1
|
Gao B, Ji Y, Zhao D, Yan Y, Zhang L, Wu H, Xie Y, Shi Q, Wang Y, Guo W. Juvenile hormone inhibits lipogenesis of Spodoptera exigua to response to Bacillus thuringiensis GS57 infection. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 205:106110. [PMID: 39477628 DOI: 10.1016/j.pestbp.2024.106110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/23/2024] [Accepted: 08/30/2024] [Indexed: 11/07/2024]
Abstract
The application of Bacillus thuringiensis (Bt) has brought environmental benefits and delayed resistance development of pests. Most studies focus on the Bt insecticidal activity against pests, however, the molecular mechanism of Bt on impairing the growth and development of Spodoptera exigua remains unknown. Here, we show that juvenile hormone (JH) inhibits the lipogenesis mediated by fatty acid synthases (Fas) of S. exigua in response to Bt infection. The weight and lipid accumulation of S. exigua larvae post Bt infection were less than those of larvae without Bt infection. We further demonstrated that Bt infection causes the JH titer with a significant increase, which downregulates the expression of lipogenesis-related genes, SeFas3, SeFas4, and SeFas5, resulting in the delayed development of S. exigua larvae. In addition, the expression levels of SeFas genes were regulated by SeACC, indicating that SeFas genes were modulated by multiple pathways. Our findings reveal that novel insights into the molecular mechanisms underlying the impaired development caused by Bt infection which can inform the development of strategies for the sustainable pest control in the future.
Collapse
Affiliation(s)
- Bo Gao
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yujie Ji
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dan Zhao
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Yitong Yan
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lu Zhang
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Han Wu
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yifan Xie
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qiuyu Shi
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yao Wang
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wei Guo
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
2
|
Afzal MBS, Ijaz M, Abbas N, Shad SA, Serrão JE. Resistance of Lepidopteran Pests to Bacillus thuringiensis Toxins: Evidence of Field and Laboratory Evolved Resistance and Cross-Resistance, Mode of Resistance Inheritance, Fitness Costs, Mechanisms Involved and Management Options. Toxins (Basel) 2024; 16:315. [PMID: 39057955 PMCID: PMC11281168 DOI: 10.3390/toxins16070315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Bacillus thuringiensis (Bt) toxins are potential alternatives to synthetic insecticides for the control of lepidopteran pests. However, the evolution of resistance in some insect pest populations is a threat and can reduce the effectiveness of Bt toxins. In this review, we summarize the results of 161 studies from 20 countries reporting field and laboratory-evolved resistance, cross-resistance, and inheritance, mechanisms, and fitness costs of resistance to different Bt toxins. The studies refer mainly to insects from the United States of America (70), followed by China (31), Brazil (19), India (12), Malaysia (9), Spain (3), and Australia (3). The majority of the studies revealed that most of the pest populations showed susceptibility and a lack of cross-resistance to Bt toxins. Factors that delay resistance include recessive inheritance of resistance, the low initial frequency of resistant alleles, increased fitness costs, abundant refuges of non-Bt, and pyramided Bt crops. The results of field and laboratory resistance, cross-resistance, and inheritance, mechanisms, and fitness cost of resistance are advantageous for predicting the threat of future resistance and making effective strategies to sustain the effectiveness of Bt crops.
Collapse
Affiliation(s)
- Muhammad Babar Shahzad Afzal
- Beekeeping & Hill Fruit Pests Research Station, Rawalpindi 46000, Pakistan;
- Department of Entomology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Mamuna Ijaz
- Department of Entomology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Naeem Abbas
- Pesticides and Environmental Toxicology Laboratory, Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Sarfraz Ali Shad
- Department of Entomology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - José Eduardo Serrão
- Department of General Biology, Federal University of Vicosa, Vicosa 36570-900, MG, Brazil;
| |
Collapse
|
3
|
Hrithik MTH, Ahmed S, Kim Y. Damage signal induced by Bacillus thuringiensis infection triggers immune responses via a DAMP molecule in lepidopteran insect, Spodoptera exigua. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 139:104559. [PMID: 36181778 DOI: 10.1016/j.dci.2022.104559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Insect immunity defends the infection of an insect pathogenic bacterium, Bacillus thuringiensis (Bt). However, it was not clear on the recognition of Bt infection by the insect immune system. This study tested a physiological function of dorsal switch protein 1 (DSP1) in the Bt infection. DSP1 is classified into HMGB1-like damage-associated molecular pattern (DAMP) in insects. Upon Bt infection in a lepidopteran Spodoptera exigua, DSP1 was released from the nuclei of the midgut epithelium and activated immune responses. For this DSP1 release, a functional binding between Bt and its receptors on the midgut epithelium was required because any RNA interference (RNAi) treatments of Bt receptor (cadherin or ABCC) prevented the DSP1 release and became susceptible to the bacterial infection. The DSP1 release was required for the gene induction of Repat33, which is a member of response to pathogen gene family and its gene product mediated cellular and humoral immune responses against pathogen infection in S. exigua. The released DSP1 activated phospholipase A2 (PLA2) to produce eicosanoids, which induced the Repat33 expression because a hemocoelic injection of a recombinant DSP1 induced the Repat33 expression without Bt infection. However, any inhibition of PLA2 activity impaired the DAMP signaling between DSP1 and Repat33. DSP1 also up-regulated two other immune mediators, nitric oxide (NO) and a cytokine called plasmatocyte-spreading peptide (PSP). Either NO or PSP activated PLA2 to up-regulate Repat33 expression. These results suggest that Bt infection of the insect midgut generates a DAMP signal via DSP1 release, which turns on NO or the cytokine-PLA2-Repat33 immune signaling pathway.
