1
|
Molecular Detection and Differentiation of Arthropod, Fungal, Protozoan, Bacterial and Viral Pathogens of Honeybees. Vet Sci 2022; 9:vetsci9050221. [PMID: 35622749 PMCID: PMC9145064 DOI: 10.3390/vetsci9050221] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 02/01/2023] Open
Abstract
The honeybee Apis mellifera is highly appreciated worldwide because of its products, but also as it is a pollinator of crops and wild plants. The beehive is vulnerable to infections due to arthropods, fungi, protozoa, bacteria and/or viruses that manage to by-pass the individual and social immune mechanisms of bees. Due to the close proximity of bees in the beehive and their foraging habits, infections easily spread within and between beehives. Moreover, international trade of bees has caused the global spread of infections, several of which result in significant losses for apiculture. Only in a few cases can infections be diagnosed with the naked eye, by direct observation of the pathogen in the case of some arthropods, or by pathogen-associated distinctive traits. Development of molecular methods based on the amplification and analysis of one or more genes or genomic segments has brought significant progress to the study of bee pathogens, allowing for: (i) the precise and sensitive identification of the infectious agent; (ii) the analysis of co-infections; (iii) the description of novel species; (iv) associations between geno- and pheno-types and (v) population structure studies. Sequencing of bee pathogen genomes has allowed for the identification of new molecular targets and the development of specific genotypification strategies.
Collapse
|
2
|
Zhang Y, Zeng D, Li L, Hong X, Li-Byarlay H, Luo S. Assessing the toxicological interaction effects of imidacloprid, thiamethoxam, and chlorpyrifos on Bombus terrestris based on the combination index. Sci Rep 2022; 12:6301. [PMID: 35428747 PMCID: PMC9012744 DOI: 10.1038/s41598-022-09808-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/15/2022] [Indexed: 11/22/2022] Open
Abstract
In modern agricultural production, a variety of pesticides are widely used to protect crops against pests. However, extensive residues of these pesticides in the soil, water, and pollen have negatively affected the health of nontarget organisms, especially among pollinators such as bumblebees. As an important pollinator, the bumblebee plays a vital role in agricultural production and the maintenance of ecosystem diversity. Previous research has focused on the effects of a single pesticide on pollinating insects; however, the synergistic effects of multiple agents on bumblebees have been not studied in detail. Imidacloprid, thiamethoxam, and chlorpyrifos are three of common pesticides known for severe effects on bumblebee health. It is still unknown what synergistic effects of these pesticides on pollinators. In our test, the individual and combined toxicities of chlorpyrifos, thiamethoxam, and imidacloprid to bumblebees after 48 h of oral administration were documented by the equivalent linear equation method. Our results showed that the toxicity of each single pesticide exposure, from high to low, was imidacloprid, thiamethoxam, and chlorpyrifos. All binary and ternary combinations showed synergistic or additive effects. Therefore, our research not only shows that the mixed toxicity of insecticides has a significant effect on bumblebees, but also provides scientific guidelines for assessing the safety risks to bumblebees of these three insecticide compounds. In assessing the risk to pollinating insects, the toxicity levels of laboratory experiments are much lower than the actual toxicity in the field.
Collapse
Affiliation(s)
- Yongkui Zhang
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.,Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Guangxi University, Nanning, China.,Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Dongqiang Zeng
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Guangxi University, Nanning, China
| | - Lu Li
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Xiuchun Hong
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Hongmei Li-Byarlay
- Agricultural Research and Development Program, Department of Agriculture and Life Sciences, Central State University, 1400 Brush Row Road, Wilberforce, OH, USA.
| | - Shudong Luo
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China. .,Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China.
| |
Collapse
|
3
|
Cameron TC, Wiles D, Beddoe T. Current Status of Loop-Mediated Isothermal Amplification Technologies for the Detection of Honey Bee Pathogens. Front Vet Sci 2021; 8:659683. [PMID: 33912610 PMCID: PMC8071855 DOI: 10.3389/fvets.2021.659683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/18/2021] [Indexed: 11/25/2022] Open
Abstract
Approximately one-third of the typical human Western diet depends upon pollination for production, and honey bees (Apis mellifera) are the primary pollinators of numerous food crops, including fruits, nuts, vegetables, and oilseeds. Regional large scale losses of managed honey bee populations have increased significantly during the last decade. In particular, asymptomatic infection of honey bees with viruses and bacterial pathogens are quite common, and co-pathogenic interaction with other pathogens have led to more severe and frequent colony losses. Other multiple environmental stress factors, including agrochemical exposure, lack of quality forage, and reduced habitat, have all contributed to the considerable negative impact upon bee health. The ability to accurately diagnose diseases early could likely lead to better management and treatment strategies. While many molecular diagnostic tests such as real-time PCR and MALDI-TOF mass spectrometry have been developed to detect honey bee pathogens, they are not field-deployable and thus cannot support local apiary husbandry decision-making for disease control. Here we review the field-deployable technology termed loop-mediated isothermal amplification (LAMP) and its application to diagnose honey bee infections.
