1
|
Alkassab AT, Erler S, Steinert M, Pistorius J. Exposure of honey bees to mixtures of microbial biopesticides and their effects on bee survival under laboratory conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:26618-26627. [PMID: 38453759 PMCID: PMC11052877 DOI: 10.1007/s11356-024-32753-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/29/2024] [Indexed: 03/09/2024]
Abstract
Biopesticides, having as active ingredients viruses, bacteria, or fungi, are developed to substitute or reduce the use of chemical plant protection products in different agrosystems. Though the application of mixtures containing several products is a common practice, interactions between microbial biopesticides and related effects on bees as non-target organisms have not been studied yet. In the current study, we exposed winter bees to five different microbial-based products and their combinations at the maximum recommended application rate to assess their responses. Laboratory oral exposure tests (acute/chronic) to single or binary products were conducted. Survival and food consumption of the tested bees were evaluated over the experimental duration. Our results show that some product combinations have potential additive or synergistic effects on bees, whereas others did not affect the bee's survival compared to the control. Exposure of tested bees to the most critical combination of products containing Bacillus thuringiensis aizawai ABTS-1857 and B. amyloliquefaciens QST 713 strongly resulted in a median lifespan of 4.5 days compared to 8.0 and 8.5 days after exposure to the solo products, respectively. The exposure to inactivated microorganisms by autoclaving them did not differ from their respective uncontaminated negative controls, indicating effects on bee mortality might originate in the treatment with the different microorganisms or their metabolites. Further investigations should be conducted under field conditions to prove the magnitude of observed effects on bee colonies and other bee species.
Collapse
Affiliation(s)
- Abdulrahim T Alkassab
- Institute for Bee Protection, Federal Research Centre for Cultivated Plants, Julius Kühn Institute (JKI), Messeweg 11-12, 38104, Braunschweig, Germany.
| | - Silvio Erler
- Institute for Bee Protection, Federal Research Centre for Cultivated Plants, Julius Kühn Institute (JKI), Messeweg 11-12, 38104, Braunschweig, Germany
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106, Brauschweig, Germany
| | - Michael Steinert
- Institut Für Mikrobiologie, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany
| | - Jens Pistorius
- Institute for Bee Protection, Federal Research Centre for Cultivated Plants, Julius Kühn Institute (JKI), Messeweg 11-12, 38104, Braunschweig, Germany
| |
Collapse
|
2
|
Calvigioni M, Mazzantini D, Celandroni F, Ghelardi E. Animal and In Vitro Models as Powerful Tools to Decipher the Effects of Enteric Pathogens on the Human Gut Microbiota. Microorganisms 2023; 12:67. [PMID: 38257894 PMCID: PMC10818369 DOI: 10.3390/microorganisms12010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Examining the interplay between intestinal pathogens and the gut microbiota is crucial to fully comprehend the pathogenic role of enteropathogens and their broader impact on human health. Valid alternatives to human studies have been introduced in laboratory practice to evaluate the effects of infectious agents on the gut microbiota, thereby exploring their translational implications in intestinal functionality and overall health. Different animal species are currently used as valuable models for intestinal infections. In addition, considering the recent advances in bioengineering, futuristic in vitro models resembling the intestinal environment are also available for this purpose. In this review, the impact of the main human enteropathogens (i.e., Clostridioides difficile, Campylobacter jejuni, diarrheagenic Escherichia coli, non-typhoidal Salmonella enterica, Shigella flexneri and Shigella sonnei, Vibrio cholerae, and Bacillus cereus) on intestinal microbial communities is summarized, with specific emphasis on results derived from investigations employing animal and in vitro models.
Collapse
Affiliation(s)
| | | | | | - Emilia Ghelardi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56127 Pisa, Italy; (M.C.)
| |
Collapse
|
3
|
Wang X, Chen R, Jia N, Sun J, Luo Y, Yang Y, Zhuang Y, Wang J, Guo H, Chi D. The effect of spraying bacterial and fungal solutions on Korean pine Pinus koraiensis Sieb. et Zucc. cone development and seed quality when sprayed during the flowering phase. BULLETIN OF ENTOMOLOGICAL RESEARCH 2023; 113:180-189. [PMID: 36258272 DOI: 10.1017/s000748532200044x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Korean pine is an economically essential afforestation species limited by the unreasonable collection of cones, indiscriminate use of chemical pesticides and pest damage. This study aimed to determine whether spraying bacterial or fungal solutions affected insect pests, cone development, and the seed quality of Korean pine Pinus koraiensis Sieb. et Zucc. The experiment was conducted in a forest plantation in Linkou County (Heilongjiang, China) in 2019. Four fungal strains and one bacterial strain were applied during the flowering phase of Korean pine. The results after a year and a half of study indicated that a high concentration of Bacillus thuringiensis 223176 promoted cone development, increased seed weight, and reduced the proportion of damaged cones. Under this treatment, there were 15.873% damaged cones; the seed weight reached 0.829 g, and there were 82.738% fully developed cones. Trees treated with the second most effective strain, Beauveria bassiana 122077, had 30.556% damaged cones and an average seed weight of 0.810 g. Leucanicillium antillanum 01 performed the worst in this study. The seed weight was only 0.775 g, and the damaged and fully developed cones were 52.444 and 41.773%, respectively. In summary, spraying bacterial or fungal solutions during the flowering stage of Korean pine positively impacted seed quality and effectively decreased damage by the lepidopteran species that feed on the cones and seeds in this study.
