1
|
Meuti ME, Fyie LR, Fiorta M, Denlinger DL. Trade-offs between Winter Survival and Reproduction in Female Insects. Integr Comp Biol 2024; 64:1667-1678. [PMID: 38664063 DOI: 10.1093/icb/icae027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 12/21/2024] Open
Abstract
In temperate environments, most species of insects enter an arrested state of development, known as diapause, that enables them to survive the adverse environmental conditions associated with winter. Although diapause is restricted to a single life stage within species of insects, there are examples of insects that overwinter in the egg, larval, pupal, and adult stages. Here we offer a targeted, non-systematic literature review examining how overwintering impacts subsequent reproduction in female insects. Several factors, including the lifestage at which insects overwinter, the type of energy investment strategy females use for breeding, elements of the winter environment, and contributions from male insects can influence trade-offs that female insects face between overwintering survival and post-diapause reproduction. Additionally, climate change and elements of the urban environment, including light pollution and higher temperatures in cities, can exacerbate or ameliorate trade-offs faced by reproducing female insects. Better understanding the trade-offs between overwintering survival and reproduction in insects not only enhances our understanding of the underlying physiological mechanisms and ecological processes governing diapause and reproduction, but also provides opportunities to better manage insect pests and/or support beneficial insects.
Collapse
Affiliation(s)
- Megan E Meuti
- Department of Entomology, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Lydia R Fyie
- Department of Entomology, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Maria Fiorta
- Department of Entomology, The Ohio State University, Columbus, Ohio, 43210, USA
| | - David L Denlinger
- Department of Entomology, The Ohio State University, Columbus, Ohio, 43210, USA
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, Ohio, 43210, USA
| |
Collapse
|
2
|
von Schmalensee L, Süess P, Roberts KT, Gotthard K, Lehmann P. A quantitative model of temperature-dependent diapause progression. Proc Natl Acad Sci U S A 2024; 121:e2407057121. [PMID: 39196619 PMCID: PMC11388385 DOI: 10.1073/pnas.2407057121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/16/2024] [Indexed: 08/29/2024] Open
Abstract
Winter diapause in insects is commonly terminated through cold exposure, which, like vernalization in plants, prevents development before spring arrives. Currently, quantitative understanding of the temperature dependence of diapause termination is limited, likely because diapause phenotypes are generally cryptic to human eyes. We introduce a methodology to tackle this challenge. By consecutively moving butterfly pupae of the species Pieris napi from several different cold conditions to 20 °C, we show that diapause termination proceeds as a temperature-dependent rate process, with maximal rates at relatively cold temperatures and low rates at warm and extremely cold temperatures. Further, we show that the resulting thermal reaction norm can predict P. napi diapause termination timing under variable temperatures. Last, we show that once diapause is terminated in P. napi, subsequent development follows a typical thermal performance curve, with a maximal development rate at around 31 °C and a minimum at around 2 °C. The sequence of these thermally distinct processes (diapause termination and postdiapause development) facilitates synchronous spring eclosion in nature; cold microclimates where diapause progresses quickly do not promote fast postdiapause development, allowing individuals in warmer winter microclimates to catch up, and vice versa. The unveiling of diapause termination as one temperature-dependent rate process among others promotes a parsimonious, quantitative, and predictive model, wherein winter diapause functions both as an adaptation against premature development during fall and winter and for synchrony in spring.