Collapse
Affiliation(s)
- Timothy C Cameron
- Department of Animal, Plant and Soil Science, Centre for AgriBioscience, La Trobe University, Melbourne, VIC, Australia.,Centre for Livestock Interactions With Pathogens, La Trobe University, Melbourne, VIC, Australia
| | - Danielle Wiles
- Department of Animal, Plant and Soil Science, Centre for AgriBioscience, La Trobe University, Melbourne, VIC, Australia.,Centre for Livestock Interactions With Pathogens, La Trobe University, Melbourne, VIC, Australia
| | - Travis Beddoe
- Department of Animal, Plant and Soil Science, Centre for AgriBioscience, La Trobe University, Melbourne, VIC, Australia.,Centre for Livestock Interactions With Pathogens, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
4
|
Gómez-Moracho T, Buendía-Abad M, Benito M, García-Palencia P, Barrios L, Bartolomé C, Maside X, Meana A, Jiménez-Antón MD, Olías-Molero AI, Alunda JM, Martín-Hernández R, Higes M. Experimental evidence of harmful effects of Crithidia mellificae and Lotmaria passim on honey bees. Int J Parasitol 2020; 50:1117-1124. [PMID: 32822679 DOI: 10.1016/j.ijpara.2020.06.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 01/10/2023]
Abstract
The trypanosomatids Crithidia mellificae and Lotmaria passim are very prevalent in honey bee colonies and potentially contribute to colony losses that currently represent a serious threat to honey bees. However, potential pathogenicity of these trypanosomatids remains unclear and since studies of infection are scarce, there is little information about the virulence of their different morphotypes. Hence, we first cultured C. mellificae and L. passim (ATCC reference strains) in six different culture media to analyse their growth rates and to obtain potentially infective morphotypes. Both C. mellificae and L. passim grew in five of the media tested, with the exception of M199. These trypanosomatids multiplied fastest in BHI medium, in which they reached a stationary phase after around 96 h of growth. Honey bees inoculated with either Crithidia or Lotmaria died faster than control bees and their mortality was highest when they were inoculated with 96 h cultured L. passim. Histological and Electron Microscopy analyses revealed flagellated morphotypes of Crithidia and Lotmaria in the lumen of the ileum, and adherent non-flagellated L. passim morphotypes covering the epithelium, although no lesions were evident. These data indicate that parasitic forms of these trypanosomatids obtained from the early stationary growth phase infect honey bees. Therefore, efficient infection can be achieved to study their intra-host development and to assess the potential pathogenicity of these trypanosomatids.
Collapse
Affiliation(s)
- Tamara Gómez-Moracho
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI), University Paul Sabatier, CNRS, UPS, France
| | - María Buendía-Abad
- IRIAF. Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal, Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Marchamalo, Spain
| | - María Benito
- IRIAF. Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal, Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Marchamalo, Spain
| | - Pilar García-Palencia
- Department of Veterinary Medicine and Surgery, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Spain
| | - Laura Barrios
- Consejo Superior Investigaciones Científicas (CSIC), SGAI, Departamento de Estadística, 28006 Madrid, Spain
| | - Carolina Bartolomé
- Grupo de Medicina Xenómica, CIMUS, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Galicia, Spain; Grupo de Xenómica Comparada de Parásitos. Instituto de Investigación Sanitaria de Santiago (IDIS), 15706, Santiago de Compostela, Galicia, Spain
| | - Xulio Maside
- Grupo de Medicina Xenómica, CIMUS, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Galicia, Spain; Grupo de Xenómica Comparada de Parásitos. Instituto de Investigación Sanitaria de Santiago (IDIS), 15706, Santiago de Compostela, Galicia, Spain
| | - Aránzazu Meana
- Department of Animal Health, Faculty of Veterinary Medicine, University Complutense de Madrid, 28040 Madrid, Spain
| | - María Dolores Jiménez-Antón
- Department of Animal Health, Group ICPVet, Faculty of Veterinary Medicine, University Complutense, 28040 Madrid, Spain
| | - Ana Isabel Olías-Molero
- Department of Animal Health, Group ICPVet, Faculty of Veterinary Medicine, University Complutense, 28040 Madrid, Spain
| | - José María Alunda
- Department of Animal Health, Group ICPVet, Faculty of Veterinary Medicine, University Complutense, 28040 Madrid, Spain
| | - Raquel Martín-Hernández
- IRIAF. Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal, Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Marchamalo, Spain; Instituto de Recursos Humanos para la Ciencia y la Tecnología (INCRECYT-FEDER), Fundación Parque Científico y Tecnológico de Castilla - La Mancha, Spain
| | - Mariano Higes
- IRIAF. Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal, Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Marchamalo, Spain.