Collapse
Affiliation(s)
- Xiaomei Wang
- Key Laboratory for Sustainable Forest Ecosystem Management of Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, Heilongjiang, People's Republic of China
| | - Ruting Chen
- Key Laboratory for Sustainable Forest Ecosystem Management of Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, Heilongjiang, People's Republic of China
| | - Niya Jia
- Key Laboratory for Sustainable Forest Ecosystem Management of Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, Heilongjiang, People's Republic of China
| | - Jiaxing Sun
- Beidagang Wetland Nature Reserve Management Center, Tianjin 300270, People's Republic of China
| | - Yuxin Luo
- Key Laboratory for Sustainable Forest Ecosystem Management of Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, Heilongjiang, People's Republic of China
| | - Yunzhao Yang
- Key Laboratory for Sustainable Forest Ecosystem Management of Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, Heilongjiang, People's Republic of China
| | - Yutong Zhuang
- Key Laboratory for Sustainable Forest Ecosystem Management of Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, Heilongjiang, People's Republic of China
| | - Jingfeng Wang
- Key Laboratory for Sustainable Forest Ecosystem Management of Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, Heilongjiang, People's Republic of China
| | - Hongru Guo
- Key Laboratory for Sustainable Forest Ecosystem Management of Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, Heilongjiang, People's Republic of China
| | - Defu Chi
- Key Laboratory for Sustainable Forest Ecosystem Management of Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, Heilongjiang, People's Republic of China
| |
Collapse
|
4
|
Delanthabettu A, Narasimhappa NS, Ramaswamy A, Mallesh MH, Nagarajappa N, Govind G. Molecular Characterization of Native Bacillus thuringiensis Strains from Root Nodules with Toxicity Against the Fall Armyworm (FAW, Spodoptera frugiperda) and Brinjal Ash Weevil (Myllocerus subfasciatus). Curr Microbiol 2022; 79:274. [PMID: 35907079 DOI: 10.1007/s00284-022-02951-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 06/24/2022] [Indexed: 11/28/2022]
Abstract
The fall armyworm is an exotic pest which destroys a wide variety of crops Querywhereas the brinjal ash weevil is a serious pest of eggplant and other solanaceous vegetables. The goal of this research is to find a sustainable and ecologically friendly bio-control agent for managing FAW and brinjal ash weevils. Twelve natural Bacillus thuringiensis strains were isolated from cowpea root nodules, and the Gram-positive cells with characteristic Bt crystal structures were discovered using phase contrast and scanning electron microscopy. There were bipyramidal, cuboidal, rhombus, and spherical crystals. The Bt cry gene content was characterized by PCR analysis, which revealed the presence of cry1, cry1I, cry3, cry7, cry7,8, cry14, cry26, and cry55 genes. The identity of Bt was confirmed by cloning and sequencing the cry genes. In the nucleotide sequences, no pseudo genes or indels were found in cry sequences. SDS-PAGE examination indicated the presence of bands ranging in size from 13 to 130 kDa, with 50-60 kDa being the most common. When compared to the control, the new native Bt strains were lethal, with pathogenicity ranging from 93 to 100% against S. frugiperda larvae and M. subfasciatus adults. The studies revealed that the native strains with conserved regions of 16S rRNA genes were compared to NCBI database sequences and classified as native Bt strains with 99-100% similarity to known Bt strains. In conclusion, native Bt strains from cowpea root nodules were shown to have bio-insecticidal activity against fall armyworm larvae and brinjal ash weevil adults.
