1
|
Lian Y, Zhang M, Yang S, Peng S, Wang A, Jia J, Feng X, Wu Q, Yang X, Zhou S. Knockdown of the ZcVgR Gene Alters the Expression of Genes Related to Reproduction and Lifespan in Zeugodacus cucurbitae (Coquillett) Under Extreme Heat Conditions. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 117:e70015. [PMID: 39689075 DOI: 10.1002/arch.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/07/2024] [Accepted: 11/28/2024] [Indexed: 12/19/2024]
Abstract
Zeugodacus cucurbitae (Coquillett) is an important migratory vegetable pest. Previous research has demonstrated that short-term high temperatures induce differential expression of the vitellogenin receptor (ZcVgR) gene, reducing the number of eggs laid and the lifespan of female Z. cucurbitae. In this paper, we used Tandem Mass Tags (TMT) quantitative proteomics and Illumina high-throughput sequencing to determine the proteomic and transcriptomic information of female Z. cucurbitae after siRNA-mediated silencing of the target gene (ZcVgR) to gain a comprehensive understanding of the molecular mechanism of this gene in the regulation of reproduction and lifespan. The findings demonstrated that following the target gene's silencing, the ZcVgR gene's transcriptional expression was significantly downregulated, and there was no significant difference in protein level. The transcriptome and proteome had a low correlation; when the ZcVgR gene was silenced, vitellogenin-1 (ZcVg1), juvenile hormone epoxide hydrolase (JHEH), troponin C (TnC), heat shock protein 70 (HSP70), and other related genes were downregulated at the transcriptional level. By silencing the ZcVgR gene, transcriptionally level immune-related pathways were activated and energy metabolism-related pathways were inhibited; protein-level glycometabolism and phagosome pathways were activated, while phototransduction-fly and autophagy-animal pathways were inhibited. The findings of this study might offer a theoretical foundation for integrated management of Z. cucurbitae in the summertime.
Collapse
Affiliation(s)
- Yuyang Lian
- Sanya Nanfan Research Institute of Hainan University, Sanya, China
| | - Mengjie Zhang
- School of Medicine, Chongqing University, Chongqing, China
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuyan Yang
- Sanya Nanfan Research Institute of Hainan University, Sanya, China
| | - Sihua Peng
- Sanya Nanfan Research Institute of Hainan University, Sanya, China
| | - Aqiang Wang
- Sanya Nanfan Research Institute of Hainan University, Sanya, China
| | - Jingjing Jia
- Key Laboratory of Plant Disease and Pest Control of Hainan Province/Institute of Plant Protection, Hainan Academy of Agricultural Sciences (Research Center of Quality Safety and Standards for Agricultural Products of Hainan Academy of Agricultural Sciences), Haikou, China
| | - Xuejie Feng
- Key Laboratory of Tropical Fruit Tree Biology of Hainan Province, Haikou, China
| | - Qianxing Wu
- Sanya Nanfan Research Institute of Hainan University, Sanya, China
| | - Xiaofeng Yang
- Sanya Nanfan Research Institute of Hainan University, Sanya, China
| | - Shihao Zhou
- Sanya Nanfan Research Institute of Hainan University, Sanya, China
| |
Collapse
|
2
|
Wang YC, Chang YW, Yang F, Gong WR, Hu J, Du YZ. A potential trade-off between reproduction and enhancement of thermotolerance in Liriomyza trifolii populations driven by thermal acclimation. J Therm Biol 2024; 125:103988. [PMID: 39366146 DOI: 10.1016/j.jtherbio.2024.103988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/06/2024]
Abstract
The invasive pest, Liriomyza trifolii, poses a significant threat to ornamental and vegetable plants. It spreads rapidly and causes large-scale outbreaks with pronounced thermotolerance. In this study, we developed L. trifolii strains adapted to high temperatures (strains designated 35 and 40); these were generated from a susceptible strain (designated S) by long-term thermal acclimation to 35 °C and 40 °C, respectively. Age-stage, two-sex life tables, thermal preferences, critical thermal limits, knockdown behaviors, eclosion and survival rates as well as expression of genes encoding heat shock proteins (Hsps) were compared for the three strains. Our findings indicated that the thermotolerance of L. trifolii was enhanced after long-term thermal acclimation, which suggested an adaptive plastic response to thermal stress. A trade-off between reproduction and thermotolerance was observed under thermal stress, potentially improving survival of the population and fostering adaptionary changes. Acclimation at 35 °C improved reproductive performance and population density of L. trifolii, particularly by enhancing the fecundity of female adults and accelerating the speed of development. Although the 40 strain exhibited the highest developmental speed and greater thermotolerance, it incurred a larger reproductive cost. This study provides a theoretical framework for monitoring and controlling leafminers and understanding their evolutionary adaptation to environmental changes.