| |
Collapse
|
5
|
Van Eynde B, Christiaens O, Delbare D, Shi C, Vanhulle E, Yinda CK, Matthijnssens J, Smagghe G. Exploration of the virome of the European brown shrimp (Crangon crangon). J Gen Virol 2020; 101:651-666. [DOI: 10.1099/jgv.0.001412] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Crangon crangon is economically a very important species. Recently, promising culture attempts have been made, but a major problem is the uncontrollable mortality during the grow-out phase. As of yet, the life cycle of C. crangon is not closed in captivity so wild-caught individuals are used for further rearing. Therefore, it is important to investigate the virome of C. crangon both in wild-caught animals as in cultured animals. In recent years, next-generation-sequencing (NGS) technologies have been very important in the unravelling of the virome of a wide range of environments and matrices, such as soil, sea, potable water, but also of a wide range of animal species. This will be the first report of a virome study in C. crangon using NGS in combination with the NetoVIR protocol. The near complete genomes of 16 novel viruses were described, most of which were rather distantly related to unclassified viruses or viruses belonging to the Picornavirales, Bunyavirales Nudiviridae, Parvoviridae, Flaviviridae, Hepeviridae, Tombusviridae, Narnaviridae, Nodaviridae, Sobemovirus. A difference in virome composition was observed between muscle and hepatopancreatic tissue, suggesting a distinct tissue tropism of several of these viruses. Some differences in the viral composition were noted between the cultured and wild shrimp, which could indicate that in sub-optimal aquaculture conditions some viruses become more abundant. This research showed that a plethora of unknown viruses is present in C. crangon and that more research is needed to determine which virus is potentially dangerous for the culture of C. crangon.
Collapse
Affiliation(s)
- Benigna Van Eynde
- Animal Sciences Unit-Fisheries, Flanders research institute for agriculture, fisheries and food (ILVO), 8400 Ostend, Belgium
- Department of Plant and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Olivier Christiaens
- Department of Plant and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Daan Delbare
- Animal Sciences Unit-Fisheries, Flanders research institute for agriculture, fisheries and food (ILVO), 8400 Ostend, Belgium
| | - Chenyan Shi
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Viral Metagenomics, Leuven, Belgium
| | - Emiel Vanhulle
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Viral Metagenomics, Leuven, Belgium
| | - Claude Kwe Yinda
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Viral Metagenomics, Leuven, Belgium
| | - Jelle Matthijnssens
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Viral Metagenomics, Leuven, Belgium
| | - Guy Smagghe
- Department of Plant and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
6
|
Payne AN, Shepherd TF, Rangel J. The detection of honey bee (Apis mellifera)-associated viruses in ants. Sci Rep 2020; 10:2923. [PMID: 32076028 PMCID: PMC7031503 DOI: 10.1038/s41598-020-59712-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 02/03/2020] [Indexed: 11/26/2022] Open
Abstract
Interspecies virus transmission involving economically important pollinators, including honey bees (Apis mellifera), has recently sparked research interests regarding pollinator health. Given that ants are common pests within apiaries in the southern U.S., the goals of this study were to (1) survey ants found within or near managed honey bee colonies, (2) document what interactions are occurring between ant pests and managed honey bees, and 3) determine if any of six commonly occurring honey bee-associated viruses were present in ants collected from within or far from apiaries. Ants belonging to 14 genera were observed interacting with managed honey bee colonies in multiple ways, most commonly by robbing sugar resources from within hives. We detected at least one virus in 89% of the ant samples collected from apiary sites (n = 57) and in 15% of ant samples collected at non-apiary sites (n = 20). We found that none of these ant samples tested positive for the replication of Deformed wing virus, Black queen cell virus, or Israeli acute paralysis virus, however. Future studies looking at possible virus transmission between ants and bees could determine whether ants can be considered mechanical vectors of honey bee-associated viruses, making them a potential threat to pollinator health.
Collapse
Affiliation(s)
- Alexandria N Payne
- Department of Entomology, Texas A&M University, 2475 TAMU, College Station, TX, 77843-2475, USA
| | - Tonya F Shepherd
- Department of Entomology, Texas A&M University, 2475 TAMU, College Station, TX, 77843-2475, USA
| | - Juliana Rangel
- Department of Entomology, Texas A&M University, 2475 TAMU, College Station, TX, 77843-2475, USA.