Collapse
Affiliation(s)
| | | | - Asokan Ramaswamy
- Division of Basic Sciences, ICAR-Indian Institute of Horticultural Research, Hesaraghatta Lake Post, Bangalore, 560089, India
| | | | - Nethra Nagarajappa
- Seed Technology Research Unit, AICRP on Seeds (Crops), UAS, GKVK, Bangalore, 560065, India
| | | |
Collapse
|
5
|
Li Y, Zhao D, Wu H, Ji Y, Liu Z, Guo X, Guo W, Bi Y. Bt GS57 Interaction With Gut Microbiota Accelerates Spodoptera exigua Mortality. Front Microbiol 2022; 13:835227. [PMID: 35401496 PMCID: PMC8989089 DOI: 10.3389/fmicb.2022.835227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/14/2022] [Indexed: 11/28/2022] Open
Abstract
The Beet armyworm Spodoptera exigua (Lepidoptera: Noctuidae, Spodoptera) is an important global polyphagous pest. Pathogen infection could destroy the intestinal microbial homeostasis of insects, leading to the death of the host. However, the effect of the host intestinal microbial community on the insecticidal effect of Bacillus thuringiensis is rarely studied. In this study, the genome characteristics of Bt GS57 and the diversity and functions of the gut bacteria in S. exigua are investigated using crystal morphology, biological activity, and Illumina HiSeq high-throughput sequencing. The total size of the Bt GS57 genome is 6.17 Mbp with an average G + C content of 35.66%. Furthermore, the Bt GS57 genome contains six cry genes: cry1Ca, cry1Da, cry2Ab, cry9Ea, cry1Ia, and cry1Aa, and a vegetative insecticidal protein gene vip3Aa. The Bt GS57 strain can produce biconical crystals, mainly expressing 70 kDa and 130 kDa crystal proteins. The LC50 value of the Bt GS57 strain against the S. exigua larvae was 0.339 mg mL–1. Physiological and biochemical reactions showed that Bt GS57 belongs to B.t. var. thuringiensis. In addition, we found that B. thuringiensis can cause a dynamic change in the gut microbiota of S. exigua, with a significant reduction in bacterial diversity and a substantial increase in bacterial load. In turn, loss of gut microbiota significantly decreased the B. thuringiensis susceptibility of S. exigua larvae. Our findings reveal the vital contribution of the gut microbiota in B. thuringiensis-killing activity, providing new insights into the mechanisms of B. thuringiensis pathogenesis in insects.
Collapse
Affiliation(s)
- Yazi Li
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Dan Zhao
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Han Wu
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Yujie Ji
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhaorui Liu
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Xiaochang Guo
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Wei Guo
- College of Plant Protection, Hebei Agricultural University, Baoding, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Wei Guo,
| | - Yang Bi
- College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
6
|
Manktelow CJ, White H, Crickmore N, Raymond B. Divergence in environmental adaptation between terrestrial clades of the Bacillus cereus group. FEMS Microbiol Ecol 2020; 97:5974271. [PMID: 33175127 DOI: 10.1093/femsec/fiaa228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/06/2020] [Indexed: 12/25/2022] Open
Abstract
The Bacillus cereus group encompasses beneficial and harmful species in diverse niches and has a much debated taxonomy. Investigating whether selection has led to ecological divergence between phylogenetic clades can help understand the basis of speciation, and has implications for predicting biological safety across this group. Using three most terrestrial species in this group (B. cereus, Bacillus thuringiensis and Bacillus mycoides) we charactererized ecological specialization in terms of resource use, thermal adaptation and fitness in different environmental conditions and tested whether taxonomic species or phylogenetic clade best explained phenotypic variation. All isolates grew vigorously in protein rich media and insect cadavers, but exploitation of soil or plant derived nutrients was similarly weak for all. For B. thuringiensis and B. mycoides, clade and taxonomic species were important predictors of relative fitness in insect infections. Fully psychrotolerant isolates could outcompete B. thuringiensis in insects at low temperature, although psychrotolerance predicted growth in artificial media better than clade. In contrast to predictions, isolates in the Bacillus anthracis clade had sub-optimal growth at 37°C. The common ecological niche in these terrestrial B. cereus species is the ability to exploit protein rich resources such as cadavers. However, selection has led to different phylogenetic groups developing different strategies for accessing this resource. Thus, clades, as well as traditional taxonomic phenotypes, predict biologically important traits.