Collapse
Affiliation(s)
- Yu-Cheng Wang
- College of Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, 225000, China
| | - Ya-Wen Chang
- College of Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, 225000, China.
| | - Fei Yang
- Department of Entomology, University of Minnesota, Saint Paul, Minnesota, 55108, USA
| | - Wei-Rong Gong
- Plant Protection and Quarantine Station of Jiangsu Province, Nanjing, 210036, China
| | - Jie Hu
- Plant Protection and Quarantine Station of Jiangsu Province, Nanjing, 210036, China
| | - Yu-Zhou Du
- College of Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, 225000, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, 225000, China.
| |
Collapse
|
3
|
Bulgarella M, Haywood J, Dowle EJ, Morgan-Richards M, Trewick SA. Standard metabolic rate variation among New Zealand Orthoptera. CURRENT RESEARCH IN INSECT SCIENCE 2024; 6:100092. [PMID: 39224195 PMCID: PMC11367484 DOI: 10.1016/j.cris.2024.100092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024]
Abstract
Standard metabolic rates (SMR) of ectotherms reflect the energetic cost of self-maintenance and thus provide important information about life-history strategies of organisms. We examined variation in SMR among fifteen species of New Zealand orthopteran. These species represent a heterogeneous group with a wide geographic distribution, differing morphologies and life histories. Gathering original data on morphological and physiological traits of individual species is a first step towards understanding existing variability. Individual metabolic rates of ectotherms are one of the first traits to respond to climate change. Baseline SMR datasets are valuable for modeling current species distributions and their responses to a changing climate. At higher latitudes, the average environmental temperature decreases. The pattern that cold-adapted ectotherms display higher SMR at colder temperatures and greater thermal sensitivity to compensate for lower temperatures and the shorter growing and reproductive seasons is predicted from the metabolic cold adaptation (MCA) hypothesis. We predict higher SMR for the orthopteran species found at higher latitudes. We further compared the index of thermal sensitivity Q10 per species. We used closed-system respirometry to measure SMR, at two test temperatures (4 °C and 14 °C), for the fifteen species acclimated to the same conditions. As expected, we found significant differences in SMR among species. The rate of oxygen consumption was positively correlated with body mass. Our findings do not support the MCA hypothesis. In fact, we found evidence of co-gradient variation in SMR, whereby insects from higher elevations and latitudes presented lower SMR. We discuss our findings in relation to life histories and ecology of each species. The novel physiological data presented will aid in understanding potential responses of these unusual species to changing climatic conditions in Aotearoa/New Zealand.
Collapse
Affiliation(s)
- Mariana Bulgarella
- Ecology, College of Science, Massey University Manawatū, Private Bag 11-222, Palmerston North 4442, New Zealand
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| | - John Haywood
- School of Mathematics and Statistics, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| | - Eddy J. Dowle
- Anatomy Department, Otago University, PO Box 56, Dunedin 9054, New Zealand
| | - Mary Morgan-Richards
- Ecology, College of Science, Massey University Manawatū, Private Bag 11-222, Palmerston North 4442, New Zealand
| | - Steven A. Trewick
- Ecology, College of Science, Massey University Manawatū, Private Bag 11-222, Palmerston North 4442, New Zealand
| |
Collapse
|
4
|
Buckley TR, Hoare RJB, Leschen RAB. Key questions on the evolution and biogeography of New Zealand alpine insects. J R Soc N Z 2022; 54:30-54. [PMID: 39439474 PMCID: PMC11459838 DOI: 10.1080/03036758.2022.2130367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/25/2022] [Indexed: 10/10/2022]
Abstract
New Zealand alpine environments host a diverse assemblage of insect lineages, with virtually every major insect group represented. The modern mountain ranges of New Zealand are relatively young and large areas of habitat above the tree line have only been in continual existence for the past one million years. We discuss the geological history and physical characteristics of New Zealand alpine environments and the resulting selective pressures placed on insect species. Some notable alpine taxa and previous faunistic research is highlighted. We discuss examples where single lineages have colonised the alpine zone and contrast these with larger radiations of alpine species which in some cases are the result of multiple colonisation events. The age of most alpine lineages is consistent with the young geological age of the mountains, nevertheless there are some much older alpine lineages of uncertain evolutionary history. We show that alpine species have employed a very broad range of morphological, physiological, and behavioural adaptations to survive in the alpine zone, and new studies are starting to unpick their genomic basis. Finally, we look to the future and assess threats to the unique New Zealand alpine insect fauna.
