1
|
Trejo‐Meléndez VJ, Ibarra‐Rendón J, Contreras‐Garduño J. The evolution of entomopathogeny in nematodes. Ecol Evol 2024; 14:e10966. [PMID: 38352205 PMCID: PMC10862191 DOI: 10.1002/ece3.10966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/06/2023] [Accepted: 01/02/2024] [Indexed: 02/16/2024] Open
Abstract
Understanding how parasites evolved is crucial to understand the host and parasite interaction. The evolution of entomopathogenesis in rhabditid nematodes has traditionally been thought to have occurred twice within the phylum Nematoda: in Steinernematidae and Heterorhabditidae families, which are associated with the entomopathogenic bacteria Xenorhabdus and Photorhabdus, respectively. However, nematodes from other families that are associated with entomopathogenic bacteria have not been considered to meet the criteria for "entomopathogenic nematodes." The evolution of parasitism in nematodes suggests that ecological and evolutionary properties shared by families in the order Rhabditida favor the convergent evolution of the entomopathogenic trait in lineages with diverse lifestyles, such as saprotrophs, phoretic, and necromenic nematodes. For this reason, this paper proposes expanding the term "entomopathogenic nematode" considering the diverse modes of this attribute within Rhabditida. Despite studies are required to test the authenticity of the entomopathogenic trait in the reported species, they are valuable links that represent the early stages of specialized lineages to entomopathogenic lifestyle. An ecological and evolutionary exploration of these nematodes has the potential to deepen our comprehension of the evolution of entomopathogenesis as a convergent trait spanning across the Nematoda.
Collapse
Affiliation(s)
- V. J. Trejo‐Meléndez
- Edificio de Investigación I, ENES, Unidad Morelia, UNAMMoreliaMichoacánMexico
- Posgrado en Ciencias Biológicas, ENES, Unidad Morelia, UNAMMoreliaMichoacánMexico
| | - J. Ibarra‐Rendón
- Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV) – IrapuatoIrapuatoGuanajuatoMexico
| | - J. Contreras‐Garduño
- Edificio de Investigación I, ENES, Unidad Morelia, UNAMMoreliaMichoacánMexico
- Institute for Evolution and BiodiversityUniversity of MünsterMünsterGermany
| |
Collapse
|
2
|
Awori RM, Hendre P, Amugune NO. The genome of a steinernematid-associated Pseudomonas piscis bacterium encodes the biosynthesis of insect toxins. Access Microbiol 2023; 5:000659.v3. [PMID: 37970093 PMCID: PMC10634486 DOI: 10.1099/acmi.0.000659.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/15/2023] [Indexed: 11/17/2023] Open
Abstract
Several species of soil-dwelling Steinernema nematodes are used in the biocontrol of crop pests, due to their natural capacity to kill diverse lepidopteran species. Although this insect-killing trait is known to be augmented by the nematodes' Xenorhabdus endosymbionts, the role of other steinernematid-associated bacterial genera in the nematode lifecycle remains unclear. This genomic study aimed to determine the potential of Pseudomonas piscis to contribute to the entomopathogenicity of its Steinernema host. Insect larvae were infected with three separate Steinernema cultures. From each of the three treatments, the prevalent bacteria in the haemocoel of cadavers, four days post-infection, were isolated. These three bacterial isolates were morphologically characterised. DNA was extracted from each of the three bacterial isolates and used for long-read genome sequencing and assembly. Assemblies were used to delineate species and identify genes that encode insect toxins, antimicrobials, and confer antibiotic resistance. We assembled three complete genomes. Through digital DNA-DNA hybridisation analyses, we ascertained that the haemocoels of insect cadavers previously infected with Steinernema sp. Kalro, Steinernema sp. 75, and Steinernema sp. 97 were dominated by Xenorhabdus griffiniae Kalro, Pseudomonas piscis 75, and X. griffiniae 97, respectively. X. griffiniae Kalro and X. griffiniae 97 formed a subspecies with other X. griffiniae symbionts of steinernematids from Kenya. P. piscis 75 phylogenetically clustered with pseudomonads that are characterised by high insecticidal activity. The P. piscis 75 genome encoded the production pathway of insect toxins such as orfamides and rhizoxins, antifungals such as pyrrolnitrin and pyoluteorin, and the broad-spectrum antimicrobial 2,4-diacetylphloroglucinol. The P. piscis 75 genome encoded resistance to over ten classes of antibiotics, including cationic lipopeptides. Steinernematid-associated P. piscis bacteria hence have the biosynthetic potential to contribute to nematode entomopathogenicity.
Collapse
Affiliation(s)
- Ryan Musumba Awori
- Elakistos Biosciences, P. O. Box 19301-00100, Nairobi, Kenya
- International Centre for Research on Agroforestry, P. O. Box 30677-00100, Nairobi, Kenya
| | - Prasad Hendre
- International Centre for Research on Agroforestry, P. O. Box 30677-00100, Nairobi, Kenya
| | - Nelson O. Amugune
- Department of Biology, University of Nairobi, P. O. Box 30197-00100, Nairobi, Kenya
| |
Collapse
|
3
|
Ogier JC, Akhurst R, Boemare N, Gaudriault S. The endosymbiont and the second bacterial circle of entomopathogenic nematodes. Trends Microbiol 2023; 31:629-643. [PMID: 36801155 DOI: 10.1016/j.tim.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 02/19/2023]
Abstract
Single host-symbiont interactions should be reconsidered from the perspective of the pathobiome. We revisit here the interactions between entomopathogenic nematodes (EPNs) and their microbiota. We first describe the discovery of these EPNs and their bacterial endosymbionts. We also consider EPN-like nematodes and their putative symbionts. Recent high-throughput sequencing studies have shown that EPNs and EPN-like nematodes are also associated with other bacterial communities, referred to here as the second bacterial circle of EPNs. Current findings suggest that some members of this second bacterial circle contribute to the pathogenic success of nematodes. We suggest that the endosymbiont and the second bacterial circle delimit an EPN pathobiome.
