1
|
Wallis CM, Sisterson MS. Opportunities for optimizing fungal biological control agents for long-term and effective management of insect pests of orchards and vineyards: a review. FRONTIERS IN FUNGAL BIOLOGY 2024; 5:1443343. [PMID: 39149520 PMCID: PMC11324555 DOI: 10.3389/ffunb.2024.1443343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/18/2024] [Indexed: 08/17/2024]
Abstract
Novel tactics for controlling insect pests in perennial fruit and nut crops are needed because target pests often display decreased susceptibility to chemical controls due to overreliance on a handful of active ingredients and regulatory issues. As an alternative to chemical controls, entomopathogenic fungi could be utilized as biological control agents to manage insect pest populations. However, development of field ready products is hampered by a lack of basic knowledge. Development of field ready products requires collecting, screening, and characterizing a greater variety of potential entomopathogenic fungal species and strains. Creation of a standardized research framework to study entomopathogenic fungi will aid in identifying the potential mechanisms of biological control activity that fungi could possess, including antibiotic metabolite production; strains and species best suited to survive in different climates and agroecosystems; and optimized combinations of entomopathogenic fungi and novel formulations. This mini review therefore discusses strategies to collect and characterize new entomopathogenic strains, test different potential mechanisms of biocontrol activity, examine ability of different species and strains to tolerate different climates, and lastly how to utilize this information to develop strains into products for growers.
Collapse
Affiliation(s)
- Christopher M Wallis
- Crop Diseases, Pest and Genetics Research Unit, San Joaquin Valley Agricultural Sciences Center, U.S. Department of Agriculture - Agricultural Research Service, Parlier, CA, United States
| | - Mark S Sisterson
- Crop Diseases, Pest and Genetics Research Unit, San Joaquin Valley Agricultural Sciences Center, U.S. Department of Agriculture - Agricultural Research Service, Parlier, CA, United States
| |
Collapse
|
2
|
Sun R, Hong B, Reichelt M, Luck K, Mai DT, Jiang X, Gershenzon J, Vassão DG. Metabolism of plant-derived toxins from its insect host increases the success of the entomopathogenic fungus Beauveria bassiana. THE ISME JOURNAL 2023; 17:1693-1704. [PMID: 37479887 PMCID: PMC10504261 DOI: 10.1038/s41396-023-01480-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/23/2023]
Abstract
Beauveria bassiana is a soil fungus that parasitizes a large number of arthropod species, including numerous crop pests, causing white muscardine disease and is therefore used as a biological insecticide. However, some insects, such as the cabbage aphid (Brevicoryne brassicae), defend themselves chemically by sequestering dietary pro-toxins (glucosinolates) from their Brassicales host plants. Glucosinolates are accumulated by cabbage aphids and activated to form toxic isothiocyanates when under attack. While isothiocyanate formation protects aphids against most attackers, B. bassiana is still able to infect the cabbage aphid under natural conditions. We therefore investigated how this fungus is able to circumvent the chemical defense system of the cabbage aphid. Here, we describe how B. bassiana infection activates the cabbage aphid defense system, but the resulting toxins are metabolized by B. bassiana via the mercapturic acid pathway, of which the first step is catalyzed by glutathione-S-transferases of low substrate specificity. This detoxification pathway enhances B. bassiana growth when isothiocyanates are present in natural concentrations, and so appears to be an important factor in fungal parasitization of these chemically defended aphids.
Collapse
Affiliation(s)
- Ruo Sun
- Max Planck Institute for Chemical Ecology, Department of Biochemistry, Jena, Germany
| | - Benke Hong
- Max Planck Institute for Chemical Ecology, Department of Natural Product Biosynthesis, Jena, Germany
| | - Michael Reichelt
- Max Planck Institute for Chemical Ecology, Department of Biochemistry, Jena, Germany
| | - Katrin Luck
- Max Planck Institute for Chemical Ecology, Department of Biochemistry, Jena, Germany
- Max Planck Institute for Chemical Ecology, Department of Natural Product Biosynthesis, Jena, Germany
| | - Duc Tam Mai
- Max Planck Institute for Chemical Ecology, Department of Biochemistry, Jena, Germany
| | - Xingcong Jiang
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Jena, Germany
| | - Jonathan Gershenzon
- Max Planck Institute for Chemical Ecology, Department of Biochemistry, Jena, Germany
| | - Daniel Giddings Vassão
- Max Planck Institute for Chemical Ecology, Department of Biochemistry, Jena, Germany.