Collapse
Affiliation(s)
- Thomas R. Buckley
- Manaaki Whenua – Landcare Research, Auckland, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | | | | |
Collapse
|
5
|
Sukhodolskaya RA, Vavilov DN, Gordienko TA, Mukhametnabiev TR. Variability of the Community Structure and Morphometric Parameters of Ground Beetles (Coleoptera, Carabidae) under an Anthropogenic Impact Gradient. BIOL BULL+ 2022. [DOI: 10.1134/s1062359021100253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Deluen M, Blanchet S, Aubret F, Trochet A, Gangloff EJ, Guillaume O, Le Chevalier H, Calvez O, Carle C, Genty L, Arrondeau G, Cazale L, Kouyoumdjian L, Ribéron A, Bertrand R. Impacts of temperature on O 2 consumption of the Pyrenean brook newt (Calotriton asper) from populations along an elevational gradient. J Therm Biol 2022; 103:103166. [PMID: 35027206 DOI: 10.1016/j.jtherbio.2021.103166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 12/11/2021] [Accepted: 12/16/2021] [Indexed: 11/28/2022]
Abstract
Global warming impacts biodiversity worldwide, leading to species' adaptation, migration, or extinction. The population's persistence depends on the maintenance of essential activities, which is notably driven by phenotypic adaptation to local environments. Metabolic rate - that increases with temperature in ectotherms - is a key physiological proxy for the energy available to fuel individuals' activities. Cold-adapted ectotherms can exhibit a higher resting metabolism than warm-adapted ones to maintain functionality at higher elevations or latitudes, known as the metabolic cold-adaptation hypothesis. How climate change will affect metabolism in species inhabiting contrasting climates (cold or warm) is still a debate. Therefore, it is of high interest to assess the pace of metabolic responses to global warming among populations adapted to highly different baseline climatic conditions. Here, we conducted a physiological experiment in the endemic Pyrenean brook newt (Calotriton asper). We measured a proxy of standard metabolic rate (SMR) along a temperature gradient in individuals sampled among 6 populations located from 550 to 2189 m a.s.l. We demonstrated that SMR increased with temperature, but significantly diverged depending on populations' origins. The baseline and the slope of the relationship between SMR and temperature were both higher for high-elevation populations than for low-elevation populations. We discussed the stronger metabolic response observed in high-elevation populations suggesting a drop of performance in essential life activities for these individuals under current climate change. With the increase of metabolism as the climate warms, the metabolic-cold adaptation strategy selected in the past could compromise the sustainability of cold-adapted populations if short-term evolutionary responses do not allow to offset this evolutionary legacy.
Collapse
Affiliation(s)
- Marine Deluen
- Station d'Ecologie Théorique et Expérimentale, CNRS, UPR2001, 09200 Moulis, France.
| | - Simon Blanchet
- Station d'Ecologie Théorique et Expérimentale, CNRS, UPR2001, 09200 Moulis, France
| | - Fabien Aubret
- Station d'Ecologie Théorique et Expérimentale, CNRS, UPR2001, 09200 Moulis, France
| | - Audrey Trochet
- Société Herpétologique de France, Muséum National d'Histoire Naturelle, CP41, 57 rue Cuvier, 75005, Paris
| | - Eric J Gangloff
- Department of Zoology, Ohio Wesleyan University, Delaware, Ohio
| | - Olivier Guillaume
- Station d'Ecologie Théorique et Expérimentale, CNRS, UPR2001, 09200 Moulis, France
| | - Hugo Le Chevalier
- Station d'Ecologie Théorique et Expérimentale, CNRS, UPR2001, 09200 Moulis, France
| | - Olivier Calvez
- Station d'Ecologie Théorique et Expérimentale, CNRS, UPR2001, 09200 Moulis, France
| | - Clémentine Carle
- Station d'Ecologie Théorique et Expérimentale, CNRS, UPR2001, 09200 Moulis, France
| | - Léa Genty
- Station d'Ecologie Théorique et Expérimentale, CNRS, UPR2001, 09200 Moulis, France
| | - Gaëtan Arrondeau
- Station d'Ecologie Théorique et Expérimentale, CNRS, UPR2001, 09200 Moulis, France
| | - Lucas Cazale
- Station d'Ecologie Théorique et Expérimentale, CNRS, UPR2001, 09200 Moulis, France
| | - Laura Kouyoumdjian
- Station d'Ecologie Théorique et Expérimentale, CNRS, UPR2001, 09200 Moulis, France
| | - Alexandre Ribéron
- Laboratoire Évolution et Diversité Biologique, UMR5174, Université de Toulouse III Paul Sabatier, CNRS, IRD, Toulouse, France
