1
|
Magistrado D, El-Dougdoug NK, Short SM. Sugar restriction and blood ingestion shape divergent immune defense trajectories in the mosquito Aedes aegypti. Sci Rep 2023; 13:12368. [PMID: 37524824 PMCID: PMC10390476 DOI: 10.1038/s41598-023-39067-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/19/2023] [Indexed: 08/02/2023] Open
Abstract
Immune defense is comprised of (1) resistance: the ability to reduce pathogen load, and (2) tolerance: the ability to limit the disease severity induced by a given pathogen load. The study of tolerance in the field of animal immunity is fairly nascent in comparison to resistance. Consequently, studies which examine immune defense comprehensively (i.e. considering both resistance and tolerance in conjunction) are uncommon, despite their exigency in achieving a thorough understanding of immune defense. Furthermore, understanding tolerance in arthropod disease vectors is uniquely relevant, as tolerance is essential to the cyclical transmission of pathogens by arthropods. Here, we tested the effect(s) of dietary sucrose concentration and blood ingestion on resistance and tolerance to Escherichia coli infection in the yellow fever mosquito Aedes aegypti. Resistance and tolerance were measured concurrently and at multiple timepoints. We found that mosquitoes from the restricted sugar treatment displayed enhanced resistance at all timepoints post-infection compared to those from the laboratory standard sugar treatment. Blood also improved resistance, but only early post-infection. While sucrose restriction had no effect on tolerance, we show that consuming blood prior to bacterial infection ameliorates a temporal decline in tolerance that mosquitoes experience when provided with only sugar meals. Taken together, our findings indicate that different dietary components can have unique and sometimes temporally dynamic impacts on resistance and tolerance.
Collapse
Affiliation(s)
- Dom Magistrado
- Department of Entomology, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, OH, USA
| | - Noha K El-Dougdoug
- Department of Entomology, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, OH, USA
- Department of Botany and Microbiology, Faculty of Science, Benha University, Benha, Egypt
| | - Sarah M Short
- Department of Entomology, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
2
|
Tian Z, Zhu L, Michaud JP, Zha M, Cheng J, Shen Z, Liu X, Liu X. Metabolic reprogramming of Helicoverpa armigera larvae by HearNPV facilitates viral replication and host immune suppression. Mol Ecol 2023; 32:1169-1182. [PMID: 36479957 DOI: 10.1111/mec.16817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022]
Abstract
Baculoviruses are highly evolved parasites that genetically reprogram the developing phenotype of their host insect to produce a vessel for virus replication and dispersal. Here we show that larvae of Helicoverpa armigera infected with HearNPV accumulate glucose in the midgut, which reduces food consumption and alters the dynamics of pathways governing metabolism and immunity. We used transcriptomics to demonstrate the role of the insulin signalling pathway in regulating the HearNPV infection process. Dietary restriction decreased mortality of infected larvae and reduced viral replication prior to death, whereas dietary supplementation with glucose produced the opposite effects. The expression of most tricarboxylic acid cycle (TCA) and energy metabolism-related genes was reduced in infected larvae, whereas the expression of immunity-, glycolysis- and insulin-related genes was enhanced. Treatment of infected larvae with insulin increased their survival, reduced viral replication and inhibited climbing behaviour compared to a control treatment with DMSO, whereas RNAi suppression of the insulin receptor gene produced the opposite effects. Inhibition of glycolysis with dichloroacetate (DCA) promoted viral replication and accelerated larval death, but inhibition of the TCA cycle with 2-deoxyglucose (2-DG) did not, although both diminished climbing behaviour. This work demonstrates that successful baculovirus infections hinge on metabolic reprogramming of the host and concurrent suppression of immune responses in the larval midgut, with the insulin signalling pathway mediating a trade-off between glucose metabolism and virus resistance.
Collapse
Affiliation(s)
- Zhiqiang Tian
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Lin Zhu
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - J P Michaud
- Department of Entomology, Kansas State University, Agricultural Research Center-Hays, Hays, Kansas, USA
| | - Meng Zha
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jie Cheng
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhongjian Shen
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xiaoming Liu
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xiaoxia Liu
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Kang K, Cai Y, Yue L, Zhang W. Effects of Different Nutritional Conditions on the Growth and Reproduction of Nilaparvata lugens (Stål). Front Physiol 2022; 12:794721. [PMID: 35058803 PMCID: PMC8764137 DOI: 10.3389/fphys.2021.794721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/03/2021] [Indexed: 11/22/2022] Open
Abstract
Growth and reproduction are the two most basic life processes of organisms and the distribution of energy in these processes is a core issue of the life history of organisms. Nilaparvata lugens (Stål), the brown planthopper (BPH), is a single-feeding rice pest. In the present study, this species was used as a model for testing the effects of nutritional conditions on various growth and reproduction indicators. First, the third-instar nymphs were fed with three different concentrations (100, 50, and 25%) of artificial diet until the second day of adulthood. The results showed that as the nutrient concentration decreased, the body development and oviposition of BPH were hindered. The total lipid content in the fat bodies was also significantly reduced. RT-PCR analysis showed compared to the 100% concentration group, the expression levels of vitellogenin (Vg) genes in the fifth-instar nymphs, adults, and in different tissues (ovary, fat body, and other tissues) were significantly decreased in the 50 and 25% treatment groups. Western blot analysis showed that Vg protein expression was highest in the 100% group, followed by the 50% group, with no expression in the 25% group. These results indicate that growth and reproduction in the BPH are regulated by, or correlated with, nutrient concentration. This study is of great significance as it reveals the adaptive strategies of the BPH to nutritional deficiencies and it also provides valuable information for the comprehensive control of this pest.