Collapse
Affiliation(s)
- C James Manktelow
- Centre for Ecology and Conservation, University of Exeter, Penryn campus, Penryn, TR10 9FE, UK
| | - Hugh White
- Centre for Ecology and Conservation, University of Exeter, Penryn campus, Penryn, TR10 9FE, UK
| | - Neil Crickmore
- School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | - Ben Raymond
- Centre for Ecology and Conservation, University of Exeter, Penryn campus, Penryn, TR10 9FE, UK
| |
Collapse
|
7
|
Pauli G, Moura Mascarin G, Eilenberg J, Delalibera Júnior I. Within-Host Competition between Two Entomopathogenic Fungi and a Granulovirus in Diatraea saccharalis (Lepidoptera: Crambidae). INSECTS 2018; 9:insects9020064. [PMID: 29899228 PMCID: PMC6023289 DOI: 10.3390/insects9020064] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/30/2018] [Accepted: 06/01/2018] [Indexed: 11/25/2022]
Abstract
We provide insights into how the interactions of two entomopathogenic fungi and a virus play a role in virulence, disease development, and pathogen reproduction for an economically important insect crop pest, the sugarcane borer Diatraea saccharalis (Fabricius) (Lepidoptera: Crambidae). In our model system, we highlight the antagonistic effects of the co-inoculation of Beauveria bassiana and granulovirus (DisaGV) on virulence, compared to their single counterparts. By contrast, combinations of Metarhizium anisopliae and B. bassiana, or M. anisopliae and DisaGV, have resulted in additive effects against the insect. Intriguingly, most cadavers that were derived from dual or triple infections, produced signs/symptoms of only one species after the death of the infected host. In the combination of fungi and DisaGV, there was a trend where a higher proportion of viral infection bearing conspicuous symptoms occurred, except when the larvae were inoculated with M. anisopliae and DisaGV at the two highest inoculum rates. Co-infections with B. bassiana and M. anisopliae did not affect pathogen reproduction, since the sporulation from co-inoculated larvae did not differ from their single counterparts.
Collapse
Affiliation(s)
- Giuliano Pauli
- Departamento de Entomologia e Acarologia, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo. Av. Pádua Dias, 11, C.P. 9, CEP 13418-900 Piracicaba, SP, Brazil.
| | - Gabriel Moura Mascarin
- Departamento de Entomologia e Acarologia, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo. Av. Pádua Dias, 11, C.P. 9, CEP 13418-900 Piracicaba, SP, Brazil.
- Embrapa Meio Ambiente, Rodovia SP-340, km 127.5, S/N-Tanquinho Velho, CEP 13820-000 Jaguariúna, SP, Brazil.
| | - Jørgen Eilenberg
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C., Denmark.
| | - Italo Delalibera Júnior
- Departamento de Entomologia e Acarologia, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo. Av. Pádua Dias, 11, C.P. 9, CEP 13418-900 Piracicaba, SP, Brazil.
| |
Collapse
|
8
|
Recombinant entomopathogenic agents: a review of biotechnological approaches to pest insect control. World J Microbiol Biotechnol 2017; 34:14. [DOI: 10.1007/s11274-017-2397-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 12/13/2017] [Indexed: 12/20/2022]
|
9
|
Raymond B, Federici BA. In defense of Bacillus thuringiensis, the safest and most successful microbial insecticide available to humanity - a response to EFSA. FEMS Microbiol Ecol 2017. [PMID: 28645183 PMCID: PMC5812528 DOI: 10.1093/femsec/fix084] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Bacillus cereus group contains vertebrate pathogens such as B. anthracis and B. cereus and the invertebrate pathogen B. thuringiensis (Bt). Microbial biopesticides based on Bt are widely recognised as being among the safest and least environmentally damaging insecticidal products available. Nevertheless, a recent food-poisoning incident prompted a European Food Safety Authority review which argued that Bt poses a health risk equivalent to B. cereus, a causative agent of diarrhoea. However, a critical examination of available data, and this latest incident, provides no solid evidence that Bt causes diarrhoea. Although relatively high levels of B. cereus-like spores can occur in foods, genotyping demonstrates that these are predominantly naturally occurring strains rather than biopesticides. Moreover, MLST genotyping of >2000 isolates show that biopesticide genotypes have never been isolated from any clinical infection. MLST data demonstrate that B. cereus group is heterogeneous and formed of distinct clades with substantial differences in biology, ecology and host association. The group posing the greatest risk (the anthracis clade) is distantly related to the clade containing all biopesticides. These recent data support the long-held view that Bt and especially the strains used in Bt biopesticides are very safe for humans.