Collapse
Affiliation(s)
- Loke von Schmalensee
- Department of Zoology, Stockholm University, Stockholm 10691, Sweden
- RT4, Climate, Ecosystems and Biodiversity, Bolin Centre for Climate Research, Stockholm University, Stockholm 10691, Sweden
| | - Philip Süess
- Department of Zoology, Stockholm University, Stockholm 10691, Sweden
| | - Kevin T Roberts
- Department of Zoology, Stockholm University, Stockholm 10691, Sweden
- Department of Animal Physiology, Zoological Institute and Museum, University of Greifswald, Greifswald 17489, Germany
| | - Karl Gotthard
- Department of Zoology, Stockholm University, Stockholm 10691, Sweden
- RT4, Climate, Ecosystems and Biodiversity, Bolin Centre for Climate Research, Stockholm University, Stockholm 10691, Sweden
| | - Philipp Lehmann
- Department of Zoology, Stockholm University, Stockholm 10691, Sweden
- Department of Animal Physiology, Zoological Institute and Museum, University of Greifswald, Greifswald 17489, Germany
| |
Collapse
|
3
|
Schebeck M, Lehmann P, Laparie M, Bentz BJ, Ragland GJ, Battisti A, Hahn DA. Seasonality of forest insects: why diapause matters. Trends Ecol Evol 2024; 39:757-770. [PMID: 38777634 DOI: 10.1016/j.tree.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
Insects have major impacts on forest ecosystems, from herbivory and soil-nutrient cycling to killing trees at a large scale. Forest insects from temperate, tropical, and subtropical regions have evolved strategies to respond to seasonality; for example, by entering diapause, to mitigate adversity and to synchronize lifecycles with favorable periods. Here, we show that distinct functional groups of forest insects; that is, canopy dwellers, trunk-associated species, and soil/litter-inhabiting insects, express a variety of diapause strategies, but do not show systematic differences in diapause strategy depending on functional group. Due to the overall similarities in diapause strategies, we can better estimate the impacts of anthropogenic change on forest insect populations and, consequently, on key ecosystems.
Collapse
Affiliation(s)
- Martin Schebeck
- Institute of Forest Entomology, Forest Pathology and Forest Protection, Department of Forest and Soil Sciences, BOKU University, A-1190 Vienna, Austria.
| | - Philipp Lehmann
- Department of Animal Physiology, Zoological Institute and Museum, University of Greifswald, D-17489 Greifswald, Germany; Department of Zoology, Stockholm University, SE-10691 Stockholm, Sweden; Bolin Centre for Climate Research, SE-10691 Stockholm, Sweden
| | | | - Barbara J Bentz
- US Department of Agriculture, Forest Service, Rocky Mountain Research Station, Logan, UT 84321, USA
| | - Gregory J Ragland
- Department of Integrative Biology, University of Colorado-Denver, Denver, CO 80204, USA
| | - Andrea Battisti
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, I-35020 Legnaro, Italy
| | - Daniel A Hahn
- Department of Entomology and Nematology, University of Florida, Gainesville, FL 32611-0620, USA
| |
Collapse
|
4
|
Cedden D, Güney G, Toprak U. The integral role of de novo lipogenesis in the preparation for seasonal dormancy. Proc Natl Acad Sci U S A 2024; 121:e2406194121. [PMID: 38990942 PMCID: PMC11260141 DOI: 10.1073/pnas.2406194121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/11/2024] [Indexed: 07/13/2024] Open
Abstract
Animals can alter their body compositions in anticipation of dormancy to endure seasons with limited food availability. Accumulation of lipid reserves, mostly in the form of triglycerides (TAGs), is observed during the preparation for dormancy in diverse animals, including insects (diapause) and mammals (hibernation). However, the mechanisms involved in the regulation of lipid accumulation and the ecological consequences of failure to accumulate adequate lipid stores in preparation for animal dormancy remain understudied. In the broadest sense, lipid reserves can be accumulated in two ways: the animal either receives lipids directly from the environment or converts the sugars and amino acids present in food to fatty acids through de novo lipogenesis and then to TAGs. Here, we show that preparation for diapause in the Colorado potato beetle (Leptinotarsa decemlineata) involves orchestrated upregulation of genes involved in lipid metabolism with a transcript peak in 8- and 10-d-old diapause-destined insects. Regulation at the transcript abundance level was associated with the accumulation of substantial fat stores. Furthermore, the knockdown of de novo lipogenesis enzymes (ACCase and FAS-1) prolonged the preparatory phase, while the knockdown of fatty acid transportation genes shortened the preparatory phase. Our findings suggest a model in which the insects dynamically decide when to transition from the preparation phase into diapause, depending on the progress in lipid accumulation through de novo lipogenesis.