| |
Collapse
|
7
|
Pereira KDS, Meeus I, Smagghe G. Honey bee-collected pollen is a potential source of Ascosphaera apis infection in managed bumble bees. Sci Rep 2019; 9:4241. [PMID: 30862950 PMCID: PMC6414677 DOI: 10.1038/s41598-019-40804-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 02/08/2019] [Indexed: 12/20/2022] Open
Abstract
The trade of bumble bees started in the early nineties for pollinator-dependent greenhouse plants. Nowadays, its rearing and transport have received public attention, since managed bees can transfer pathogens to wild bee populations. Therefore, guaranteeing pathogen-free bumble bees is fundamental. The major protein source used in rearing facilities is honey bee-collected pollen. This can carry pathogens, however to date, solid data on the risk of this food source to the health of bumble bees is lacking. Here we performed a large pathogen screening of non-irradiated honey bee-collected pollen to discover particles infective to Bombus terrestris. We identified seven parasites (Apicystis bombi, Ascosphaera apis, Crithidia mellificae, Nosema ceranae, Paenibacillus larvae and two parasites resembling Nosema thomsoni and Microsporidium sp. Oise) and four viruses (CBPV, DWV, IAPV and SBV) in 17 pollen batches from two major European pollen source regions (Spain and Romania). Ascosphaera apis was capable of infecting bumble bees; the larvae showed similar symptoms to chalkbrood disease reported in honey bees. Bumble bee breeding facilities need to be cautious about the potential presence of this disease, which was originally reported in honey bees. Thorough diagnostic and control methods are needed, as risk of spillover to wild bee species is possible.
Collapse
Affiliation(s)
- Kleber de Sousa Pereira
- Ghent University, Faculty of Bioscience Engineering, Department of Plants and Crops, Lab of Agrozoology, Coupure Links 653, Ghent, B-9000, Belgium.
| | - Ivan Meeus
- Ghent University, Faculty of Bioscience Engineering, Department of Plants and Crops, Lab of Agrozoology, Coupure Links 653, Ghent, B-9000, Belgium.
| | - Guy Smagghe
- Ghent University, Faculty of Bioscience Engineering, Department of Plants and Crops, Lab of Agrozoology, Coupure Links 653, Ghent, B-9000, Belgium.
| |
Collapse
|
8
|
Development and application of a duplex PCR assay for detection of Crangon crangon bacilliform virus in populations of European brown shrimp (Crangon crangon). J Invertebr Pathol 2018; 153:195-202. [PMID: 29548517 DOI: 10.1016/j.jip.2018.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/31/2018] [Accepted: 03/05/2018] [Indexed: 11/21/2022]
Abstract
Crangon crangon bacilliform virus (CcBV) was first discovered in 2004 in European brown shrimp (Crangon crangon) caught along the English coast. This study describes a duplex PCR assay developed for the detection of CcBV, based on amplification of the lef-8 gene (211 bp) of CcBV and the E75 gene (105 bp) of C. crangon as an internal amplification control. The lef-8 and E75 primer pairs were designed based on preliminary genome sequencing information of the virus and transcriptomic data available for C. crangon, respectively. Sequencing of the resulting amplicons confirmed the specificity of this PCR assay and sequence analysis of the lef-8 fragment revealed amino acid identity percentages ranging between 31 and 42% with members of the Nudiviridae, proposing that CcBV may reside within this family. Finally, the duplex PCR assay was applied to samples of C. crangon hepatopancreas tissue collected along the Belgian coast to screen for the presence of CcBV. The prevalence of CcBV averaged 87%, which is comparable to previous reports of high prevalence, based upon histological analysis, in shrimp collected along the English coast. Development of a specific and sensitive PCR assay to detect CcBV will provide a useful tool for future aquaculture and research programs involving C. crangon.
Collapse
|
9
|
Graystock P, Jones JC, Pamminger T, Parkinson JF, Norman V, Blane EJ, Rothstein L, Wäckers F, Goulson D, Hughes WOH. Hygienic food to reduce pathogen risk to bumblebees. J Invertebr Pathol 2016; 136:68-73. [PMID: 26970260 DOI: 10.1016/j.jip.2016.03.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 02/14/2016] [Accepted: 03/09/2016] [Indexed: 01/15/2023]
Abstract
Bumblebees are ecologically and economically important pollinators, and the value of bumblebees for crop pollination has led to the commercial production and exportation/importation of colonies on a global scale. Commercially produced bumblebee colonies can carry with them infectious parasites, which can both reduce the health of the colonies and spillover to wild bees, with potentially serious consequences. The presence of parasites in commercially produced bumblebee colonies is in part because colonies are reared on pollen collected from honey bees, which often contains a diversity of microbial parasites. In response to this threat, part of the industry has started to irradiate pollen used for bumblebee rearing. However, to date there is limited data published on the efficacy of this treatment. Here we examine the effect of gamma irradiation and an experimental ozone treatment on the presence and viability of parasites in honey bee pollen. While untreated pollen contained numerous viable parasites, we find that gamma irradiation reduced the viability of parasites in pollen, but did not eliminate parasites entirely. Ozone treatment appeared to be less effective than gamma irradiation, while an artificial pollen substitute was, as expected, entirely free of parasites. The results suggest that the irradiation of pollen before using it to rear bumblebee colonies is a sensible method which will help reduce the incidence of parasite infections in commercially produced bumblebee colonies, but that further optimisation, or the use of a nutritionally equivalent artificial pollen substitute, may be needed to fully eliminate this route of disease entry into factories.