Collapse
Affiliation(s)
- Ben Raymond
- University of Exeter, Penryn campus, Penryn, TR10 9FE, UK
| | - Brian A Federici
- Department of Entomology and Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521 USA
| |
Collapse
|
10
|
Lin XL, Pan QJ, Tian HG, Douglas AE, Liu TX. Bacteria abundance and diversity of different life stages of Plutella xylostella (Lepidoptera: Plutellidae), revealed by bacteria culture-dependent and PCR-DGGE methods. INSECT SCIENCE 2015; 22:375-385. [PMID: 26013400 DOI: 10.1111/1744-7917.12079] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/16/2013] [Indexed: 06/04/2023]
Abstract
Microbial abundance and diversity of different life stages (fourth instar larvae, pupae and adults) of the diamondback moth, Plutella xylostella L., collected from field and reared in laboratory, were investigated using bacteria culture-dependent method and PCR-DGGE analysis based on the sequence of bacteria 16S rRNA V3 region gene. A large quantity of bacteria was found in all life stages of P. xylostella. Field population had higher quantity of bacteria than laboratory population, and larval gut had higher quantity than pupae and adults. Culturable bacteria differed in different life stages of P. xylostella. Twenty-five different bacterial strains were identified in total, among them 20 strains were presented in larval gut, only 8 strains in pupae and 14 strains in adults were detected. Firmicutes bacteria, Bacillus sp., were the most dominant species in every life stage. 15 distinct bands were obtained from DGGE electrophoresis gel. The sequences blasted in GenBank database showed these bacteria belonged to six different genera. Phylogenetic analysis showed the sequences of the bacteria belonged to the Actinobacteri, Proteobacteria and Firmicutes. Serratia sp. in Proteobacteria was the most abundant species in larval gut. In pupae, unculturable bacteria were the most dominant species, and unculturable bacteria and Serratia sp. were the most dominant species in adults. Our study suggested that a combination of molecular and traditional culturing methods can be effectively used to analyze and to determine the diversity of gut microflora. These known bacteria may play important roles in development of P. xylostella.
Collapse
Affiliation(s)
- Xiao-Li Lin
- State Key Laboratory of Crop Stress Biology for the Arid Areas, and Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Qin-Jian Pan
- State Key Laboratory of Crop Stress Biology for the Arid Areas, and Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Hong-Gang Tian
- State Key Laboratory of Crop Stress Biology for the Arid Areas, and Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Angela E Douglas
- Department of Entomology and Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Tong-Xian Liu
- State Key Laboratory of Crop Stress Biology for the Arid Areas, and Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
11
|
Paramasiva I, Sharma HC, Krishnayya PV. Antibiotics influence the toxicity of the delta endotoxins of Bacillus thuringiensis towards the cotton bollworm, Helicoverpa armigera. BMC Microbiol 2014; 14:200. [PMID: 25059716 PMCID: PMC4222728 DOI: 10.1186/1471-2180-14-200] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 07/12/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The cotton bollworm, Helicoverpa armigera is one of the most important crop pests worldwide. It has developed high levels of resistance to synthetic insecticides, and hence, Bacillus thuringiensis (Bt) formulations are used as a safer pesticide and the Bt genes have been deployed in transgenic crops for controlling this pest. There is an apprehension that H. armigera might develop resistance to transgenic crops in future. Therefore, we studied the role of gut microbes by eliminating them with antibiotics in H. armigera larvae on the toxicity of Bt toxins against this pest. RESULTS Commercial formulation of Bt (Biolep®) and the pure Cry1Ab and Cry1Ac toxin proteins were evaluated at ED50, LC50, and LC90 dosages against the H. armigera larvae with and without antibiotics (which removed the gut microbes). Lowest H. armigera larval mortality due to Bt formulation and the Bt toxins Cry1Ab and Cry1Ac was recorded in insects reared on diets with 250 and 500 μg ml-1 diet of each of the four antibiotics (gentamicin, penicillin, rifampicin, and streptomycin), while the highest larval mortality was recorded in insects reared on diets without the antibiotics. Mortality of H. armigera larvae fed on diets with Bt formulation and the δ-endotoxins Cry1Ab and Cry1Ac was inversely proportional to the concentration of antibiotics in the artificial diet. Nearly 30% reduction in larval mortality was observed in H. armigera larvae from F1 to F3 generation when the larvae were reared on diets without antibiotics (with gut microbes) and fed on 0.15% Bt or 12 μg Cry1Ab or Cry1Ac ml-1 diet, indicating development of resistance to Bt in the presence of gut microflora. However, there were no differences in larval mortality due to Bt, Cry1Ab or Cry1Ac across generations in insects when they were reared on diets with 250 μg of each antibiotic ml-1 diet (without gut microflora). CONCLUSIONS The results suggested that antibiotics which eliminated gut microflora influenced the toxicity of Bt towards H. armigera, and any variation in diversity and abundance of gut microflora will have a major bearing on development of resistance to Bt toxins applied as foliar sprays or deployed in transgenic crops for pest management.