Collapse
Affiliation(s)
- Doga Cedden
- Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara06110, Türkiye
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, Göttingen Center for Molecular Biosciences, University of Göttingen, Göttingen37077, Germany
| | - Gözde Güney
- Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara06110, Türkiye
- Agricultural Entomology, Department of Crop Sciences, University of Göttingen, Göttingen37077, Germany
| | - Umut Toprak
- Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara06110, Türkiye
| |
Collapse
|
5
|
Dorian NN. Voltinism of a solitary bee was influenced by temperature but not provision size. Oecologia 2024; 205:245-256. [PMID: 38850313 DOI: 10.1007/s00442-024-05580-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
Changes in the timing and duration of life cycles are distinctive fingerprints of environmental change. Yet, the biotic and abiotic cues underpinning phenology and voltinism, i.e., number of generations per year, are poorly understood. Here, I experimentally test how temperature and provision size influence voltinism and survival to emergence in a solitary bee Colletes validus, and how temperature influences voltinism in the brood parasite Tricrania sanguinipennis. Within the same population, univoltine individuals emerge after 1 year (1-year form), whereas semivoltine individuals enter prolonged dormancy and emerge after 2 years (2-year form). I reared field-collected bees under 2 × 2 factorial experiments with cool (18.5 °C ± 0.5 °C) vs. warm (24 °C ± 0.5 °C) temperature treatments (bees and beetles) and no supplement vs. supplemental food treatments (+ 20% ± 5% pollen provision by mass); beetles were reared under temperature treatments only. Cool temperatures consistently increased the proportion of 2-year bees regardless of provision size, a finding that was consistent with three years of field observations. There was a demographic cost to prolonged dormancy in that both 1- and 2-year bees survived to emergence as adults, but survival of 2-year bees was approximately 50% lower than 1-year bees. Two-year beetles were produced under cooler temperatures, but unlike bees, beetles had nearly perfect survival to emergence in all treatments. This experiment advances our mechanistic understanding of the environmental drivers of voltinism in diverse insect taxa and underscores the importance of considering cryptic life stages when interpreting responses to environmental change.
Collapse
Affiliation(s)
- Nicholas N Dorian
- Department of Biology, Tufts University, 200 College Avenue, Medford, MA, USA.
- Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden, 1000 Lake Cook Road, Glencoe, IL, 60022, USA.
| |
Collapse
|
6
|
Short CA, Walters JL, Hahn DA. Bigger isn't always better: Challenging assumptions about the associations between diapause, body weight, and overwintering survival. Ecol Evol 2024; 14:e11511. [PMID: 38835525 PMCID: PMC11148123 DOI: 10.1002/ece3.11511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/06/2024] [Accepted: 05/16/2024] [Indexed: 06/06/2024] Open
Abstract
During the winter, animals face limited food availability. Many animals enter dormancy to reduce their winter energy expenditure. Most insects spend the winter in diapause, a state of programmed dormancy. It is often assumed that diapausing insects need nutrient stores to fuel their many months of basal metabolism and must grow heavier than their non-diapause-programmed counterparts. However, the extent to which food limitation affects body weight during overwintering preparation as well as the likelihood and duration of diapause remains unclear. We limited the duration of the feeding period and thus the total quantity of food available to diapause-destined larvae of the pupal-diapausing flesh fly, Sarcophaga crassipalpis, to test how food limitation affects body weight in the context of diapause programming. We also tested the extent to which food deprivation and body weight affect the likelihood and duration of diapause. We hypothesized that diapause-destined larvae grow more quickly and pupariate at a heavier body weight than non-diapause larvae. We also hypothesized that body weight is more dramatically reduced by food limitations when a larva is programmed for diapause. Finally, we hypothesized that larvae with lighter body weight (i.e., food limited) are less likely to enter pupal diapause and also stay in diapause for a shorter duration than heavier, well-fed, individuals. Contrary to our hypotheses that diapausing insects are heavier than their non-diapausing counterparts, we found diapausing pupae weighed less than non-diapausing pupae, especially when larvae received limited food. We found light pupae did not abort their diapause program. In both diapausing and non-diapausing pupae, body weight was positively correlated with simulated winter survival. However, above a weight threshold, body weight no longer affected simulated winter survival in diapausing pupae. Contrary to our predictions and the general consensus in much of the diapause literature, we also found that lighter pupae stayed in diapause longer than heavier pupae. Overall, our results challenge the precept that body weight and diapause are positively associated. The relationship between body weight and diapause is complex and may be affected by the availability of food before and after winter, the availability of high-quality overwintering sites, and the life history of a particular insect.