Collapse
Affiliation(s)
| | | | - Noël Boemare
- DGIMI, Univ Montpellier, INRAE, Montpellier, France
| | | |
Collapse
|
4
|
Zhang C, Wickham JD, Zhao L, Sun J. A new bacteria-free strategy induced by MaGal2 facilitates pinewood nematode escape immune response from its vector beetle. INSECT SCIENCE 2021; 28:1087-1102. [PMID: 32443173 DOI: 10.1111/1744-7917.12823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/24/2020] [Accepted: 05/04/2020] [Indexed: 05/17/2023]
Abstract
Symbiotic microbes play a crucial role in regulating parasite-host interactions; however, the role of bacterial associates in parasite-host interactions requires elucidation. In this study, we showed that, instead of introducing numerous symbiotic bacteria, dispersal of 4th-stage juvenile (JIV ) pinewood nematodes (PWNs), Bursaphelenchus xylophilus, only introduced few bacteria to its vector beetle, Monochamus alternatus (Ma). JIV showed weak binding ability to five dominant bacteria species isolated from the beetles' pupal chamber. This was especially the case for binding to the opportunistic pathogenic species Serratia marcescens; the nematodes' bacteria binding ability at this critical stage when it infiltrates Ma for dispersal was much weaker compared with Caenorhabditis elegans, Diplogasteroides asiaticus, and propagative-stage PWN. The associated bacterium S. marcescens, which was isolated from the beetles' pupal chambers, was unfavorable to Ma, because it caused a higher mortality rate upon injection into tracheae. In addition, S. marcescens in the tracheae caused more immune effector disorders compared with PWN alone. Ma_Galectin2 (MaGal2), a pattern-recognition receptor, was up-regulated following PWN loading. Recombinant MaGal2 protein formed aggregates with five dominant associated bacteria in vitro. Moreover, MaGal2 knockdown beetles had up-regulated prophenoloxidase gene expression, increased phenoloxidase activity, and decreased PWN loading. Our study revealed a previously unknown strategy for immune evasion of this plant pathogen inside its vector, and provides novel insights into the role of bacteria in parasite-host interactions.
Collapse
Affiliation(s)
- Chi Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Jacob D Wickham
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lilin Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Jianghua Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Ávila-López MB, García-Maldonado JQ, Estrada-Medina H, Hernández-Mena DI, Cerqueda-García D, Vidal-Martínez VM. First record of entomopathogenic nematodes from Yucatán State, México and their infectivity capacity against Aedes aegypti. PeerJ 2021; 9:e11633. [PMID: 34249499 PMCID: PMC8256808 DOI: 10.7717/peerj.11633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/27/2021] [Indexed: 11/20/2022] Open
Abstract
Background Biological control using entomopathogenic nematodes (EPN) has demonstrated good potential to contribute to the integral control of mosquito larvae, which as adults are vectors of diseases such as Dengue fever, Zika and Chikungunya. However, until now there are no records of the presence of EPN or their killing capacity in Yucatán state, southern México. The objectives of the current study were: (1) to report the entomopathogenic nematodes present in Yucatán soils and (2) to determine the killing capacity of the most frequent and abundant EPN against Aedes aegypti mosquito larvae and the microbial community developed by Ae. Aegypti exposed to this EPN. Methods The nematodes were collected by the insect trap technique using the great wax moth Galleria mellonella. Internal transcribed spacer (ITS), 28S gene of ribosomal DNA and phylogenetic analyses were performed to identify the EPN. For the bioassay, four concentrations of the most frequent and abundant EPN were tested: 1,260:1 infective juveniles (IJs) per mosquito larvae, 2,520 IJs:1, 3,780 IJs:1 and 5,040 IJs:1. High-throughput sequencing of the 16S rRNA gene was used to identify bacterial amplicon sequences in the mosquito larvae infected with EPN. Results Six isolates of Heterorhabditis were recovered from 144 soil samples. Heterorhabditis indica (four isolates) was the most frequent and abundant EPN, followed by Heterorhabditis n. sp. (two isolates). Both nematodes are reported for the first time for Yucatán state, Mexico. The concentration of 2,520 IJs:1 produced 80% of mosquito larvae mortality in 48 h. Representative members of Photorhabdus genus were numerically dominant (74%) in mosquito larvae infected by H. indica. It is most likely that these bacteria produce secondary toxic metabolites that enhance the mortality of these mosquito larvae.
Collapse
Affiliation(s)
- Mariana B Ávila-López
- Aquatic Pathology Laboratory. Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Mérida, Carretera Antigua a Progreso,, Mérida, Yucatán, México
| | - José Q García-Maldonado
- Aquatic Pathology Laboratory. Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Mérida, Carretera Antigua a Progreso,, Mérida, Yucatán, México
| | - Héctor Estrada-Medina
- Facultad de Medicina Veterinaria y Zootecnia, Departamento de Manejo y Conservación de Recursos Naturales Tropicales, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - David I Hernández-Mena
- Aquatic Pathology Laboratory. Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Mérida, Carretera Antigua a Progreso,, Mérida, Yucatán, México
| | - Daniel Cerqueda-García
- Aquatic Pathology Laboratory. Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Mérida, Carretera Antigua a Progreso,, Mérida, Yucatán, México
| | - Víctor M Vidal-Martínez
- Aquatic Pathology Laboratory. Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Mérida, Carretera Antigua a Progreso,, Mérida, Yucatán, México
| |
Collapse
|
6
|
Thappeta KRV, Ciezki K, Morales-Soto N, Wesener S, Goodrich-Blair H, Stock SP, Forst S. R-type bacteriocins of Xenorhabdus bovienii determine the outcome of interspecies competition in a natural host environment. MICROBIOLOGY-SGM 2020; 166:1074-1087. [PMID: 33064635 DOI: 10.1099/mic.0.000981] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Xenorhabdus species are bacterial symbionts of Steinernema nematodes and pathogens of susceptible insects. Different species of Steinernema nematodes carrying specific species of Xenorhabdus can invade the same insect, thereby setting up competition for nutrients within the insect environment. While Xenorhabdus species produce both diverse antibiotic compounds and prophage-derived R-type bacteriocins (xenorhabdicins), the functions of these molecules during competition in a host are not well understood. Xenorhabdus bovienii (Xb-Sj), the symbiont of Steinernema jollieti, possesses a remnant P2-like phage tail cluster, xbp1, that encodes genes for xenorhabdicin production. We show that inactivation of either tail sheath (xbpS1) or tail fibre (xbpH1) genes eliminated xenorhabdicin production. Preparations of Xb-Sj xenorhabdicin displayed a narrow spectrum of activity towards other Xenorhabdus and Photorhabdus species. One species, Xenorhabdus szentirmaii (Xsz-Sr), was highly sensitive to Xb-Sj xenorhabdicin but did not produce xenorhabdicin that was active against Xb-Sj. Instead, Xsz-Sr produced high-level antibiotic activity against Xb-Sj when grown in complex medium and lower levels when grown in defined medium (Grace's medium). Conversely, Xb-Sj did not produce detectable levels of antibiotic activity against Xsz-Sr. To study the relative contributions of Xb-Sj xenorhabdicin and Xsz-Sr antibiotics in interspecies competition in which the respective Xenorhabdus species produce antagonistic activities against each other, we co-inoculated cultures with both Xenorhabdus species. In both types of media Xsz-Sr outcompeted Xb-Sj, suggesting that antibiotics produced by Xsz-Sr determined the outcome of the competition. In contrast, Xb-Sj outcompeted Xsz-Sr in competitions performed by co-injection in the insect Manduca sexta, while in competition with the xenorhabdicin-deficient strain (Xb-Sj:S1), Xsz-Sr was dominant. Thus, xenorhabdicin was required for Xb-Sj to outcompete Xsz-Sr in a natural host environment. These results highlight the importance of studying the role of antagonistic compounds under natural biological conditions.