Collapse
Affiliation(s)
- P Graystock
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK; Department of Entomology, University of California, Riverside, CA 92507, USA
| | - J C Jones
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - T Pamminger
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - J F Parkinson
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - V Norman
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - E J Blane
- Natural England, Mail Hub Block B, Whittington Road, Worcester WR5 2LQ, UK
| | - L Rothstein
- Bumblebee Conservation Trust, Cottrell Building, University of Stirling, Stirling FK9 4LA, UK
| | - F Wäckers
- Biobest NV, Ilse Velden 18, B-2260 Westerlo, Belgium
| | - D Goulson
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - W O H Hughes
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK.
| |
Collapse
|
10
|
Commercial Bombus impatiens as reservoirs of emerging infectious diseases in central México. Biol Invasions 2015. [DOI: 10.1007/s10530-015-0859-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Graystock P, Goulson D, Hughes WO. The relationship between managed bees and the prevalence of parasites in bumblebees. PeerJ 2014; 2:e522. [PMID: 25165632 PMCID: PMC4137657 DOI: 10.7717/peerj.522] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 07/24/2014] [Indexed: 11/24/2022] Open
Abstract
Honey bees and, more recently, bumblebees have been domesticated and are now managed commercially primarily for crop pollination, mixing with wild pollinators during foraging on shared flower resources. There is mounting evidence that managed honey bees or commercially produced bumblebees may affect the health of wild pollinators such as bumblebees by increasing competition for resources and the prevalence of parasites in wild bees. Here we screened 764 bumblebees from around five greenhouses that either used commercially produced bumblebees or did not, as well as bumblebees from 10 colonies placed at two sites either close to or far from a honey bee apiary, for the parasites Apicystis bombi, Crithidia bombi, Nosema bombi, N. ceranae, N. apis and deformed wing virus. We found that A. bombi and C. bombi were more prevalent around greenhouses using commercially produced bumblebees, while C. bombi was 18% more prevalent in bumblebees at the site near to the honey bee apiary than those at the site far from the apiary. Whilst these results are from only a limited number of sites, they support previous reports of parasite spillover from commercially produced bumblebees to wild bumblebees, and suggest that the impact of stress from competing with managed bees or the vectoring of parasites by them on parasite prevalence in wild bees needs further investigation. It appears increasingly likely that the use of managed bees comes at a cost of increased parasites in wild bumblebees, which is not only a concern for bumblebee conservation, but which may impact other pollinators as well.
Collapse
Affiliation(s)
| | - Dave Goulson
- School of Life Sciences, University of Sussex, Brighton, UK
| | | |
Collapse
|
12
|
Meeus I, Mosallanejad H, Niu J, de Graaf DC, Wäckers F, Smagghe G. Gamma irradiation of pollen and eradication of Israeli acute paralysis virus. J Invertebr Pathol 2014; 121:74-7. [PMID: 25034227 DOI: 10.1016/j.jip.2014.06.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/25/2014] [Accepted: 06/30/2014] [Indexed: 10/25/2022]
Abstract
Honeybees and bumblebees are the most important pollinators of agricultural crops. For this purpose honeybees and bumblebees are reared and transported. A pathogen-free status of bees in general, is crucial. Indeed anthropogenic transports of hosts carrying parasites could alter the natural host/pathogen association, inducing an extra pathogenic stress. Therefore the creation of a pathogen-free rearing environment is needed. For bumblebees this is possible, as these species are reared in a closed environment. Although, a link remains between reared bumblebees and the outside bee community, as honeybee-collected pollen is essential food for bumblebee mass rearing. Here we evaluated if gamma irradiation can minimize the risk of this potential route of exposure and can inactivate viral particles present in honeybee-collected pollen. We show that 16.9kGy gamma irradiation induced a 100-1000 fold reduction on the ability of IAPV to cause mortality after injections. This result opens avenues toward rearing pathogen-free bumblebees and towards eliminating the risks of pathogen spillover to native wild bee species.
Collapse
Affiliation(s)
- Ivan Meeus
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure 653, 9000 Ghent, Belgium.
| | - Hadi Mosallanejad
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure 653, 9000 Ghent, Belgium
| | - Jinzhi Niu
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure 653, 9000 Ghent, Belgium
| | - Dirk C de Graaf
- Laboratory of Zoophysiology, Department of Physiology, Faculty of Sciences, Ghent University, Krijgslaan 281 S2, 9000 Ghent, Belgium
| | | | - Guy Smagghe
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure 653, 9000 Ghent, Belgium
| |
Collapse
|
13
|
Analysis of reference gene stability after Israeli acute paralysis virus infection in bumblebees Bombus terrestris. J Invertebr Pathol 2013; 115:76-9. [PMID: 24184950 DOI: 10.1016/j.jip.2013.10.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 10/16/2013] [Accepted: 10/24/2013] [Indexed: 01/08/2023]
Abstract
To date, there are no validated internal reference genes for the normalization of RT-qPCR data from virus infection experiments with pollinating insects. In this study we evaluated the stability of five candidate internal reference genes: elongation factor-1-alpha (ELF1α), peptidylprolyl isomerase A (PPIA), 60S ribosomal protein L23 (RPL23), TATA-binding protein (TBP) and polyubiquitin (UBI), in relation to Israeli acute paralysis virus (IAPV) infection of Bombus terrestris. We investigated the stability of these genes: in whole bodies and individual body parts, as well as in whole bodies collected at different time intervals after infection with IAPV. Our data identified PPIA as the single, most-optimal internal reference gene and the combination of PPAI-RPL23-UBI as a fully-sufficient multiple internal reference genes set for IAPV infection experiments in B. terrestris.