Collapse
Affiliation(s)
- Clancy A Short
- Department of Entomology and Nematology The University of Florida Gainesville Florida USA
| | - Jared L Walters
- Department of Entomology and Nematology The University of Florida Gainesville Florida USA
| | - Daniel A Hahn
- Department of Entomology and Nematology The University of Florida Gainesville Florida USA
| |
Collapse
|
7
|
Wos G, Palomar G, Golab MJ, Marszałek M, Sniegula S. Effects of overwintering on the transcriptome and fitness traits in a damselfly with variable voltinism across two latitudes. Sci Rep 2024; 14:12192. [PMID: 38806592 PMCID: PMC11133422 DOI: 10.1038/s41598-024-63066-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/24/2024] [Indexed: 05/30/2024] Open
Abstract
Winter diapause consists of cessation of development that allows individuals to survive unfavourable conditions. Winter diapause may bear various costs and questions have been raised about the evolutionary mechanisms maintaining facultative diapause. Here, we explored to what extent a facultative winter diapause affects life-history traits and the transcriptome in the damselfly Ischnura elegans, and whether these effects were latitude-specific. We collected adult females at central and high latitudes and raised their larvae in growth chambers. Larvae were split into a non-diapausing and post-winter (diapausing) cohort, were phenotyped and collected for a gene expression analysis. At the phenotypic level, we found no difference in survival between the two cohorts, and the post-winter cohort was larger and heavier than the non-winter cohort. These effects were mostly independent of the latitude of origin. At the transcriptomic level, wintering affected gene expression with a small fraction of genes significantly overlapping across latitudes, especially those related to morphogenesis. In conclusion, we found clear effects of diapause on the phenotype but little evidence for latitudinal-specific effects of diapause. Our results showed a shared transcriptomic basis underpinning diapause demonstrated, here, at the intraspecific level and supported the idea of evolutionary convergence of the response to diapause across organisms.
Collapse
Affiliation(s)
- Guillaume Wos
- Institute of Nature Conservation Polish Academy of Sciences, Al. Adama Mickiewicza 33, 31-120, Kraków, Poland.
| | - Gemma Palomar
- Institute of Nature Conservation Polish Academy of Sciences, Al. Adama Mickiewicza 33, 31-120, Kraków, Poland
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, José Antonio Novais, 12, 28040, Madrid, Spain
| | - Maria J Golab
- Institute of Nature Conservation Polish Academy of Sciences, Al. Adama Mickiewicza 33, 31-120, Kraków, Poland
| | - Marzena Marszałek
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Szymon Sniegula
- Institute of Nature Conservation Polish Academy of Sciences, Al. Adama Mickiewicza 33, 31-120, Kraków, Poland.