| | - Romain Bertrand
- Laboratoire Évolution et Diversité Biologique, UMR5174, Université de Toulouse III Paul Sabatier, CNRS, IRD, Toulouse, France
| |
Collapse
|
7
|
Twort VG, Newcomb RD, Buckley TR. New Zealand Tree and Giant Wētā (Orthoptera) Transcriptomics Reveal Divergent Selection Patterns in Metabolic Loci. Genome Biol Evol 2019; 11:1293-1306. [PMID: 30957857 PMCID: PMC6486805 DOI: 10.1093/gbe/evz070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2019] [Indexed: 01/01/2023] Open
Abstract
Exposure to low temperatures requires an organism to overcome physiological challenges. New Zealand wētā belonging to the genera Hemideina and Deinacrida are found across a wide range of thermal environments and therefore subject to varying selective pressures. Here we assess the selection pressures across the wētā phylogeny, with a particular emphasis on identifying genes under positive or diversifying selection. We used RNA-seq to generate transcriptomes for all 18 Deinacrida and Hemideina species. A total of 755 orthologous genes were identified using a bidirectional best-hit approach, with the resulting gene set encompassing a diverse range of functional classes. Analysis of ortholog ratios of synonymous to nonsynonymous amino acid changes found 83 genes that are under positive selection for at least one codon. A wide variety of Gene Ontology terms, enzymes, and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways are represented among these genes. In particular, enzymes involved in oxidative phosphorylation, melanin synthesis, and free-radical scavenging are represented, consistent with physiological and metabolic changes that are associated with adaptation to alpine environments. Structural alignment of the transcripts with the most codons under positive selection revealed that the majority of sites are surface residues, and therefore have the potential to influence the thermostability of the enzyme, with the exception of prophenoloxidase where two residues near the active site are under selection. These proteins provide interesting candidates for further analysis of protein evolution.
Collapse
Affiliation(s)
- Victoria G Twort
- School of Biological Sciences, University of Auckland, New Zealand.,Manaaki Whenua - Landcare Research, Auckland, New Zealand.,Department of Biology, Lund University, Lund, Sweden
| | - Richard D Newcomb
- School of Biological Sciences, University of Auckland, New Zealand.,The New Zealand Institute for Plant & Food Research Ltd, Auckland, New Zealand
| | - Thomas R Buckley
- School of Biological Sciences, University of Auckland, New Zealand.,Manaaki Whenua - Landcare Research, Auckland, New Zealand
| |
Collapse
|
8
|
Twort VG, Dennis AB, Park D, Lomas KF, Newcomb RD, Buckley TR. Positive selection and comparative molecular evolution of reproductive proteins from New Zealand tree weta (Orthoptera, Hemideina). PLoS One 2017; 12:e0188147. [PMID: 29131842 PMCID: PMC5683631 DOI: 10.1371/journal.pone.0188147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 11/01/2017] [Indexed: 11/18/2022] Open
Abstract
Animal reproductive proteins, especially those in the seminal fluid, have been shown to have higher levels of divergence than non-reproductive proteins and are often evolving adaptively. Seminal fluid proteins have been implicated in the formation of reproductive barriers between diverging lineages, and hence represent interesting candidates underlying speciation. RNA-seq was used to generate the first male reproductive transcriptome for the New Zealand tree weta species Hemideina thoracica and H. crassidens. We identified 865 putative reproductive associated proteins across both species, encompassing a diverse range of functional classes. Candidate gene sequencing of nine genes across three Hemideina, and two Deinacrida species suggests that H. thoracica has the highest levels of intraspecific genetic diversity. Non-monophyly was observed in the majority of sequenced genes indicating that either gene flow may be occurring between the species, or that reciprocal monophyly at these loci has yet to be attained. Evidence for positive selection was found for one lectin-related reproductive protein, with an overall omega of 7.65 and one site in particular being under strong positive selection. This candidate gene represents the first step in the identification of proteins underlying the evolutionary basis of weta reproduction and speciation.