Collapse
Affiliation(s)
- Kishore Reddy Venkata Thappeta
- University of Wisconsin, Milwaukee, WI, USA.,Singapore Institute of Food and Biotechnology Innovation (SIFBI), A*STAR, Singapore
| | - Kristin Ciezki
- Aurora Health Care, Milwaukee, WI, USA.,University of Wisconsin, Milwaukee, WI, USA
| | - Nydia Morales-Soto
- Eck Institute for Global Health, University of Notre Dame, IN, USA.,University of Wisconsin, Milwaukee, WI, USA
| | | | - Heidi Goodrich-Blair
- University of Tennessee, Knoxville, TN, USA.,University of Wisconsin, Madison, WI, USA
| | | | | |
Collapse
|
7
|
Cambon MC, Lafont P, Frayssinet M, Lanois A, Ogier JC, Pagès S, Parthuisot N, Ferdy JB, Gaudriault S. Bacterial community profile after the lethal infection of Steinernema-Xenorhabdus pairs into soil-reared Tenebrio molitor larvae. FEMS Microbiol Ecol 2020; 96:5704397. [PMID: 31942980 DOI: 10.1093/femsec/fiaa009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 01/13/2020] [Indexed: 01/01/2023] Open
Abstract
The host microbiota may have an impact on pathogens. This is often studied in laboratory-reared hosts but rarely in individuals whose microbiota looks like that of wild animals. In this study, we modified the gut microbiota of the insect Tenebrio molitor by rearing larvae in soil sampled from the field. We showed by high throughput sequencing methods that this treatment modifies the gut microbiota so that it is more diversified than that of laboratory-reared insects, and closely resembled the one of soil-dwelling insects. To describe what the entomopathogenic bacterial symbiont Xenorhabdus (Enterobacteriaceae), vectored by the soil-dwelling nematode Steinernema, might experience in natural conditions, we studied the infestation of the soil-reared T. molitor larvae with three Steinernema-Xenorhabdus pairs. We performed the infestation at 18°C, which delays the emergence of new infective juveniles (IJs), the soil-dwelling nematode forms, but which is a temperature compatible with natural infestation. We analyzed by high throughput sequencing methods the composition of the bacterial community within the insect cadavers before the first emergences of IJs. These bacterial communities were generally characterized by one or two non-symbiont taxa. Even for highly lethal Steinernema-Xenorhabdus pairs, the symbiont does not dominate the bacterial community within the insect cadaver.
Collapse
Affiliation(s)
- Marine C Cambon
- Laboratoire Evolution et Diversité Biologique, CNRS-IRD-Université Paul Sabatier, 118 route de Narbonne, 31077 Toulouse, France.,Laboratoire Diversité, Génome et Interactions Microorganismes Insectes, INRA-Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier, France
| | - Pierre Lafont
- Laboratoire Evolution et Diversité Biologique, CNRS-IRD-Université Paul Sabatier, 118 route de Narbonne, 31077 Toulouse, France
| | - Marie Frayssinet
- Laboratoire Diversité, Génome et Interactions Microorganismes Insectes, INRA-Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier, France
| | - Anne Lanois
- Laboratoire Diversité, Génome et Interactions Microorganismes Insectes, INRA-Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier, France
| | - Jean-Claude Ogier
- Laboratoire Diversité, Génome et Interactions Microorganismes Insectes, INRA-Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier, France
| | - Sylvie Pagès
- Laboratoire Diversité, Génome et Interactions Microorganismes Insectes, INRA-Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier, France
| | - Nathalie Parthuisot
- Laboratoire Evolution et Diversité Biologique, CNRS-IRD-Université Paul Sabatier, 118 route de Narbonne, 31077 Toulouse, France
| | - Jean-Baptiste Ferdy
- Laboratoire Evolution et Diversité Biologique, CNRS-IRD-Université Paul Sabatier, 118 route de Narbonne, 31077 Toulouse, France
| | - Sophie Gaudriault
- Laboratoire Diversité, Génome et Interactions Microorganismes Insectes, INRA-Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier, France
| |
Collapse
|
8
|
Ogier JC, Pagès S, Frayssinet M, Gaudriault S. Entomopathogenic nematode-associated microbiota: from monoxenic paradigm to pathobiome. MICROBIOME 2020; 8:25. [PMID: 32093774 PMCID: PMC7041241 DOI: 10.1186/s40168-020-00800-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 02/05/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND The holistic view of bacterial symbiosis, incorporating both host and microbial environment, constitutes a major conceptual shift in studies deciphering host-microbe interactions. Interactions between Steinernema entomopathogenic nematodes and their bacterial symbionts, Xenorhabdus, have long been considered monoxenic two partner associations responsible for the killing of the insects and therefore widely used in insect pest biocontrol. We investigated this "monoxenic paradigm" by profiling the microbiota of infective juveniles (IJs), the soil-dwelling form responsible for transmitting Steinernema-Xenorhabdus between insect hosts in the parasitic lifecycle. RESULTS Multigenic metabarcoding (16S and rpoB markers) showed that the bacterial community associated with laboratory-reared IJs from Steinernema carpocapsae, S. feltiae, S. glaseri and S. weiseri species consisted of several Proteobacteria. The association with Xenorhabdus was never monoxenic. We showed that the laboratory-reared IJs of S. carpocapsae bore a bacterial community composed of the core symbiont (Xenorhabdus nematophila) together with a frequently associated microbiota (FAM) consisting of about a dozen of Proteobacteria (Pseudomonas, Stenotrophomonas, Alcaligenes, Achromobacter, Pseudochrobactrum, Ochrobactrum, Brevundimonas, Deftia, etc.). We validated this set of bacteria by metabarcoding analysis on freshly sampled IJs from natural conditions. We isolated diverse bacterial taxa, validating the profile of the Steinernema FAM. We explored the functions of the FAM members potentially involved in the parasitic lifecycle of Steinernema. Two species, Pseudomonas protegens and P. chlororaphis, displayed entomopathogenic properties suggestive of a role in Steinernema virulence and membership of the Steinernema pathobiome. CONCLUSIONS Our study validates a shift from monoxenic paradigm to pathobiome view in the case of the Steinernema ecology. The microbial communities of low complexity associated with EPNs will permit future microbiota manipulation experiments to decipher overall microbiota functioning in the infectious process triggered by EPN in insects and, more generally, in EPN ecology.