| |
Collapse
|
8
|
Ferguson LV, El Nabbout A, Adamo SA. Warming, but not infection with Borrelia burgdorferi, increases off-host winter activity in the ectoparasite, Ixodes scapularis. J Therm Biol 2024; 121:103853. [PMID: 38626664 DOI: 10.1016/j.jtherbio.2024.103853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/17/2024] [Indexed: 04/18/2024]
Abstract
Warming winters will change patterns of behaviour in temperate and polar arthropods, but we know little about the drivers of winter activity in animals such as ticks. Any changes in behaviour are likely to arise from a combination of both abiotic (e.g. temperature) and biotic (e.g. infection) drivers, and will have important consequences for survival and species interactions. Blacklegged ticks, Ixodes scapularis, have invaded Atlantic Canada and high proportions (30-50%) are infected with the bacteria causing Lyme disease, Borrelia burgdorferi. Infection is correlated with increased overwintering survival of adult females, and ticks are increasingly active in the winter, but it is unclear if infection is associated with activity. Further, we know little about how temperature drives the frequency of winter activity. Here, we exposed wild-caught, adult, female Ixodes scapularis ticks to three different winter temperature regimes (constant low temperatures, increased warming, and increased warming + variability) to determine the thermal and infection conditions that promote or suppress activity. We used automated behaviour monitors to track daily activity in individual ticks and repeated the study with fresh ticks over three years. Following exposure to winter conditions we determined whether ticks were infected with the bacteria B. burgdorferi and if infection was responsible for any patterns in winter activity. Warming conditions promoted increased activity throughout the overwintering period but infection with B. burgdorferi had no impact on the frequency or overall number of ticks active throughout the winter. Individual ticks varied in their levels of activity throughout the winter, such that some were largely dormant for several weeks, while others were active almost daily; however, we do not yet know the drivers behind this individual variation in behaviour. Overall, warming winters will heighten the risk of tick-host encounters.
Collapse
Affiliation(s)
- Laura V Ferguson
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4J1, Canada.
| | - Amal El Nabbout
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4J1, Canada
| | - Shelley A Adamo
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4J1, Canada
| |
Collapse
|
9
|
Athar F, Karmani M, Templeman N. Metabolic hormones are integral regulators of female reproductive health and function. Biosci Rep 2024; 44:BSR20231916. [PMID: 38131197 PMCID: PMC10830447 DOI: 10.1042/bsr20231916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/29/2023] [Accepted: 12/21/2023] [Indexed: 12/23/2023] Open
Abstract
The female reproductive system is strongly influenced by nutrition and energy balance. It is well known that food restriction or energy depletion can induce suppression of reproductive processes, while overnutrition is associated with reproductive dysfunction. However, the intricate mechanisms through which nutritional inputs and metabolic health are integrated into the coordination of reproduction are still being defined. In this review, we describe evidence for essential contributions by hormones that are responsive to food intake or fuel stores. Key metabolic hormones-including insulin, the incretins (glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1), growth hormone, ghrelin, leptin, and adiponectin-signal throughout the hypothalamic-pituitary-gonadal axis to support or suppress reproduction. We synthesize current knowledge on how these multifaceted hormones interact with the brain, pituitary, and ovaries to regulate functioning of the female reproductive system, incorporating in vitro and in vivo data from animal models and humans. Metabolic hormones are involved in orchestrating reproductive processes in healthy states, but some also play a significant role in the pathophysiology or treatment strategies of female reproductive disorders. Further understanding of the complex interrelationships between metabolic health and female reproductive function has important implications for improving women's health overall.
Collapse
Affiliation(s)
- Faria Athar
- Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Muskan Karmani
- Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Nicole M. Templeman
- Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| |
Collapse
|
10
|
Enriquez T, Visser B. The importance of fat accumulation and reserves for insect overwintering. CURRENT OPINION IN INSECT SCIENCE 2023; 60:101118. [PMID: 37739063 DOI: 10.1016/j.cois.2023.101118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
Winter is a challenging season for ectothermic species such as insects. In addition to thermal stress imposed by cold temperatures, food scarcity during winter can lead to starvation and energy drain. In preparation for winter, most insects accumulate lipid (fat) reserves, which are the principal source of energetic fuel during overwintering. In this review, we highlight the most recent literature on lipid metabolism in response to cold. We first discuss how lipid metabolism is affected by biotic and abiotic environmental changes in preparation for winter. We then highlight how lipid dynamics are affected during winter, including physiological and (epi)genetic mechanisms. We end our review emphasizing the importance of remaining fat reserves in spring and how climate change can negatively impact lipid metabolism and fitness.