Collapse
Affiliation(s)
- Victoria G. Twort
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Landcare Research, Auckland, New Zealand
- * E-mail:
| | | | | | | | - Richard D. Newcomb
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- The New Zealand Institute for Plant and Food Research Ltd, Auckland, New Zealand
| | - Thomas R. Buckley
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Landcare Research, Auckland, New Zealand
| |
Collapse
|
9
|
Morgan-Richards M, Bulgarella M, Sivyer L, Dowle EJ, Hale M, McKean NE, Trewick SA. Explaining large mitochondrial sequence differences within a population sample. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170730. [PMID: 29291063 PMCID: PMC5717637 DOI: 10.1098/rsos.170730] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/26/2017] [Indexed: 06/07/2023]
Abstract
Mitochondrial DNA sequence is frequently used to infer species' boundaries, as divergence is relatively rapid when populations are reproductively isolated. However, the shared history of a non-recombining gene naturally leads to correlation of pairwise differences, resulting in mtDNA clusters that might be mistaken for evidence of multiple species. There are four distinct processes that can explain high levels of mtDNA sequence difference within a single sample. Here, we examine one case in detail as an exemplar to distinguish among competing hypotheses. Within our sample of tree wētā (Hemideina crassidens; Orthoptera), we found multiple mtDNA haplotypes for a protein-coding region (cytb/ND1) that differed by a maximum of 7.9%. From sequencing the whole mitochondrial genome of two representative individuals, we found evidence of constraining selection. Heterozygotes were as common as expected under random mating at five nuclear loci. Morphological traits and nuclear markers did not resolve the mtDNA groupings of individuals. We concluded that the large differences found among our sample of mtDNA sequences were simply owing to a large population size over an extended period of time allowing an equilibrium between mutation and drift to retain a great deal of genetic diversity within a single species.
Collapse
Affiliation(s)
| | - Mariana Bulgarella
- Ecology, Massey University, Private Bag 11 222, Palmerston North, New Zealand
| | - Louisa Sivyer
- Ecology, Massey University, Private Bag 11 222, Palmerston North, New Zealand
| | - Edwina J. Dowle
- Department of Integrative Biology, University of Colorado, 1151 Arapahoe, SI 2071, Denver, CO 80204, USA
| | - Marie Hale
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Natasha E. McKean
- Ecology, Massey University, Private Bag 11 222, Palmerston North, New Zealand
| | - Steven A. Trewick
- Ecology, Massey University, Private Bag 11 222, Palmerston North, New Zealand
| |
Collapse
|
10
|
Small-scale spatial and temporal variation of life-history traits of common frogs (Rana temporaria) in sub-Arctic Finland. Polar Biol 2017. [DOI: 10.1007/s00300-017-2081-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
King KJ, Sinclair BJ. Water loss in tree weta (Hemideina): adaptation to the montane environment and a test of the melanisation-desiccation resistance hypothesis. ACTA ACUST UNITED AC 2016; 218:1995-2004. [PMID: 26157158 DOI: 10.1242/jeb.118711] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Montane insects are at a higher risk of desiccation than their lowland counterparts and are expected to have evolved reduced water loss. Hemideina spp. (tree weta; Orthoptera: Anostostomatidae) have both lowland (Hemideina femorata, Hemideina crassidens and Hemideina thoracica) and montane (Hemideina maori and Hemideina ricta) species. H. maori has both melanic and yellow morphs. We use these weta to test two hypotheses: that montane insects lose water more slowly than lowland species, and that cuticular water loss rates are lower in darker insects than lighter morphs, because of incorporation of melanin in the cuticle. We used flow-through respirometry to compare water loss rates among Hemideina species and found that montane weta have reduced cuticular water loss by 45%, reduced respiratory water loss by 55% and reduced the molar ratio of V̇H2 O:V̇CO2 by 64% compared with lowland species. Within H. maori, cuticular water loss was reduced by 46% when compared with yellow morphs. Removal of cuticular hydrocarbons significantly increased total water loss in both melanic and yellow morphs, highlighting the role that cuticular hydrocarbons play in limiting water loss; however, the dark morph still lost water more slowly after removal of cuticular hydrocarbons (57% less), supporting the melanisation-desiccation resistance hypothesis.
Collapse
Affiliation(s)
- Keith J King
- Department of Zoology, University of Otago, Dunedin 9054, New Zealand
| | - Brent J Sinclair
- Department of Biology, University of Western Ontario, London, Ontario, Canada N6A 5B7
| |
Collapse
|