highly unusual gene that codes for a salivation stimulatory peptide. The Locusta genes for neuroparsin and vasopressin are particularly interesting. The neuroparsin gene produces five different transcripts, of which only one codes for the neurohormone identified from the corpora cardiaca. The other four transcripts code for neuroparsin-like proteins, which lack four amino acid residues, and that for that reason we called neoneuroparsins. The number of transcripts for the neoneuroparsins is about 200 times larger than the number of neuroparsin transcripts. The first exon and the putative promoter of the vasopressin genes, of which there are about seven copies in the genome, is very well-conserved, but the remainder of these genes is not. The relevance of these findings is discussed.
Collapse
Affiliation(s)
- Jan A Veenstra
- INCIA UMR 5287 CNRS, Université de Bordeaux Pessac, France
| |
Collapse
|
18
|
Ren D, Cai Z, Song J, Wu Z, Zhou S. dsRNA uptake and persistence account for tissue-dependent susceptibility to RNA interference in the migratory locust, Locusta migratoria. INSECT MOLECULAR BIOLOGY 2014; 23:175-184. [PMID: 24308607 DOI: 10.1111/imb.12074] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
RNA interference (RNAi) by introducing double-stranded RNA (dsRNA) is a powerful approach to the analysis of gene function in insects; however, RNAi responses vary dramatically in different insect species and tissues, and the underlying mechanisms remain poorly understood. The migratory locust, a destructive insect pest and a hemimetabolic insect with panoistic ovaries, is considered to be a highly susceptible species to RNAi via dsRNA injection, but its ovary appears to be completely insensitive. In the present study, we showed that dsRNA persisted only briefly in locust haemolymph. The ovariole sheath was permeable to dsRNA, but injected dsRNA was not present in the follicle cells and oocytes. The lack of dsRNA uptake into the follicle cells and oocytes is likely to be the primary factor that contributes to the ineffective RNAi response in locust ovaries. These observations provide insights into tissue-dependent variability of RNAi and help in achieving successful gene silencing in insensitive tissues.
Collapse
Affiliation(s)
- D Ren
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | |
Collapse
|
19
|
Swevers L, Vanden Broeck J, Smagghe G. The possible impact of persistent virus infection on the function of the RNAi machinery in insects: a hypothesis. Front Physiol 2013; 4:319. [PMID: 24204347 PMCID: PMC3817476 DOI: 10.3389/fphys.2013.00319] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Accepted: 10/15/2013] [Indexed: 11/13/2022] Open
Abstract
RNAi experiments in insects are characterized by great variability in efficiency; for instance beetles and locusts are very amenable to dsRNA-mediated gene silencing, while other insect groups, most notably lepidopterans, are more refractory to RNAi. Several factors can be forwarded that could affect the efficiency of RNAi, such as the composition and function of the intracellular RNAi machinery, the mechanism of dsRNA uptake, the presence of dsRNA- and siRNA-degrading enzymes and non-specific activation of the innate immune response. In this essay, we investigate the evidence whether persistent infection with RNA viruses could be a major factor that affects the response to exogenous dsRNA in insects. The occurrence of RNA viruses in different insect groups will be discussed, as well as several mechanisms by which viruses could interfere with the process of RNAi. Finally, the impact of RNA virus infection on the design of dsRNA-based insect control strategies will be considered.
Collapse
Affiliation(s)
- Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos," Athens, Greece
| | | | | |
Collapse
|