Collapse
Affiliation(s)
| | - Sylvie Pagès
- DGIMI, INRAe-Université de Montpellier, 34095, Montpellier, France
| | - Marie Frayssinet
- DGIMI, INRAe-Université de Montpellier, 34095, Montpellier, France
| | | |
Collapse
|
9
|
Salgado-Morales R, Martínez-Ocampo F, Obregón-Barboza V, Vilchis-Martínez K, Jiménez-Pérez A, Dantán-González E. Assessing the Pathogenicity of Two Bacteria Isolated from the Entomopathogenic Nematode Heterorhabditis indica against Galleria mellonella and Some Pest Insects. INSECTS 2019; 10:insects10030083. [PMID: 30917525 PMCID: PMC6468454 DOI: 10.3390/insects10030083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/18/2019] [Accepted: 03/15/2019] [Indexed: 02/01/2023]
Abstract
The entomopathogenic nematodes Heterorhabditis are parasites of insects and are associated with mutualist symbiosis enterobacteria of the genus Photorhabdus; these bacteria are lethal to their host insects. Heterorhabditis indica MOR03 was isolated from sugarcane soil in Morelos state, Mexico. The molecular identification of the nematode was confirmed using sequences of the ITS1-5.8S-ITS2 region and the D2/D3 expansion segment of the 28S rRNA gene. In addition, two bacteria HIM3 and NA04 strains were isolated from the entomopathogenic nematode. The genomes of both bacteria were sequenced and assembled de novo. Phylogenetic analysis was confirmed by concatenated gene sequence datasets as Photorhabdus luminescens HIM3 (16S rRNA, 23S rRNA, dnaN, gyrA, and gyrB genes) and Pseudomonas aeruginosa NA04 (16S rRNA, 23S rRNA and gyrB genes). H. indica MOR03 infects Galleria mellonella, Tenebrio molitor, Heliothis subflexa, and Diatraea magnifactella larvae with LC50 values of 1.4, 23.5, 13.7, and 21.7 IJs/cm2, respectively, at 48 h. These bacteria are pathogenic to various insects and have high injectable insecticide activity at 24 h.
Collapse
Affiliation(s)
- Rosalba Salgado-Morales
- Doctorado en Ciencias, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Chamilpa, 62209 Cuernavaca, Morelos, Mexico.
- Laboratorio de Estudios Ecogenómicos, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Chamilpa, 62209 Cuernavaca, Morelos, Mexico.
| | - Fernando Martínez-Ocampo
- Laboratorio de Estudios Ecogenómicos, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Chamilpa, 62209 Cuernavaca, Morelos, Mexico.
| | - Verónica Obregón-Barboza
- Laboratorio de Estudios Ecogenómicos, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Chamilpa, 62209 Cuernavaca, Morelos, Mexico.
| | - Kathia Vilchis-Martínez
- Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, Calle Ceprobi No. 8, San Isidro, Yautepec, 62739 Morelos, Mexico.
| | - Alfredo Jiménez-Pérez
- Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, Calle Ceprobi No. 8, San Isidro, Yautepec, 62739 Morelos, Mexico.
| | - Edgar Dantán-González
- Laboratorio de Estudios Ecogenómicos, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Chamilpa, 62209 Cuernavaca, Morelos, Mexico.
| |
Collapse
|
10
|
Death Becomes Them: Bacterial Community Dynamics and Stilbene Antibiotic Production in Cadavers of Galleria mellonella Killed by Heterorhabditis and Photorhabdus spp. Appl Environ Microbiol 2016; 82:5824-37. [PMID: 27451445 DOI: 10.1128/aem.01211-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/14/2016] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED Insect larvae killed by entomopathogenic nematodes are thought to contain bacterial communities dominated by a single bacterial genus, that of the nematode's bacterial symbiont. In this study, we used next-generation sequencing to profile bacterial community dynamics in greater wax moth (Galleria mellonella) larvae cadavers killed by Heterorhabditis nematodes and their Photorhabdus symbionts. We found that, although Photorhabdus strains did initially displace an Enterococcus-dominated community present in uninfected G. mellonella insect larvae, the cadaver community was not static. Twelve days postinfection, Photorhabdus shared the cadaver with Stenotrophomonas species. Consistent with this result, Stenotrophomonas strains isolated from infected cadavers were resistant to Photorhabdus-mediated toxicity in solid coculture assays. We isolated and characterized a Photorhabdus-produced antibiotic from G. mellonella cadavers, produced it synthetically, and demonstrated that both the natural and synthetic compounds decreased G. mellonella-associated Enterococcus growth, but not Stenotrophomonas growth, in vitro Finally, we showed that the Stenotrophomonas strains described here negatively affected Photorhabdus growth in vitro Our results add an important dimension to a broader understanding of Heterorhabditis-Photorhabdus biology and also demonstrate that interspecific bacterial competition likely characterizes even a theoretically monoxenic environment, such as a Heterorhabditis-Photorhabdus-parasitized insect cadaver. IMPORTANCE Understanding, and eventually manipulating, both human and environmental health depends on a complete accounting of the forces that act on and shape microbial communities. One of these underlying forces is hypothesized to be resource competition. A resource that has received little attention in the general microbiological literature, but likely has ecological and evolutionary importance, is dead/decaying multicellular organisms. Metazoan cadavers, including those of insects, are ephemeral and nutrient-rich environments, where resource competition might shape interspecific macrobiotic and microbiotic interactions. This study is the first to use a next-generation sequencing approach to study the community dynamics of bacteria within a model insect cadaver system: insect larvae parasitized by entomopathogenic nematodes and their bacterial symbionts. By integrating bioinformatic, biochemical, and classic in vitro microbiological approaches, we have provided mechanistic insight into how antibiotic-mediated bacterial interactions may shape community dynamics within insect cadavers.
