1
|
Neiva de Jesus J, Ribeiro Mesquita PR, Barbosa da Silva K, de Medeiros Rodrigues F, Lopes de Carvalho CA, Gomes da Costa J, Lima Aguiar CM. Volatile Organic Compounds from Offspring of Stingless Bee Sacrificed in Hygienic Behavior Test. Chem Biodivers 2024; 21:e202301641. [PMID: 38358043 DOI: 10.1002/cbdv.202301641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
This study shows the profile of volatile organic compounds (VOCs) from pupae and larvae of Melipona quadrifasciata anthidioides Lepeletier subjected to three death induction techniques for hygienic behavior (HB) studies: freezing in liquid nitrogen (LN2), freezing in a freezer (FRZ) and piercing of offspring with an entomological pin (PIN). The VOCs from larvae and pupae were obtained through headspace solid-phase microextraction and characterized using gas chromatography coupled to mass spectrometry. In addition, an HB test was performed on the colonies. The main classes of VOCs were hydrocarbons, terpenes and alcohols. Multivariate analysis was applied and showed that there was a separation in the compound profiles between the different treatments. The HB test in the colonies showed that 24 hours after the application of the techniques, the bees removed more dead larvae in LN2 treatment (83.5 %), while after 48 hours more larvae were removed in the LN2 and FRZ treatments (92.3 %). When compared to pupae removal, larvae removal was significantly faster in LN2.
Collapse
Affiliation(s)
- Jossimara Neiva de Jesus
- Agricultural Technological Center of the State of Bahia, Ondina, CEP, 40170-110, n° 967, Salvador, Bahia, Brazil
- Universidade Federal do Recôncavo da Bahia, CEP, 44380-000, n° 710, Cruz das Almas, Bahia, Brasil
| | | | - Kelly Barbosa da Silva
- Agricultural Technological Center of the State of Bahia, Ondina, CEP, 40170-110, n° 967, Salvador, Bahia, Brazil
| | | | | | - João Gomes da Costa
- Empresa Brasileira de Pesquisa Agropecuária - Embrapa Alimentos e Territórios, CEP, 57020-050, n° 348, Maceió, Alagoas, Brasil
| | | |
Collapse
|
2
|
Noël A, Dumas C, Rottier E, Beslay D, Costagliola G, Ginies C, Nicolè F, Rau A, Le Conte Y, Mondet F. Detailed chemical analysis of honey bee (Apis mellifera) worker brood volatile profile from egg to emergence. PLoS One 2023; 18:e0282120. [PMID: 36809298 PMCID: PMC9943000 DOI: 10.1371/journal.pone.0282120] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 02/07/2023] [Indexed: 02/23/2023] Open
Abstract
Chemical communication is a widely used mode of communication for social insects and has been demonstrated to be involved in many behaviours and physiological processes such as reproduction, nutrition or the fight against parasites and pathogens. In the honey bee, Apis mellifera, the release of chemical compounds by the brood plays a role in worker behaviour, physiology, and foraging activities and colony health as a whole. Several compounds have already been described as brood pheromones, such as components of the brood ester pheromone and (E)-β-ocimene. Several other compounds originating from diseased or varroa-infested brood cells have been described as triggering the hygienic behaviour of workers. So far, studies of brood emissions have focused on specific stages of development and little is known about the emission of volatile organic compounds by the brood. In this study, we investigate the semiochemical profile of worker honey bee brood during its whole developmental cycle, from egg to emergence, with a specific focus on volatile organic compounds. We describe variation in emissions of thirty-two volatile organic compounds between brood stages. We highlight candidate compounds that are particularly abundant in specific stages and discuss their potential biological significance.
Collapse
Affiliation(s)
- Amélie Noël
- INRAE, UR 406 Abeilles et Environnement, Avignon, France
- * E-mail: ,
| | - Charlène Dumas
- INRAE, UR 406 Abeilles et Environnement, Avignon, France
| | | | | | - Guy Costagliola
- INRAE, UR 1115 Plantes et Systèmes de Culture Horticoles, Avignon, France
| | - Christian Ginies
- INRAE, UMR 408 Sécurité et Qualité des Produits d’Origine Végétale, Avignon, France
| | - Florence Nicolè
- Université de Lyon, UJM-Saint-Etienne, CNRS, LBVpam, Saint-Étienne, France
| | - Andrea Rau
- INRAE, UMR 1313 Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
- BioEcoAgro Joint Research Unit, INRAE, Université de Liège, Université de Lille, Université de Picardie Jules Verne, Estrées-Mons, France
| | - Yves Le Conte
- INRAE, UR 406 Abeilles et Environnement, Avignon, France
| | - Fanny Mondet
- INRAE, UR 406 Abeilles et Environnement, Avignon, France
| |
Collapse
|
3
|
Milutinović B, Schmitt T. Chemical cues in disease recognition and their immunomodulatory role in insects. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100884. [PMID: 35151903 DOI: 10.1016/j.cois.2022.100884] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Preventing infections is crucial for host fitness and many insects modify their behaviour upon sensing a contagion. We review chemical cues that mediate insect behaviour in response to parasites, and diseased or dead conspecifics. Considering the large diversity of behavioural disease defences described, surprisingly little is known about disease-associated cues that mediate them, especially their chemoreceptor and neuronal details. Interestingly, disease cues do not only modify host behaviour, but they could also play a direct role in immune system activation via neuroendocrine regulation, bypassing the need for risky immunological contact with the parasite. Such crosstalk is an exciting emerging research area in insect ecological immunology that should prove invaluable in studying host-parasite interactions by combining analytical methods from chemical ecology.