Collapse
Affiliation(s)
| | - Hari C Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502 324 Andhra Pradesh, India.
| | | |
Collapse
|
12
|
Argôlo-Filho RC, Loguercio LL. Bacillus thuringiensis Is an Environmental Pathogen and Host-Specificity Has Developed as an Adaptation to Human-Generated Ecological Niches. INSECTS 2013; 5:62-91. [PMID: 26462580 PMCID: PMC4592628 DOI: 10.3390/insects5010062] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 12/03/2013] [Accepted: 12/13/2013] [Indexed: 11/16/2022]
Abstract
Bacillus thuringiensis (Bt) has been used successfully as a biopesticide for more than 60 years. More recently, genes encoding their toxins have been used to transform plants and other organisms. Despite the large amount of research on this bacterium, its true ecology is still a matter of debate, with two major viewpoints dominating: while some understand Bt as an insect pathogen, others see it as a saprophytic bacteria from soil. In this context, Bt's pathogenicity to other taxa and the possibility that insects may not be the primary targets of Bt are also ideas that further complicate this scenario. The existence of conflicting research results, the difficulty in developing broader ecological and genetics studies, and the great genetic plasticity of this species has cluttered a definitive concept. In this review, we gathered information on the aspects of Bt ecology that are often ignored, in the attempt to clarify the lifestyle, mechanisms of transmission and target host range of this bacterial species. As a result, we propose an integrated view to account for Bt ecology. Although Bt is indeed a pathogenic bacterium that possesses a broad arsenal for virulence and defense mechanisms, as well as a wide range of target hosts, this seems to be an adaptation to specific ecological changes acting on a versatile and cosmopolitan environmental bacterium. Bt pathogenicity and host-specificity was favored evolutionarily by increased populations of certain insect species (or other host animals), whose availability for colonization were mostly caused by anthropogenic activities. These have generated the conditions for ecological imbalances that favored dominance of specific populations of insects, arachnids, nematodes, etc., in certain areas, with narrower genetic backgrounds. These conditions provided the selective pressure for development of new hosts for pathogenic interactions, and so, host specificity of certain strains.
Collapse
Affiliation(s)
- Ronaldo Costa Argôlo-Filho
- Department of Biological Sciences, State University of Santa Cruz (UESC), Rod, Ilhéus-Itabuna, Km-16, Ilhéus-BA 45662-900, Brazil.
| | - Leandro Lopes Loguercio
- Department of Biological Sciences, State University of Santa Cruz (UESC), Rod, Ilhéus-Itabuna, Km-16, Ilhéus-BA 45662-900, Brazil.
| |
Collapse
|
13
|
Raymond B, Wright DJ, Crickmore N, Bonsall MB. The impact of strain diversity and mixed infections on the evolution of resistance to Bacillus thuringiensis. Proc Biol Sci 2013; 280:20131497. [PMID: 24004937 PMCID: PMC3768306 DOI: 10.1098/rspb.2013.1497] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 08/07/2013] [Indexed: 12/21/2022] Open
Abstract
Pesticide mixtures can reduce the rate at which insects evolve pesticide resistance. However, with live biopesticides such as the naturally abundant pathogen Bacillus thuringiensis (Bt), a range of additional biological considerations might affect the evolution of resistance. These can include ecological interactions in mixed infections, the different rates of transmission post-application and the impact of the native biodiversity on the frequency of mixed infections. Using multi-generation selection experiments, we tested how applications of single and mixed strains of Bt from diverse sources (natural isolates and biopesticides) affected the evolution of resistance in the diamondback moth, Plutella xylostella, to a focal strain. There was no significant difference in the rate of evolution of resistance between single and mixed-strain applications although the latter did result in lower insect populations. The relative survivorship of Bt-resistant genotypes was higher in the mixed-strain treatment, in part owing to elevated mortality of susceptible larvae in mixtures. Resistance evolved more quickly with treatments that contained natural isolates, and biological differences in transmission rate may have contributed to this. Our data indicate that the use of mixtures can have unexpected consequences on the fitness of resistant and susceptible insects.
Collapse
Affiliation(s)
- Ben Raymond
- Mathematical Ecology Research Group, Department of Zoology, University of Oxford, Oxford OX1 3PS, UK.