Collapse
|
11
|
Microbiota from Rhabditis regina may alter nematode entomopathogenicity. Parasitol Res 2016; 115:4153-4165. [DOI: 10.1007/s00436-016-5190-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 06/28/2016] [Indexed: 12/22/2022]
|
12
|
Sangeetha BG, Jayaprakas CA, Siji JV, Rajitha M, Shyni B, Mohandas C. Molecular characterization and amplified ribosomal DNA restriction analysis of entomopathogenic bacteria associated with Rhabditis (Oscheius) spp. 3 Biotech 2016; 6:32. [PMID: 28330100 PMCID: PMC4713396 DOI: 10.1007/s13205-015-0326-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 06/19/2015] [Indexed: 12/17/2022] Open
Abstract
Bacterial strains associated with entomopathogenic nematodes (EPNs) Rhabditis (Oscheius) spp. were isolated from infected cadavers of Galleria mellonella. The obtained 18 isolates were subdivided into nine phylogenetically different genera based on comparative sequence analysis of their 16S rRNA genes. The isolates were affiliated to three different class namely γ-proteobacteria (Enterobacter, Proteus, Providencia, Pseudomonas, Stenotrophomonas), β-proteobacteria (Alcaligenes) and Bacilli (Bacillus, Enterococcus, Lysinibacillus). It was observed that Gram-positive strains (Bacilli) were more frequently associated with the EPN, whereas Gram-negative isolates were affiliated to six different genera with more genotypic diversity. Subsequently, all bacterial isolates used in this study were analyzed by amplified ribosomal DNA restriction analysis (ARDRA). Eight restriction endonucleases (CfoI, HinfI, RsaI, DdeI, Sau3AI, AluI, HaeIII, and MspI) were examined and a total of 15 different genotypes were obtained, forming two heterogenous main clusters after analysis by un-weighted pair-group method using arithmetic averages.
Collapse
Affiliation(s)
| | | | | | - Moochattil Rajitha
- Division of Crop Protection, Central Tuber Crops Research Institute, Sreekariyam, Trivandrum, Kerala, India
| | - Basheerkutty Shyni
- Division of Crop Protection, Central Tuber Crops Research Institute, Sreekariyam, Trivandrum, Kerala, India
| | - Chellappan Mohandas
- Division of Crop Protection, Central Tuber Crops Research Institute, Sreekariyam, Trivandrum, Kerala, India
| |
Collapse
|
13
|
Lechowicz L, Chrapek M, Czerwonka G, Korzeniowska-Kowal A, Tobiasz A, Urbaniak M, Matuska-Lyzwa J, Kaca W. Detection of ureolytic activity of bacterial strains isolated from entomopathogenic nematodes using infrared spectroscopy. J Basic Microbiol 2016; 56:922-8. [PMID: 26972384 DOI: 10.1002/jobm.201500538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 02/27/2016] [Indexed: 11/10/2022]
Abstract
The pathogenicity of entomopathogenic nematodes (EPNs) depends directly on the presence of bacteria in the nematode digestive tracts. Based on 16S rRNA and MALDI-TOF analyses 20 isolated bacteria were assigned to 10 species with 10 isolates classified as Pseudomonas ssp. Six strains (30%) show ureolytic activity on Christensen medium. Spectroscopic analysis of the strains showed that the ureolytic activity is strongly correlated with the following wavenumbers: 935 cm(-1) in window W4, which carries information about the bacterial cell wall construction and 1158 cm(-1) in window W3 which corresponds to proteins in bacterial cell. A logistic regression model designed on the basis of the selected wavenumbers differentiates ureolytic from non-ureolytic bacterial strains with an accuracy of 100%. Spectroscopic studies and mathematical analyses made it possible to differentiate EPN-associated Pseudomonas sp. strains from clinical Pseudomonas aeruginosa PAO1. These results suggest, that infrared spectra of EPN-associated Pseudomonas sp. strains may reflect its adaptation to the host.
Collapse
Affiliation(s)
- Lukasz Lechowicz
- Department of Microbiology, Jan Kochanowski University, Kielce, Poland
| | - Magdalena Chrapek
- Department of Probability and Statistics, Jan Kochanowski University, Kielce, Poland
| | | | - Agnieszka Korzeniowska-Kowal
- Department of Immunology of Infectious Diseases, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Anna Tobiasz
- Department of Immunology of Infectious Diseases, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Mariusz Urbaniak
- Division of Organic Chemistry, Jan Kochanowski University, Kielce, Poland
| | - Joanna Matuska-Lyzwa
- Department of Zoology and Biological Didactics, Jan Kochanowski University, Kielce, Poland
| | - Wieslaw Kaca
- Department of Microbiology, Jan Kochanowski University, Kielce, Poland
| |
Collapse
|
14
|
Bisch G, Ogier JC, Médigue C, Rouy Z, Vincent S, Tailliez P, Givaudan A, Gaudriault S. Comparative Genomics between Two Xenorhabdus bovienii Strains Highlights Differential Evolutionary Scenarios within an Entomopathogenic Bacterial Species. Genome Biol Evol 2016; 8:148-60. [PMID: 26769959 PMCID: PMC4758244 DOI: 10.1093/gbe/evv248] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteria of the genus Xenorhabdus are symbionts of soil entomopathogenic nematodes of the genus Steinernema. This symbiotic association constitutes an insecticidal complex active against a wide range of insect pests. Within Xenorhabdus bovienii species, the X. bovienii CS03 strain (Xb CS03) is nonvirulent when directly injected into lepidopteran insects, and displays a low virulence when associated with its Steinernema symbiont. The genome of Xb CS03 was sequenced and compared with the genome of a virulent strain, X. bovienii SS-2004 (Xb SS-2004). The genome size and content widely differed between the two strains. Indeed, Xb CS03 had a large genome containing several specific loci involved in the inhibition of competitors, including a few NRPS-PKS loci (nonribosomal peptide synthetases and polyketide synthases) producing antimicrobial molecules. Consistently, Xb CS03 had a greater antimicrobial activity than Xb SS-2004. The Xb CS03 strain contained more pseudogenes than Xb SS-2004. Decay of genes involved in the host invasion and exploitation (toxins, invasins, or extracellular enzymes) was particularly important in Xb CS03. This may provide an explanation for the nonvirulence of the strain when injected into an insect host. We suggest that Xb CS03 and Xb SS-2004 followed divergent evolutionary scenarios to cope with their peculiar life cycle. The fitness strategy of Xb CS03 would involve competitor inhibition, whereas Xb SS-2004 would quickly and efficiently kill the insect host. Hence, Xenorhabdus strains would have widely divergent host exploitation strategies, which impact their genome structure.