Collapse
|
14
|
Wang H, Xie J, Shreeve TG, Ma J, Pallett DW, King LA, Possee RD. Sequence recombination and conservation of Varroa destructor virus-1 and deformed wing virus in field collected honey bees (Apis mellifera). PLoS One 2013; 8:e74508. [PMID: 24058580 PMCID: PMC3776811 DOI: 10.1371/journal.pone.0074508] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 08/02/2013] [Indexed: 12/23/2022] Open
Abstract
We sequenced small (s) RNAs from field collected honeybees (Apis mellifera) and bumblebees (Bombuspascuorum) using the Illumina technology. The sRNA reads were assembled and resulting contigs were used to search for virus homologues in GenBank. Matches with Varroadestructor virus-1 (VDV1) and Deformed wing virus (DWV) genomic sequences were obtained for A. mellifera but not B. pascuorum. Further analyses suggested that the prevalent virus population was composed of VDV-1 and a chimera of 5’-DWV-VDV1-DWV-3’. The recombination junctions in the chimera genomes were confirmed by using RT-PCR, cDNA cloning and Sanger sequencing. We then focused on conserved short fragments (CSF, size > 25 nt) in the virus genomes by using GenBank sequences and the deep sequencing data obtained in this study. The majority of CSF sites confirmed conservation at both between-species (GenBank sequences) and within-population (dataset of this study) levels. However, conserved nucleotide positions in the GenBank sequences might be variable at the within-population level. High mutation rates (Pi>10%) were observed at a number of sites using the deep sequencing data, suggesting that sequence conservation might not always be maintained at the population level. Virus-host interactions and strategies for developing RNAi treatments against VDV1/DWV infections are discussed.
Collapse
Affiliation(s)
- Hui Wang
- Centre for Ecology and Hydrology, Natural Environmental Research Council, Wallingford, Oxfordshire, United Kingdom
- * E-mail:
| | - Jiazheng Xie
- Beijing Genome Institute, Yantian District, Shenzhen, China
| | - Tim G. Shreeve
- Department of Biological and Medical Sciences, Oxford Brooks University, Oxford, United Kingdom
| | - Jinmin Ma
- Beijing Genome Institute, Yantian District, Shenzhen, China
| | - Denise W. Pallett
- Centre for Ecology and Hydrology, Natural Environmental Research Council, Wallingford, Oxfordshire, United Kingdom
| | - Linda A. King
- Department of Biological and Medical Sciences, Oxford Brooks University, Oxford, United Kingdom
| | - Robert D. Possee
- Centre for Ecology and Hydrology, Natural Environmental Research Council, Wallingford, Oxfordshire, United Kingdom
| |
Collapse
|
15
|
Levitt AL, Singh R, Cox-Foster DL, Rajotte E, Hoover K, Ostiguy N, Holmes EC. Cross-species transmission of honey bee viruses in associated arthropods. Virus Res 2013; 176:232-40. [DOI: 10.1016/j.virusres.2013.06.013] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 06/25/2013] [Accepted: 06/26/2013] [Indexed: 11/17/2022]
|
16
|
Sguazza GH, Reynaldi FJ, Galosi CM, Pecoraro MR. Simultaneous detection of bee viruses by multiplex PCR. J Virol Methods 2013; 194:102-6. [PMID: 23948157 DOI: 10.1016/j.jviromet.2013.08.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 08/01/2013] [Accepted: 08/02/2013] [Indexed: 10/26/2022]
Abstract
Honey bee mortality is a serious problem that beekeepers in Argentina have had to face during the last 3 years. It is known that the consequence of the complex interactions between environmental and beekeeping parameters added to the effect of different disease agents such as viruses, bacteria, fungi and parasitic mites may result in a sudden collapse of the colony. In addition, multiple viral infections are detected frequently concomitantly in bee colonies. The aim of this study was to establish a multiplex polymerase chain reaction method for rapid and simultaneous detection of the most prevalent bee viruses. This multiplex PCR assay will provide specific, rapid and reliable results and allow for the cost effective detection of a particular virus as well as multiple virus infections in a single reaction tube. This method could be a helpful tool in the surveillance of the most frequently found bee viruses and to study the dynamics and the interactions of the virus populations within colonies.