| | | | | | | |
Collapse
|
14
|
Raymond B, Bonsall MB. Cooperation and the evolutionary ecology of bacterial virulence: TheBacillus cereusgroup as a novel study system. Bioessays 2013; 35:706-16. [DOI: 10.1002/bies.201300028] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Ben Raymond
- School of Biological Sciences; Royal Holloway University of London; Egham UK
| | - Michael B. Bonsall
- Department of Zoology; University of Oxford; Oxford UK
- St. Peter's College; Oxford UK
| |
Collapse
|
15
|
Jones RT, Vetter SM, Montenieiri J, Holmes J, Bernhardt SA, Gage KL. Yersinia pestis infection and laboratory conditions alter flea-associated bacterial communities. ISME JOURNAL 2012; 7:224-8. [PMID: 22895162 DOI: 10.1038/ismej.2012.95] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We collected Oropsylla montana from rock squirrels, Spermophilus varigatus, and infected a subset of collected fleas with Yersinia pestis, the etiological agent of plague. We used bar-tagged DNA pyrosequencing to characterize bacterial communities of wild, uninfected controls and infected fleas. Bacterial communities within Y. pestis-infected fleas were substantially more similar to one another than communities within wild or control fleas, suggesting that infection alters the bacterial community in a directed manner such that specific bacterial lineages are severely reduced in abundance or entirely eliminated from the community. Laboratory conditions also significantly altered flea-associated bacterial communities relative to wild communities, but much less so than Y. pestis infection. The abundance of Firmicutes decreased considerably in infected fleas, and Bacteroidetes were almost completely eliminated from both the control and infected fleas. Bartonella and Wolbachia were unaffected or responded positively to Y. pestis infection.
Collapse
Affiliation(s)
- Ryan T Jones
- Division of Vector-Borne Disease, Centers for Disease Control and Prevention, Fort Collins, CO, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Zouache K, Raharimalala FN, Raquin V, Tran-Van V, Raveloson LHR, Ravelonandro P, Mavingui P. Bacterial diversity of field-caught mosquitoes, Aedes albopictus and Aedes aegypti, from different geographic regions of Madagascar. FEMS Microbiol Ecol 2010; 75:377-89. [PMID: 21175696 DOI: 10.1111/j.1574-6941.2010.01012.x] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Symbiotic bacteria are known to play important roles in the biology of insects, but the current knowledge of bacterial communities associated with mosquitoes is very limited and consequently their contribution to host behaviors is mostly unknown. In this study, we explored the composition and diversity of mosquito-associated bacteria in relation with mosquitoes' habitats. Wild Aedes albopictus and Aedes aegypti were collected in three different geographic regions of Madagascar. Culturing methods and denaturing gradient gel electrophoresis (DGGE) and sequencing of the rrs amplicons revealed that Proteobacteria and Firmicutes were the major phyla. Isolated bacterial genera were dominated by Bacillus, followed by Acinetobacter, Agrobacterium and Enterobacter. Common DGGE bands belonged to Acinetobacter, Asaia, Delftia, Pseudomonas, Enterobacteriaceae and an uncultured Gammaproteobacterium. Double infection by maternally inherited Wolbachia pipientis prevailed in 98% of males (n=272) and 99% of females (n=413); few individuals were found to be monoinfected with Wolbachia wAlbB strain. Bacterial diversity (Shannon-Weaver and Simpson indices) differed significantly per habitat whereas evenness (Pielou index) was similar. Overall, the bacterial composition and diversity were influenced both by the sex of individuals and by the environment inhabited by the mosquitoes; the latter might be related to both the vegetation and the animal host populations that Aedes used as food sources.
Collapse
|
17
|
Bonsall MB. Parasite replication and the evolutionary epidemiology of parasite virulence. PLoS One 2010; 5:e12440. [PMID: 20805976 PMCID: PMC2929189 DOI: 10.1371/journal.pone.0012440] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 07/30/2010] [Indexed: 12/17/2022] Open
Abstract
Parasite virulence evolution is shaped by both within-host and population-level processes yet the link between these differing scales of infection is often neglected. Population structure and heterogeneity in both parasites and hosts will affect how hosts are exploited by pathogens and the intensity of infection. Here, it is shown how the degree of relatedness among parasites together with epidemiological parameters such as pathogen yield and longevity influence the evolution of virulence. Furthermore, the role of kin competition and the degree of cheating within highly structured parasite populations also influences parasite fitness and infectivity patterns. Understanding how the effects of within-host processes scale up to affect the epidemiology has importance for understanding host-pathogen interactions.