- Max Planck Institute of Geoanthropology, Department of Archaeology, Jena, Germany.
| |
Collapse
|
3
|
Bordalo MD, Gravato C, Beleza S, Campos D, Lopes I, Pestana JLT. Lethal and sublethal toxicity assessment of Bacillus thuringiensis var. israelensis and Beauveria bassiana based bioinsecticides to the aquatic insect Chironomus riparius. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134155. [PMID: 31505347 DOI: 10.1016/j.scitotenv.2019.134155] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/26/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
Despite being considered environmentally safe, a deeper environmental risk assessment is needed for microbial insecticides; special attention should be devoted to their sublethal toxicity to non-target species. This study evaluated effects of VectoBac® 12AS - VB (based on the bacterium Bacillus thurigiensis var. israelensis) and Naturalis®-L - NL (based on the fungus Beauveria bassiana) on the aquatic insect Chironomus riparius life-history and biochemical responses. Acute tests estimated a 48 h-LC50 (median lethal concentration) of 1.85 μg/L (VB) and 34.7 mg/L (NL). Under sublethal exposure, VB decreased adults' emergence (LOEC - lowest observed effect concentration of 80 ng/L) while NL impaired larval growth (LOEC of 0.32 mg/L) and delayed emergence (LOEC of 2 mg/L for males and 0.8 mg/L for females). Despite not being monotonic, phenoloxidase activity increased (LOEC of 20 ng/L (VB) and 2 mg/L (NL)), suggesting activation of the immune system. There were no indications of oxidative damage nor neurotoxicity. Catalase activity was stimulated with all VB treatments, possibly associated with detoxification of immune response products. Under NL exposure, glutathione-S-transferase activity increased but did not show a dose-dependent response and, total glutathione decreased in the highest concentration. Exposure to both formulations caused the increase in protein content, while carbohydrate and lipids were not altered. This study revealed the susceptibility of C. riparius to VB and NL at concentrations below the ones recommended for field application, with potential population-level effects. These results add important information for the risk assessment of these microbial insecticides in aquatic ecosystems, considering relevant sublethal endpoints and raising concern about the adverse effects on non-target aquatic organisms.
Collapse
Affiliation(s)
- M D Bordalo
- Department of Biology & CESAM, University of Aveiro, Portugal.
| | - C Gravato
- Faculty of Sciences & CESAM, University of Lisbon, Portugal
| | - S Beleza
- Faculty of Sciences & CESAM, University of Lisbon, Portugal
| | - D Campos
- Department of Biology & CESAM, University of Aveiro, Portugal
| | - I Lopes
- Department of Biology & CESAM, University of Aveiro, Portugal
| | - J L T Pestana
- Department of Biology & CESAM, University of Aveiro, Portugal
| |
Collapse
|
4
|
Evans BG, Hallett RH. Efficacy of Biopesticides for Management of the Swede Midge (Diptera: Cecidomyiidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2016; 109:2159-2167. [PMID: 27567223 DOI: 10.1093/jee/tow192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/09/2016] [Indexed: 06/06/2023]
Abstract
Management of the swede midge, Contarinia nasturtii Kieffer, in North American crucifer production relies on crop rotation and the timely application of synthetic insecticides, based on pheromone trap monitoring of local adult populations. Organically acceptable formulations of azadirachtin, pyrethrin, and spinosad, and a commercial biopesticide containing the entomopathogenic fungus, Beauveria bassiana, were evaluated for their effects on larval mortality and oviposition deterrence in the greenhouse, and on damage symptoms in the field. In greenhouse trials, pyrethrin and spinosad treatments applied up to 24 h prior to C. nasturtii exposure resulted in significant reductions in oviposition on host plants, whereas azadirachtin and B. bassiana only deterred oviposition when applied 2 h prior to exposure. Spinosad caused the highest larval reduction (∼96%) on cauliflower meristems, while azadirachtin, B. bassiana, and pyrethrin caused significant larval reduction when applied preoviposition and significant mortality when applied postoviposition. Field trials conducted with these insecticides on broccoli in 2011 produced no significant reductions in overall damage levels; however, B. bassiana treatments produced more marketable plants than did the control. In 2013, all treatments significantly reduced overall damage levels and all treatments, except B. bassiana, produced more uninfested and marketable plants than the control. Field applications of these alternative insecticides may be effective in protecting yields of broccoli and cauliflower, when combined with other tactics in an integrated pest management program.