Collapse
Affiliation(s)
- Gaëlle Bisch
- Diversité, Génomes Et Interactions Microorganismes-Insectes (DGIMI), Institut National De La Recherche Agronomique, Montpellier Cedex, France Diversité, Génomes Et Interactions Microorganismes-Insectes (DGIMI), Université Montpellier, France
| | - Jean-Claude Ogier
- Diversité, Génomes Et Interactions Microorganismes-Insectes (DGIMI), Institut National De La Recherche Agronomique, Montpellier Cedex, France Diversité, Génomes Et Interactions Microorganismes-Insectes (DGIMI), Université Montpellier, France
| | - Claudine Médigue
- CEA, Genoscope & CNRS-UMR 8030, Laboratoire D'analyse Bioinformatique En Génomique Et Métabolisme, Evry Cedex, France
| | - Zoé Rouy
- CEA, Genoscope & CNRS-UMR 8030, Laboratoire D'analyse Bioinformatique En Génomique Et Métabolisme, Evry Cedex, France
| | - Stéphanie Vincent
- CEA, Genoscope & CNRS-UMR 8030, Laboratoire D'analyse Bioinformatique En Génomique Et Métabolisme, Evry Cedex, France
| | - Patrick Tailliez
- Diversité, Génomes Et Interactions Microorganismes-Insectes (DGIMI), Institut National De La Recherche Agronomique, Montpellier Cedex, France Diversité, Génomes Et Interactions Microorganismes-Insectes (DGIMI), Université Montpellier, France
| | - Alain Givaudan
- Diversité, Génomes Et Interactions Microorganismes-Insectes (DGIMI), Institut National De La Recherche Agronomique, Montpellier Cedex, France Diversité, Génomes Et Interactions Microorganismes-Insectes (DGIMI), Université Montpellier, France
| | - Sophie Gaudriault
- Diversité, Génomes Et Interactions Microorganismes-Insectes (DGIMI), Institut National De La Recherche Agronomique, Montpellier Cedex, France Diversité, Génomes Et Interactions Microorganismes-Insectes (DGIMI), Université Montpellier, France
| |
Collapse
|
15
|
Antimicrobials and the Natural Biology of a Bacterial-Nematode Symbiosis. ADVANCES IN ENVIRONMENTAL MICROBIOLOGY 2016. [DOI: 10.1007/978-3-319-28068-4_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
16
|
Identification of a new Alcaligenes faecalis strain MOR02 and assessment of its toxicity and pathogenicity to insects. BIOMED RESEARCH INTERNATIONAL 2015; 2015:570243. [PMID: 25667924 PMCID: PMC4312618 DOI: 10.1155/2015/570243] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 12/16/2014] [Accepted: 12/17/2014] [Indexed: 01/12/2023]
Abstract
We report the isolation of a bacterium from Galleria mellonella larva and its identification using genome sequencing and phylogenomic analysis. This bacterium was named Alcaligenes faecalis strain MOR02. Microscopic analyses revealed that the bacteria are located in the esophagus and intestine of the nematodes Steinernema feltiae, S. carpocapsae, and H. bacteriophora. Using G. mellonella larvae as a model, when the larvae were injected with 24,000 CFU in their hemocoel, more than 96% mortality was achieved after 24 h. Additionally, toxicity assays determined that 1 μg of supernatant extract from A. faecalis MOR02 killed more than 70% G. mellonella larvae 96 h after injection. A correlation of experimental data with sequence genome analyses was also performed. We discovered genes that encode proteins and enzymes that are related to pathogenicity, toxicity, and host/environment interactions that may be responsible for the observed phenotypic characteristics. Our data demonstrates that the bacteria are able to use different strategies to colonize nematodes and kill insects to their own benefit. However, there remains an extensive group of unidentified microorganisms that could be participating in the infection process. Additionally, a nematode-bacterium association could be established probably as a strategy of dispersion and colonization.
Collapse
|
17
|
Microbial population dynamics in the hemolymph of Manduca sexta infected with Xenorhabdus nematophila and the entomopathogenic nematode Steinernema carpocapsae. Appl Environ Microbiol 2014; 80:4277-85. [PMID: 24814780 DOI: 10.1128/aem.00768-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Xenorhabdus nematophila engages in a mutualistic association with the nematode Steinernema carpocapsae. The nematode invades and traverses the gut of susceptible insects. X. nematophila is released in the insect blood (hemolymph), where it suppresses host immune responses and functions as a pathogen. X. nematophila produces diverse antimicrobials in laboratory cultures. The natural competitors that X. nematophila encounters in the hemolymph and the role of antimicrobials in interspecies competition in the host are poorly understood. We show that gut microbes translocate into the hemolymph when the nematode penetrates the insect intestine. During natural infection, Staphylococcus saprophyticus was initially present and subsequently disappeared from the hemolymph, while Enterococcus faecalis proliferated. S. saprophyticus was sensitive to X. nematophila antibiotics and was eliminated from the hemolymph when coinjected with X. nematophila. In contrast, E. faecalis was relatively resistant to X. nematophila antibiotics. When injected by itself, E. faecalis persisted (~10(3) CFU/ml), but when coinjected with X. nematophila, it proliferated to ~10(9) CFU/ml. Injection of E. faecalis into the insect caused the upregulation of an insect antimicrobial peptide, while the transcript levels were suppressed when E. faecalis was coinjected with X. nematophila. Its relative antibiotic resistance together with suppression of the host immune system by X. nematophila may account for the growth of E. faecalis. At higher injected levels (10(6) CFU/insect), E. faecalis could kill insects, suggesting that it may contribute to virulence in an X. nematophila infection. These findings provide new insights into the competitive events that occur early in infection after S. carpocapsae invades the host hemocoel.