Collapse
Affiliation(s)
- Michael B Bonsall
- Mathematical Ecology Research Group, Department of Zoology, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
18
|
Carlin F, Brillard J, Broussolle V, Clavel T, Duport C, Jobin M, Guinebretière MH, Auger S, Sorokine A, Nguyen-Thé C. Adaptation of Bacillus cereus, an ubiquitous worldwide-distributed foodborne pathogen, to a changing environment. Food Res Int 2010. [DOI: 10.1016/j.foodres.2009.10.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Raymond B, Johnston PR, Nielsen-LeRoux C, Lereclus D, Crickmore N. Bacillus thuringiensis: an impotent pathogen? Trends Microbiol 2010; 18:189-94. [DOI: 10.1016/j.tim.2010.02.006] [Citation(s) in RCA: 249] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 02/18/2010] [Accepted: 02/24/2010] [Indexed: 11/17/2022]
|
20
|
The impact of non-lethal synergists on the population and evolutionary dynamics of host–pathogen interactions. J Theor Biol 2010; 262:567-75. [DOI: 10.1016/j.jtbi.2009.10.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 09/10/2009] [Accepted: 10/29/2009] [Indexed: 11/22/2022]
|
21
|
Raymond B, Johnston PR, Wright DJ, Ellis RJ, Crickmore N, Bonsall MB. A mid-gut microbiota is not required for the pathogenicity ofBacillus thuringiensisto diamondback moth larvae. Environ Microbiol 2009; 11:2556-63. [DOI: 10.1111/j.1462-2920.2009.01980.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Gut bacteria are not required for the insecticidal activity of Bacillus thuringiensis toward the tobacco hornworm, Manduca sexta. Appl Environ Microbiol 2009; 75:5094-9. [PMID: 19525273 DOI: 10.1128/aem.00966-09] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It was recently proposed that gut bacteria are required for the insecticidal activity of the Bacillus thuringiensis-based insecticide, DiPel, toward the lepidopterans Manduca sexta, Pieris rapae, Vanessa cardui, and Lymantria dispar. Using a similar methodology, it was found that gut bacteria were not required for the toxicity of DiPel or Cry1Ac or for the synergism of an otherwise sublethal concentration of Cry1Ac toward M. sexta. The toxicities of DiPel and of B. thuringiensis HD73 Cry(-) spore/Cry1Ac synergism were attenuated by continuously exposing larvae to antibiotics before bioassays. Attenuation could be eliminated by exposing larvae to antibiotics only during the first instar without altering larval sterility. Prior antibiotic exposure did not attenuate Cry1Ac toxicity. The presence of enterococci in larval guts slowed mortality resulting from DiPel exposure and halved Cry1Ac toxicity but had little effect on B. thuringiensis HD73 Cry(-) spore/Cry1Ac synergism. B. thuringiensis Cry(-) cells killed larvae after intrahemocoelic inoculation of M. sexta, Galleria mellonella, and Spodoptera litura and grew rapidly in plasma from M. sexta, S. litura, and Tenebrio molitor. These findings suggest that gut bacteria are not required for B. thuringiensis insecticidal activity toward M. sexta but that B. thuringiensis lethality is reduced in larvae that are continuously exposed to antibiotics before bioassay.
Collapse
|
23
|
Hooper SD, Mavromatis K, Kyrpides NC. Microbial co-habitation and lateral gene transfer: what transposases can tell us. Genome Biol 2009; 10:R45. [PMID: 19393086 PMCID: PMC2688936 DOI: 10.1186/gb-2009-10-4-r45] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Revised: 04/01/2009] [Accepted: 04/24/2009] [Indexed: 01/10/2023] Open
Abstract
Interactions between microbial communities are revealed using a network of lateral gene transfer events. Background Determining the habitat range for various microbes is not a simple, straightforward matter, as habitats interlace, microbes move between habitats, and microbial communities change over time. In this study, we explore an approach using the history of lateral gene transfer recorded in microbial genomes to begin to answer two key questions: where have you been and who have you been with? Results All currently sequenced microbial genomes were surveyed to identify pairs of taxa that share a transposase that is likely to have been acquired through lateral gene transfer. A microbial interaction network including almost 800 organisms was then derived from these connections. Although the majority of the connections are between closely related organisms with the same or overlapping habitat assignments, numerous examples were found of cross-habitat and cross-phylum connections. Conclusions We present a large-scale study of the distributions of transposases across phylogeny and habitat, and find a significant correlation between habitat and transposase connections. We observed cases where phylogenetic boundaries are traversed, especially when organisms share habitats; this suggests that the potential exists for genetic material to move laterally between diverse groups via bridging connections. The results presented here also suggest that the complex dynamics of microbial ecology may be traceable in the microbial genomes.
Collapse
Affiliation(s)
- Sean D Hooper
- Department of Energy Joint Genome Institute, Genome Biology Program, Mitchell Drive, Walnut Creek, CA 94598, USA.
| | | | | |
Collapse
|
24
|
Lethal pathogens, non-lethal synergists and the evolutionary ecology of resistance. J Theor Biol 2008; 254:339-49. [DOI: 10.1016/j.jtbi.2008.05.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 05/29/2008] [Accepted: 05/29/2008] [Indexed: 11/22/2022]
|