Collapse
Affiliation(s)
- Thomas Enriquez
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary Entomology, University of Liège - Gembloux Agro-Bio Tech, Gembloux, Belgium.
| | - Bertanne Visser
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary Entomology, University of Liège - Gembloux Agro-Bio Tech, Gembloux, Belgium
| |
Collapse
|
11
|
Roberts KT, Szejner-Sigal A, Lehmann P. Seasonal energetics: are insects constrained by energy during dormancy? J Exp Biol 2023; 226:jeb245782. [PMID: 37921417 DOI: 10.1242/jeb.245782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
In seasonal environments, many animals, including insects, enter dormancy, where they are limited to a fixed energy budget. The inability to replenish energetic stores during these periods suggests insects should be constrained by pre-dormancy energy stores. Over the last century, the community of researchers working on survival during dormancy has operated under the strong assumption that energy limitation is a key fitness trait driving the evolution of seasonal strategies. That is, energy use has to be minimized during dormancy because insects otherwise run out of energy and die during dormancy, or are left with too little energy to complete development, reproductive maturation or other costly post-dormancy processes such as dispersal or nest building. But if energy is so strongly constrained during dormancy, how can some insects - even within the same species and population - be dormant in very warm environments or show prolonged dormancy for many successive years? In this Commentary, we discuss major assumptions regarding dormancy energetics and outline cases where insects appear to align with our assumptions and where they do not. We then highlight several research directions that could help link organismal energy use with landscape-level changes. Overall, the optimal energetic strategy during dormancy might not be to simply minimize metabolic rate, but instead to maintain a level that matches the demands of the specific life-history strategy. Given the influence of temperature on energy use rates of insects in winter, understanding dormancy energetic strategies is critical in order to determine the potential impacts of climate change on insects in seasonal environments.
Collapse
Affiliation(s)
- Kevin T Roberts
- Department of Zoology, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Andre Szejner-Sigal
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Philipp Lehmann
- Department of Zoology, Stockholm University, SE-106 91 Stockholm, Sweden
- Department of Animal Physiology, Zoological Institute and Museum, University of Greifswald, 17489 Greifswald, Germany
| |
Collapse
|
12
|
Lebenzon JE, Overgaard J, Jørgensen LB. Chilled, starved or frozen: Insect mitochondrial adaptations to overcome the cold. CURRENT OPINION IN INSECT SCIENCE 2023:101076. [PMID: 37331596 DOI: 10.1016/j.cois.2023.101076] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/20/2023]
Abstract
Physiological adaptations to tackle cold exposure are crucial for insects living in temperate and arctic environments and here we review how cold adaptation is manifested in terms of mitochondrial function. Cold challenges are diverse, and different insect species have evolved metabolic and mitochondrial adaptations to: i) energize homeostatic regulation at low temperature, ii) stretch energy reserves during prolonged cold exposure, and iii) preserve structural organization of organelles following extracellular freezing. While the literature is still sparse, our review suggests that cold-adapted insects preserve ATP production at low temperatures by maintaining preferred mitochondrial substrate oxidation, which is otherwise challenged in cold-sensitive species. Chronic cold exposure and metabolic depression during dormancy is linked to reduced mitochondrial metabolism and may involve mitochondrial degradation. Finally, adaptation to extracellular freezing could be associated with superior structural integrity of the mitochondrial inner membrane following freezing which is linked to cellular and organismal survival.
Collapse
Affiliation(s)
- Jacqueline E Lebenzon
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Johannes Overgaard
- Section for Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark.
| | | |
Collapse
|