Collapse
|
18
|
Tambong JT. Phylogeny of bacteria isolated from Rhabditis sp. (Nematoda) and identification of novel entomopathogenic Serratia marcescens strains. Curr Microbiol 2012; 66:138-44. [PMID: 23079959 DOI: 10.1007/s00284-012-0250-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 09/20/2012] [Indexed: 01/16/2023]
Abstract
Twenty-five bacterial strains isolated from entomopathogenic nematodes were characterized to the genus level by 16S rRNA phylogeny and BLAST analyses. Bacteria strains isolated could be affiliated with seven genera. Microbacterium-like isolates phylogenetically affiliated with M. oxydans while those of Serratia were highly similar to S. marcescens. 16S rRNA sequences of Bacillus isolates matched those of both B. mycoides and B. weihenstephanesis. One isolate each matched Pseudomonas mosselii, Rheinheimera aquimaris, Achromobacter marplatensis, or Staphylococcus hominis. Serratia isolates were examined further for their pathogenicity to Galleria mellonella larvae. All the Serratia isolates exhibited potent pathogenicity toward G. mellonella larvae and possessed a metalloprotease gene encoding for a novel serralysin-like protein. The nucleotide sequence of the metalloprotease gene had 60 synonymous and 8 nonsynonymous substitutions when compared to the closest genBank entry, S. marcescens E-15, with an insertion of a new aspartic acid residue. Tajima's test for equality of evolutionary rate was significant between the metalloprotease gene sequence of S. marcescens strain DOAB 216-82 (this study) and strain E-15. This new insecticidal metalloprotease gene and/or its product could have applications in agricultural biotechnology.
Collapse
Affiliation(s)
- James T Tambong
- Bacteriology Unit, Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, Ottawa, ON, K1A 0C6, Canada.
| |
Collapse
|
19
|
Inman FL, Singh S, Holmes LD. Mass Production of the Beneficial Nematode Heterorhabditis bacteriophora and Its Bacterial Symbiont Photorhabdus luminescens. Indian J Microbiol 2012; 52:316-24. [PMID: 23997319 PMCID: PMC3460116 DOI: 10.1007/s12088-012-0270-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 03/22/2012] [Indexed: 11/30/2022] Open
Abstract
Entomoparasitic nematodes (EPNs) are being commercialized as a biocontrol measure for crop insect pests, as they provide advantages over common chemical insecticides. Mass production of these nematodes in liquid media has become a major challenge for commercialization. Producers are not willing to share the trade secrets of mass production and by doing so, have made culturing EPNs extremely difficult to advance existing technologies. Theoretically, mass production in liquid media is an ideal culturing method as it increases cost efficiency and nematode quantity. This paper will review current culturing methodologies and suggest basic culturing parameters for mass production. This review is focused on Heterorhabditis bacteriophora; however, this information can be useful for other nematode species.
Collapse
Affiliation(s)
- Floyd L. Inman
- Sartorius-Stedim Biotechnology Laboratory, Biotechnology Research and Training Center, University of North Carolina at Pembroke, 115 Livermore Drive, Pembroke, NC 28372 USA
| | - Sunita Singh
- Central Institute of Agricultural Engineering, Bhopal, Madhya Pradesh India
| | - Leonard D. Holmes
- Sartorius-Stedim Biotechnology Laboratory, Biotechnology Research and Training Center, University of North Carolina at Pembroke, 115 Livermore Drive, Pembroke, NC 28372 USA
| |
Collapse
|
20
|
Razia M, Karthikraja R, Padmanaban K, Chellapandi P, Sivaramakrishnan S. 16S rDNA-based phylogeny of non-symbiotic bacteria of Entorno-pathogenic nematodes from infected insect cadavers. GENOMICS PROTEOMICS & BIOINFORMATICS 2012; 9:104-12. [PMID: 21802047 PMCID: PMC5054454 DOI: 10.1016/s1672-0229(11)60013-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 02/21/2011] [Indexed: 11/22/2022]
Abstract
Using 16S rDNA gene sequencing technique, three different species of non-symbiotic bacteria of entomopathogenic nematodes (EPNs) (Steinernema sp. and Heterorhabditis sp.) were isolated and identified from infected insect cadavers (Galleria mellonella larvae) after 48-hour post infections. Sequence similarity analysis revealed that the strains SRK3, SRK4 and SRK5 belong to Ochrobactrum cytisi, Schineria larvae and Ochrobactrum anthropi, respectively. The isolates O. anthropi and S. larvae were found to be associated with Heterorhabditis indica strains BDU-17 and Yer-136, respectively, whereas O. cytisi was associated with Steinernema siamkayai strain BDU-87. Phenotypically, temporal EPN bacteria were fairly related to symbiotic EPN bacteria (Photorhabdus and Xenorhabdus genera). The strains SRK3 and SRK5 were phylogeographically similar to several non-symbionts and contaminated EPN bacteria isolated in Germany (LMG3311T) and China (X-14), while the strain SRK4 was identical to the isolates of S. larvae (L1/57, L1/58, L1/68 and L2/11) from Wohlfahrtia magnifica in Hungary. The result was further confirmed by RNA secondary structure and minimum energy calculations of aligned sequences. This study suggested that the non-symbionts of these nematodes are phylogeographically diverged in some extent due to phase variation. Therefore, these strains are not host-dependent, but environment-specific isolates.