Collapse
Affiliation(s)
- Guillermo Hernán Sguazza
- Department of Virology, Faculty of Veterinary Sciences, National University of La Plata, 60 & 118, La Plata CP 1900, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
17
|
Murray TE, Coffey MF, Kehoe E, Horgan FG. Pathogen prevalence in commercially reared bumble bees and evidence of spillover in conspecific populations. BIOLOGICAL CONSERVATION 2013; 159:269-276. [PMID: 32287339 PMCID: PMC7124208 DOI: 10.1016/j.biocon.2012.10.021] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 08/21/2012] [Accepted: 10/22/2012] [Indexed: 05/02/2023]
Abstract
Worldwide, wild bumble bees (Bombus spp.) are experiencing marked declines, with potentially up to 11% of species currently under threat. Recent studies from North America suggest that disease transmission from commercially reared bumble bees to wild populations has led to marked range contractions in some species. In Europe, data on the prevalence of pathogen spillover from commercial to wild bumble bee populations is lacking, despite the widespread production and transport of hives within the EU since the early 1980s. We determined the permeability of cropping systems to commercial bumble bees, and quantified the prevalence of four pathogens in commercial Bombus terrestris hives and adjacent conspecific populations at increasing distances from greenhouses in Ireland. Commercial bumble bees collected from 31% to 97% of non-crop pollen, depending on the cropping system, and hives had markedly higher frequencies of two gut parasites, Crithidia spp. and Nosema bombi, compared to adjacent populations, but were free of tracheal mites. The highest prevalence of Crithida was observed within 2 km of greenhouses and the probability of infection declined in a host sex- and pathogen-specific manner up to 10 km. We suggest implementing measures that prevent the interaction of commercially reared and wild bumble bees by integrating the enforcement of national best management practices for users of commercial pollinators with international legislation that regulates the sanitation of commercial hives in production facilities.
Collapse
Affiliation(s)
- Tomás E. Murray
- Teagasc, Oak Park Research Centre, Oak Park, Carlow, Co. Carlow, Ireland
- Martin-Luther University Halle-Wittenberg, Institute for Biology, Department of Zoology, D-06120 Halle (Saale), Germany
| | - Mary F. Coffey
- Teagasc, Oak Park Research Centre, Oak Park, Carlow, Co. Carlow, Ireland
- University of Limerick, Department of Life Sciences, Limerick, Ireland
| | - Eamonn Kehoe
- Teagasc, Advisory Office, Johnstown Castle Estate, Co. Wexford, Ireland
| | - Finbarr G. Horgan
- Teagasc, Oak Park Research Centre, Oak Park, Carlow, Co. Carlow, Ireland
- International Rice Research Institute, Crop and Environmental Sciences Division, DAPO Box 7777, Metro Manila, Philippines
| |
Collapse
|
18
|
De Smet L, Ravoet J, de Miranda JR, Wenseleers T, Mueller MY, Moritz RFA, de Graaf DC. BeeDoctor, a versatile MLPA-based diagnostic tool for screening bee viruses. PLoS One 2012; 7:e47953. [PMID: 23144717 PMCID: PMC3483297 DOI: 10.1371/journal.pone.0047953] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 09/18/2012] [Indexed: 11/19/2022] Open
Abstract
The long-term decline of managed honeybee hives in the world has drawn significant attention to the scientific community and bee-keeping industry. A high pathogen load is believed to play a crucial role in this phenomenon, with the bee viruses being key players. Most of the currently characterized honeybee viruses (around twenty) are positive stranded RNA viruses. Techniques based on RNA signatures are widely used to determine the viral load in honeybee colonies. High throughput screening for viral loads necessitates the development of a multiplex polymerase chain reaction approach in which different viruses can be targeted simultaneously. A new multiparameter assay, called "BeeDoctor", was developed based on multiplex-ligation probe dependent amplification (MLPA) technology. This assay detects 10 honeybee viruses in one reaction. "BeeDoctor" is also able to screen selectively for either the positive strand of the targeted RNA bee viruses or the negative strand, which is indicative for active viral replication. Due to its sensitivity and specificity, the MLPA assay is a useful tool for rapid diagnosis, pathogen characterization, and epidemiology of viruses in honeybee populations. "BeeDoctor" was used for screening 363 samples from apiaries located throughout Flanders; the northern half of Belgium. Using the "BeeDoctor", virus infections were detected in almost eighty percent of the colonies, with deformed wing virus by far the most frequently detected virus and multiple virus infections were found in 26 percent of the colonies.