Collapse
Affiliation(s)
- Kui Kang
- Key Laboratory of Regional Characteristic for Conservation and Utilization of Zoology Resource in Chishui River Basin, College of Biology and Agriculture, Zunyi Normal University, Zunyi, China
| | - Youjun Cai
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lei Yue
- Key Laboratory of Regional Characteristic for Conservation and Utilization of Zoology Resource in Chishui River Basin, College of Biology and Agriculture, Zunyi Normal University, Zunyi, China
| | - Wenqing Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
4
|
Physical and Chemical Barriers in the Larval Midgut Confer Developmental Resistance to Virus Infection in Drosophila. Viruses 2021; 13:v13050894. [PMID: 34065985 PMCID: PMC8151258 DOI: 10.3390/v13050894] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 01/23/2023] Open
Abstract
Insects can become lethally infected by the oral intake of a number of insect-specific viruses. Virus infection commonly occurs in larvae, given their active feeding behaviour; however, older larvae often become resistant to oral viral infections. To investigate mechanisms that contribute to resistance throughout the larval development, we orally challenged Drosophila larvae at different stages of their development with Drosophila C virus (DCV, Dicistroviridae). Here, we showed that DCV-induced mortality is highest when infection initiates early in larval development and decreases the later in development the infection occurs. We then evaluated the peritrophic matrix as an antiviral barrier within the gut using a Crystallin-deficient fly line (Crys-/-), whose PM is weakened and becomes more permeable to DCV-sized particles as the larva ages. This phenotype correlated with increasing mortality the later in development oral challenge occurred. Lastly, we tested in vitro the infectivity of DCV after incubation at pH conditions that may occur in the midgut. DCV virions were stable in a pH range between 3.0 and 10.5, but their infectivity decreased at least 100-fold below (1.0) and above (12.0) this range. We did not observe such acidic conditions in recently hatched larvae. We hypothesise that, in Drosophila larvae, the PM is essential for containing ingested virions separated from the gut epithelium, while highly acidic conditions inactivate the majority of the virions as they transit.
Collapse
|
5
|
Chen K, Lu Z. Immune responses to bacterial and fungal infections in the silkworm, Bombyx mori. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 83:3-11. [PMID: 29289612 DOI: 10.1016/j.dci.2017.12.024] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/17/2017] [Accepted: 12/25/2017] [Indexed: 06/07/2023]
Abstract
The silkworm Bombyx mori, an economically important insect that is usually reared indoors, is susceptible to various pathogens, including bacteria, fungi, viruses, and microsporidia. As with other insects, the silkworm lacks an adaptive immune system and relies solely on innate immunity to defend itself against infection. Compared to other intensively studied insects, such as the fruit fly and tobacco hornworm, the principal immune pathways in the silkworm remain unclear. In this article, we review the literature concerning silkworm immune responses to bacteria and fungi and present our perspectives on future research into silkworm immunity.
Collapse
Affiliation(s)
- Kangkang Chen
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Zhiqiang Lu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
6
|
Baculovirus infection triggers a shift from amino acid starvation-induced autophagy to apoptosis. PLoS One 2012; 7:e37457. [PMID: 22629397 PMCID: PMC3357434 DOI: 10.1371/journal.pone.0037457] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 04/19/2012] [Indexed: 12/20/2022] Open
Abstract
Autophagy plays a central role in regulating important cellular functions such as cell survival during starvation and control of infectious pathogens. On the other hand, many pathogens have evolved mechanisms of inhibition of autophagy such as blockage of the formation of autophagosomes or the fusion of autophagosomes with lysosomes. Baculoviruses are important insect pathogens for pest control, and autophagy activity increases significantly during insect metamorphosis. However, it is not clear whether baculovirus infection has effects on the increased autophagy. In the present study, we investigated the effects of the Autographa californica nucleopolyhedrovirus (AcMNPV) infection on autophagy in SL-HP cell line from Spodoptera litura induced under amino acid deprivation. The results revealed that AcMNPV infection did not inhibit autophagy but triggered apoptosis under starvation pressure. In the early stage of infection under starvation, mitochondrial dysfunction was detected, suggesting the organelles might be involved in cell apoptosis. The semi-quantitative PCR assay revealed that the expression of both p35 and ie-1 genes of AcMNPV had no significant difference between the starved and unstarved SL-HP cells. The western blot analysis showed that no cleavage of endogenous Atg6 occurred during the process of apoptosis in SL-HP cells. These data demonstrated that some permissive insect cells may defend baculovirus infection via apoptosis under starvation and apoptosis is independent of the cleavage of Atg6 in SL-HP cells.
Collapse
|
7
|
Detection and kinetic analysis of Epinotia aporema granulovirus in its lepidopteran host by real-time PCR. Arch Virol 2012; 157:1149-53. [PMID: 22398913 DOI: 10.1007/s00705-012-1265-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 01/19/2012] [Indexed: 10/28/2022]
Abstract
Epinotia aporema granulovirus (EpapGV) has attracted interest as a potential biocontrol agent of the soybean pest Epinotia aporema in Argentina. Studies on virus/host interactions conducted so far have lacked an accurate method to assess the progress of virus load during the infection process. The present paper reports the development of a real-time PCR for EpapGV and its application to describe viral kinetics following ingestion of two different virus doses by last-instar E. aporema larvae. Real-time PCR was shown to be a reliable method to detect and quantify the presence of EpapGV in the analyzed samples. The increase in virus titer (log) exhibited a sigmoidal pattern, with an exponential growth phase between 24 and 48 h postinfection for both initial doses tested.
Collapse
|