Collapse
Affiliation(s)
- M Razia
- Department of Biotechnology, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | | | | | | | | |
Collapse
|
21
|
Affiliation(s)
- Eyualem Abebe
- Department of Biology, Elizabeth City State University, 1704 Weeksville Road, Jenkins Science Center 421, Elizabeth City, NC 27909, USA
| | - Kaitlin Bonner
- Hubbard Center for Genome Studies, University of New Hampshire, 35 Colovos Road, Durham, NH 03824, USA
| | - Vince Gray
- School of Molecular and Cell Biology, University of the Witwatersrand, Republic of South Africa
| | - W. Kelley Thomas
- Hubbard Center for Genome Studies, University of New Hampshire, 35 Colovos Road, Durham, NH 03824, USA
| |
Collapse
|
22
|
Lee MM, Stock SP. A multigene approach for assessing evolutionary relationships of Xenorhabdus spp. (γ-Proteobacteria), the bacterial symbionts of entomopathogenic Steinernema nematodes. J Invertebr Pathol 2010; 104:67-74. [DOI: 10.1016/j.jip.2010.01.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 01/15/2010] [Accepted: 01/21/2010] [Indexed: 10/19/2022]
|
23
|
Chaston J, Goodrich-Blair H. Common trends in mutualism revealed by model associations between invertebrates and bacteria. FEMS Microbiol Rev 2010; 34:41-58. [PMID: 19909347 PMCID: PMC2794943 DOI: 10.1111/j.1574-6976.2009.00193.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Mutually beneficial interactions between microorganisms and animals are a conserved and ubiquitous feature of biotic systems. In many instances animals, including humans, are dependent on their microbial associates for nutrition, defense, or development. To maintain these vital relationships, animals have evolved processes that ensure faithful transmission of specific microbial symbionts between generations. Elucidating mechanisms of transmission and symbiont specificity has been aided by the study of experimentally tractable invertebrate animals with diverse and highly evolved associations with microorganisms. Here, we review several invertebrate model systems that contribute to our current understanding of symbiont transmission, recognition, and specificity. Although the details of transmission and symbiont selection vary among associations, comparisons of diverse mutualistic associations are revealing a number of common themes, including restriction of symbiont diversity during transmission and glycan-lectin interactions during partner selection and recruitment.
Collapse
Affiliation(s)
- John Chaston
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | | |
Collapse
|
24
|
Park D, Ciezki K, van der Hoeven R, Singh S, Reimer D, Bode HB, Forst S. Genetic analysis of xenocoumacin antibiotic production in the mutualistic bacterium Xenorhabdus nematophila. Mol Microbiol 2009; 73:938-49. [PMID: 19682255 DOI: 10.1111/j.1365-2958.2009.06817.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Xenocoumacin 1 (Xcn1) and xenocoumacin 2 (Xcn2) are the major antimicrobial compounds produced by Xenorhabdus nematophila. To study the role of Xcn1 and Xcn2 in the life cycle of X. nematophila the 14 gene cluster (xcnA-N) required for their synthesis was identified. Overlap RT-PCR analysis identified six major xcn transcripts. Individual inactivation of the non-ribosomal peptide synthetase genes, xcnA and xcnK, and polyketide synthetase genes, xcnF, xcnH and xcnL, eliminated Xcn1 production. Xcn1 levels and expression of xcnA-L were increased in an ompR strain while Xcn2 levels and xcnMN expression were reduced. Xcn1 production was also increased in a strain lacking acetyl-phosphate that can donate phosphate groups to OmpR. Together these findings suggest that OmpR-phosphate negatively regulates xcnA-L gene expression while positively regulating xcnMN expression. HPLC-MS analysis revealed that Xcn1 was produced first and was subsequently converted to Xcn2. Inactivation of xcnM and xcnN eliminated conversion of Xcn1 to Xcn2 resulting in elevated Xcn1 production. The viability of the xcnM strain was reduced 20-fold relative to the wild-type strain supporting the idea that conversion of Xcn1 to Xcn2 provides a mechanism to avoid self-toxicity. Interestingly, inactivation of ompR enhanced cell viability during prolonged culturing.
Collapse
Affiliation(s)
- Dongjin Park
- Department of Biological Sciences, University of Wisconsin, Milwaukee, WI 53201, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Bode HB. Entomopathogenic bacteria as a source of secondary metabolites. Curr Opin Chem Biol 2009; 13:224-30. [PMID: 19345136 DOI: 10.1016/j.cbpa.2009.02.037] [Citation(s) in RCA: 223] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 02/14/2009] [Accepted: 02/20/2009] [Indexed: 12/12/2022]
Abstract
Insects are not only the most diverse group of animals on our planet, but also a huge reservoir for unusual microorganism which are a rich source of pharmaceutically interesting natural products. This review focuses on recent advances in the understanding of secondary metabolism of Bacillus thuringiensis, Pseudomonas entomophila, and Xenorhabdus and Photorhabdus bacteria all of which are entomopathogenic. Genome-sequencing projects revealed the capacity of these bacteria to produce several different secondary metabolites including peptides, polyketides, and hybrids of both. This richness for interesting compounds is reflected by an increasing number of compounds that have been identified from these bacteria as discussed in this review.
Collapse
Affiliation(s)
- Helge B Bode
- Molekulare Biotechnologie, Institut für Molekulare Biowissenschaften, Goethe Universität Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany.
| |
Collapse
|
26
|
Zhang C, Liu J, Xu M, Sun J, Yang S, An X, Gao G, Lin M, Lai R, He Z, Wu Y, Zhang K. Heterorhabditidoides chongmingensis gen. nov., sp. nov. (Rhabditida: Rhabditidae), a novel member of the entomopathogenic nematodes. J Invertebr Pathol 2008; 98:153-68. [PMID: 18410943 DOI: 10.1016/j.jip.2008.02.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Revised: 02/02/2008] [Accepted: 02/06/2008] [Indexed: 11/18/2022]
Abstract
During a recent soil sample survey in Eastern China, a new entomopathogenic nematode species, collected from the Chongming Islands in the southern-eastern area of Shanghai, was discovered. Morphological characteristics of different developmental stages of the nematode combined with molecular data showed that this nematode is a new genus of Rhabditidae, and described as Heterorhabditidoides chongmingensis gen. nov., sp. nov., for that it shares more morphological characteristics with heterorhabditids than with steinernematids. For males, the papillae formula of bursa is 1, 2, 3, 3, with constant papillae number in the terminal group, stoma tubular-shaped and about 1.5 head width; cheilorhabdions cuticularized, esophageal collar present and long, median bulb present. For infective juveniles, EP=90 (80-105)microm, ES=104 (92-120)microm, tail length=111 (89-159)microm, and a=19.1 (15-21). The percentages of the nucleotides A, T, C and G in the ITS1 regions of the new species are significantly different from those of heterorhabditids and other rhabditids. Molecular phylogenetic trees based on 18S rDNA and the internal transcribed spacer (ITS) sequences data revealed that the new entomopathogenic nematode species forms a monophyletic group, which is a sister group of the clade comprised of some genera of Rhabditidae.
Collapse
Affiliation(s)
- Chongxing Zhang
- Department of Zoology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|