Collapse
Affiliation(s)
- Lina De Smet
- Laboratory of Zoophysiology, Department of Physiology, Ghent University, Ghent, Belgium.
| | | | | | | | | | | | | |
Collapse
|
19
|
Meeus I, Brown MJF, De Graaf DC, Smagghe G. Effects of invasive parasites on bumble bee declines. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2011; 25:662-71. [PMID: 21771075 DOI: 10.1111/j.1523-1739.2011.01707.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Bumble bees are a group of pollinators that are both ecologically and economically important and declining worldwide. Numerous mechanisms could be behind this decline, and the spread of parasites from commercial colonies into wild populations has been implicated recently in North America. Commercial breeding may lead to declines because commercial colonies may have high parasite loads, which can lead to colonization of native bumble bee populations; commercial rearing may allow higher parasite virulence to evolve; and global movement of commercial colonies may disrupt spatial patterns in local adaptation between hosts and parasites. We assessed parasite virulence, transmission mode, and infectivity. Microparasites and so-called honey bee viruses may pose the greatest threat to native bumble bee populations because certain risk factors are present; for example, the probability of horizontal transmission of the trypanosome parasite Crithidia bombi is high. The microsporidian parasite Nosema bombi may play a role in declines of bumble bees in the United States. Preliminary indications that C. bombi and the neogregarine Apicystis bombi may not be native in parts of South America. We suggest that the development of molecular screening protocols, thorough sanitation efforts, and cooperation among nongovernmental organizations, governments, and commercial breeders might immediately mitigate these threats.
Collapse
Affiliation(s)
- Ivan Meeus
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| | | | | | | |
Collapse
|
20
|
Singh R, Levitt AL, Rajotte EG, Holmes EC, Ostiguy N, vanEngelsdorp D, Lipkin WI, dePamphilis CW, Toth AL, Cox-Foster DL. RNA viruses in hymenopteran pollinators: evidence of inter-Taxa virus transmission via pollen and potential impact on non-Apis hymenopteran species. PLoS One 2010; 5:e14357. [PMID: 21203504 PMCID: PMC3008715 DOI: 10.1371/journal.pone.0014357] [Citation(s) in RCA: 254] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 11/22/2010] [Indexed: 11/19/2022] Open
Abstract
Although overall pollinator populations have declined over the last couple of decades, the honey bee (Apis mellifera) malady, colony collapse disorder (CCD), has caused major concern in the agricultural community. Among honey bee pathogens, RNA viruses are emerging as a serious threat and are suspected as major contributors to CCD. Recent detection of these viral species in bumble bees suggests a possible wider environmental spread of these viruses with potential broader impact. It is therefore vital to study the ecology and epidemiology of these viruses in the hymenopteran pollinator community as a whole. We studied the viral distribution in honey bees, in their pollen loads, and in other non-Apis hymenopteran pollinators collected from flowering plants in Pennsylvania, New York, and Illinois in the United States. Viruses in the samples were detected using reverse transcriptase-PCR and confirmed by sequencing. For the first time, we report the molecular detection of picorna-like RNA viruses (deformed wing virus, sacbrood virus and black queen cell virus) in pollen pellets collected directly from forager bees. Pollen pellets from several uninfected forager bees were detected with virus, indicating that pollen itself may harbor viruses. The viruses in the pollen and honey stored in the hive were demonstrated to be infective, with the queen becoming infected and laying infected eggs after these virus-contaminated foods were given to virus-free colonies. These viruses were detected in eleven other non-Apis hymenopteran species, ranging from many solitary bees to bumble bees and wasps. This finding further expands the viral host range and implies a possible deeper impact on the health of our ecosystem. Phylogenetic analyses support that these viruses are disseminating freely among the pollinators via the flower pollen itself. Notably, in cases where honey bee apiaries affected by CCD harbored honey bees with Israeli Acute Paralysis virus (IAPV), nearby non-Apis hymenopteran pollinators also had IAPV, while those near apiaries without IAPV did not. In containment greenhouse experiments, IAPV moved from infected honey bees to bumble bees and from infected bumble bees to honey bees within a week, demonstrating that the viruses could be transmitted from one species to another. This study adds to our present understanding of virus epidemiology and may help explain bee disease patterns and pollinator population decline in general.
Collapse
Affiliation(s)
- Rajwinder Singh
- Department of Entomology, The Pennsylvania State University, Pennsylvania, United States of America
| | - Abby L. Levitt
- Department of Entomology, The Pennsylvania State University, Pennsylvania, United States of America
| | - Edwin G. Rajotte
- Department of Entomology, The Pennsylvania State University, Pennsylvania, United States of America
| | - Edward C. Holmes
- Department of Biology, Center for Infectious Disease Dynamics, The Pennsylvania State University, Pennsylvania, United States of America
| | - Nancy Ostiguy
- Department of Entomology, The Pennsylvania State University, Pennsylvania, United States of America
| | - Dennis vanEngelsdorp
- Department of Entomology, The Pennsylvania State University, Pennsylvania, United States of America
| | - W. Ian Lipkin
- Mailman School of Public Health, Center for Infection and Immunity, Columbia University, New York, New York, United States of America
| | - Claude W. dePamphilis
- Department of Biology, The Pennsylvania State University, Pennsylvania, United States of America
| | - Amy L. Toth
- Department of Entomology, The Pennsylvania State University, Pennsylvania, United States of America
- Department of Entomology, University of Illinois, Urbana-Champaign, Illinois, United States of America
| | - Diana L. Cox-Foster
- Department of Entomology, The Pennsylvania State University, Pennsylvania, United States of America
| |
Collapse
|