Collapse
Affiliation(s)
- Barbara Milutinović
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, 48149 Münster, Germany; Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia.
| | - Thomas Schmitt
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| |
Collapse
|
4
|
Bąk B, Wilk J, Artiemjew P, Wilde J. Recording the Presence of Peanibacillus larvae larvae Colonies on MYPGP Substrates Using a Multi-Sensor Array Based on Solid-State Gas Sensors. SENSORS 2021; 21:s21144917. [PMID: 34300655 PMCID: PMC8309915 DOI: 10.3390/s21144917] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/09/2021] [Accepted: 07/11/2021] [Indexed: 11/23/2022]
Abstract
American foulbrood is a dangerous disease of bee broods found worldwide, caused by the Paenibacillus larvae larvae L. bacterium. In an experiment, the possibility of detecting colonies of this bacterium on MYPGP substrates (which contains yeast extract, Mueller-Hinton broth, glucose, K2HPO4, sodium pyruvate, and agar) was tested using a prototype of a multi-sensor recorder of the MCA-8 sensor signal with a matrix of six semiconductors: TGS 823, TGS 826, TGS 832, TGS 2600, TGS 2602, and TGS 2603 from Figaro. Two twin prototypes of the MCA-8 measurement device, M1 and M2, were used in the study. Each prototype was attached to two laboratory test chambers: a wooden one and a polystyrene one. For the experiment, the strain used was P. l. larvae ATCC 9545, ERIC I. On MYPGP medium, often used for laboratory diagnosis of American foulbrood, this bacterium produces small, transparent, smooth, and shiny colonies. Gas samples from over culture media of one- and two-day-old foulbrood P. l. larvae (with no colonies visible to the naked eye) and from over culture media older than 2 days (with visible bacterial colonies) were examined. In addition, the air from empty chambers was tested. The measurement time was 20 min, including a 10-min testing exposure phase and a 10-min sensor regeneration phase. The results were analyzed in two variants: without baseline correction and with baseline correction. We tested 14 classifiers and found that a prototype of a multi-sensor recorder of the MCA-8 sensor signal was capable of detecting colonies of P. l. larvae on MYPGP substrate with a 97% efficiency and could distinguish between MYPGP substrates with 1–2 days of culture, and substrates with older cultures. The efficacy of copies of the prototypes M1 and M2 was shown to differ slightly. The weighted method with Canberra metrics (Canberra.811) and kNN with Canberra and Manhattan metrics (Canberra. 1nn and manhattan.1nn) proved to be the most effective classifiers.
Collapse
Affiliation(s)
- Beata Bąk
- Department of Poultry Science and Apiculture, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Sloneczna 48, 10-957 Olsztyn, Poland; (J.W.); (J.W.)
- Correspondence:
| | - Jakub Wilk
- Department of Poultry Science and Apiculture, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Sloneczna 48, 10-957 Olsztyn, Poland; (J.W.); (J.W.)
| | - Piotr Artiemjew
- Faculty of Mathematics and Computer Science, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Jerzy Wilde
- Department of Poultry Science and Apiculture, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Sloneczna 48, 10-957 Olsztyn, Poland; (J.W.); (J.W.)
| |
Collapse
|
5
|
Kathe E, Seidelmann K, Lewkowski O, Le Conte Y, Erler S. Changes in chemical cues of Melissococcus plutonius infected honey bee larvae. CHEMOECOLOGY 2021. [DOI: 10.1007/s00049-021-00339-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AbstractEuropean foulbrood (EFB), caused by Melissococcus plutonius, is a globally distributed bacterial brood disease affecting Apis mellifera larvae. There is some evidence, even if under debate, that spreading of the disease within the colony is prevented by worker bees performing hygienic behaviour, including detection and removal of infected larvae. Olfactory cues (brood pheromones, signature mixtures, diagnostic substances) emitted by infected individuals may play a central role for hygienic bees to initiate the disease-specific behaviour. However, the mechanisms of cue detection and brood removal, causing hygienic behaviour in EFB affected colonies, are poorly understood. Here, coupled gas chromatography-mass spectrometry (GC–MS) was used to detect disease-specific substances, changes in cuticular hydrocarbon (CHC) profiles, and brood ester pheromones (BEPs) of honey bee larvae artificially infected with M. plutonius. Although no diagnostic substances were found in significant quantities, discriminant analysis revealed specific differences in CHC and BEP profiles of infected and healthy larvae. β-Ocimene, a volatile brood pheromone related to starvation and hygienic behaviour, was present in all larvae with highest quantities in healthy young larvae; whereas oleic acid, a non-volatile necromone, was present only in old infected larvae. Furthermore, γ-octalactone (newly discovered in A. mellifera in this study) was detectable in trace amounts only in infected larvae. We propose that the deviation from the olfactory profile of healthy brood is supposed to trigger hygienic behaviour in worker bees. To confirm the relevance of change in the chemical bouquet (CHCs, BEPs, γ-octalactone, etc.), a field colony bioassay is needed, using healthy brood and hygienic bees to determine if bouquet changes elicit hygienic behaviour.
Collapse
|