Collapse
Affiliation(s)
- Braden G Evans
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada (; )
| | - Rebecca H Hallett
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada (; )
| |
Collapse
|
5
|
Reddy GV, Antwi FB, Shrestha G, Kuriwada T. Evaluation of toxicity of biorational insecticides against larvae of the alfalfa weevil. Toxicol Rep 2016; 3:473-480. [PMID: 28959570 PMCID: PMC5615908 DOI: 10.1016/j.toxrep.2016.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 05/04/2016] [Accepted: 05/04/2016] [Indexed: 11/20/2022] Open
Abstract
The alfalfa weevil, Hypera postica (Coleoptera: Curculionidae), is a major pest of alfalfa Medicago sativa L. (Fabaceae). While H. postica usually causes the most damage before the first cutting, in summer of 2015 damaging levels of the pest persisted in Montana well after the first harvest of alfalfa. Although conventional insecticides can control H. postica, these chemicals have adverse effects on non-target organisms including pollinators and natural enemy insects. In this context, use of biorational insecticides would be the best alternative options, as they are known to pose less risk to non-target organisms. We therefore examined the six commercially available biorational insecticides against H. postica under laboratory condition: Mycotrol® ESO (Beauveria bassiana GHA), Aza-Direct® (Azadirachtin), Met52® EC (Metarhizium brunneum F52), Xpectro OD® (B. bassiana GHA + pyrethrins), Xpulse OD® (B. bassiana GHA + Azadirachtin) and Entrust WP® (spinosad 80%). Concentrations of 0.1, 0.5, 1.0, and 2.0 times the lowest labelled rates were tested for all products. However, in the case of Entrust WP, additional concentrations of 0.001 and 0.01 times the lowest label rate were also assessed. Mortality rates were determined at 1-9 days post treatment. Based on lethal concentrations and relative potencies, this study clearly showed that Entrust was the most effective, causing 100% mortality within 3 days after treatment among all the tested materials. With regard to other biorational, Xpectro was the second most effective insecticide followed by Xpulse, Aza-Direct, Met52, and Mycotrol. Our results strongly suggested that these biorational insecticides could potentially be applied for H. postica control.
Collapse
Affiliation(s)
- Gadi V.P. Reddy
- Montana State University, Western Triangle Agricultural Research Center, 9546 Old Shelby Rd., P.O. Box 656, Conrad, MT 59425, USA
| | - Frank B. Antwi
- Montana State University, Western Triangle Agricultural Research Center, 9546 Old Shelby Rd., P.O. Box 656, Conrad, MT 59425, USA
| | - Govinda Shrestha
- Montana State University, Western Triangle Agricultural Research Center, 9546 Old Shelby Rd., P.O. Box 656, Conrad, MT 59425, USA
| | - Takashi Kuriwada
- Kagoshima University, Faculty of Education, Korimoto 1-20-6, Kagoshima, 890-0065, Japan
| |
Collapse
|
6
|
Lacey L, Grzywacz D, Shapiro-Ilan D, Frutos R, Brownbridge M, Goettel M. Insect pathogens as biological control agents: Back to the future. J Invertebr Pathol 2015. [DOI: 10.1016/j.jip.2015.07.009] [Citation(s) in RCA: 545] [Impact Index Per Article: 60.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
7
|
Sandre SL, Tammaru T, Hokkanen HMT. Pathogen resistance in the moth Orgyia antiqua: direct influence of host plant dominates over the effects of individual condition. BULLETIN OF ENTOMOLOGICAL RESEARCH 2011; 101:107-114. [PMID: 20626929 DOI: 10.1017/s0007485310000258] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The role of pathogens in insect ecology is widely appreciated but remains insufficiently explored. Specifically, there is little understanding about the sources of the variation in the outcome of insect-pathogen interactions. This study addresses the extent to which immune traits of larvae and pupae of the moth Orgyia antiqua L. (Lepidoptera: Lymantriidae) depend on the host plant species and individual condition of the insects. The two host plants, Salix myrsinifolia Salisb. and S. viminalis L., were chosen because they differ in the concentration of phenolic glycosides, harmful to most polyphagous insects. Individual condition was assumed to be reflected in body weight and development time, and was manipulated by rearing larvae either singly or in groups of four. The resistance traits recorded were survival and time to death after fungal infection in the larval stage and the efficiency of encapsulating a nylon implant by the pupae. The survival of the infected larvae was mainly determined by the species of the host plant. Encapsulation response was not associated with the resistance to the pathogen, suggesting that the host plant affected the pathogen rather than the immune system of the insect. Interestingly, the host plant supporting better larval growth led to inferior resistance to the pathogen, indicating a trade-off between different aspects of host plant quality.
Collapse
Affiliation(s)
- S-L Sandre
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014, Tartu, Estonia.
| | | | | |
Collapse
|