Collapse
Affiliation(s)
| | - Shabbir Ahmed
- Department of Plant Medicals, Andong National University, Andong, 36729, South Korea
| | - Yonggyun Kim
- Department of Plant Medicals, Andong National University, Andong, 36729, South Korea.
| |
Collapse
|
4
|
Dutta TK, Veeresh A, Phani V, Kundu A, Santhoshkumar K, Mathur C, Sagar D, Sreevathsa R. Molecular characterization and functional analysis of Cry toxin receptor-like genes from the model insect Galleria mellonella. INSECT MOLECULAR BIOLOGY 2022; 31:434-446. [PMID: 35266587 DOI: 10.1111/imb.12770] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/25/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Crystal (Cry) toxins produced from the soil bacterium, Bacillus thuringiensis (Bt), have gained worldwide attention for long due to their insecticidal potential. A number of receptor proteins located on the epithelial cells of the larval midgut were shown to be crucial for Cry intoxication in different insect pests belonging to order Lepidoptera, Diptera and Coleoptera. A beehive pest, Galleria mellonella, serves as an excellent insect model for biochemical research. However, information on the Cry receptor-like genes in G. mellonella is limited. In the present study, the full-length sequences of four putative Cry receptor genes (ABC transporter, alkaline phosphatase, aminopeptidase N and cadherin) were cloned from G. mellonella. All these receptor genes were substantially upregulated in the midgut tissue of fourth-instar G. mellonella larvae upon early exposure (6 h) to a sub-lethal dose of Cry1AcF toxin. Oral and independent delivery of bacterially-expressed dsRNAs corresponding to four receptor genes in G. mellonella suppressed the transcription of target receptors which in turn significantly reduced the larval sensitivity to Cry1AcF toxin. As the laboratory populations of G. mellonella develop Bt resistance in a relatively short time, molecular characterization of Cry receptor genes in G. mellonella performed in the present study may provide some useful information for future research related to the genetic basis of Bt resistance in the model insect.
Collapse
Affiliation(s)
- Tushar K Dutta
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Arudhimath Veeresh
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Victor Phani
- Department of Agricultural Entomology, College of Agriculture, Uttar Banga Krishi Viswavidyalaya, Dakshin Dinajpur, West Bengal, India
| | - Artha Kundu
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Chetna Mathur
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Doddachowdappa Sagar
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | |
Collapse
|
5
|
Zhong J, Fang S, Gao M, Lu L, Zhang X, Zhu Q, Liu Y, Jurat-Fuentes JL, Liu X. Evidence of a shared binding site for Bacillus thuringiensis Cry1Ac and Cry2Aa toxins in Cnaphalocrocis medinalis cadherin. INSECT MOLECULAR BIOLOGY 2022; 31:101-114. [PMID: 34637177 DOI: 10.1111/imb.12741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 08/26/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Insect midgut cadherins function as receptors and play critical roles as protein receptors of insecticidal Bacillus thuringiensis (Bt) toxins used as biopesticides and in Bt transgenic crops worldwide. Here, we cloned and characterized the full-length midgut cadherin (CmCad) cDNA from the rice leaffolder (Cnaphalocrocis medinalis), a destructive pest of rice in many Asian countries. Expression of recombinant proteins corresponding to the extracellular domain of CmCad allowed testing binding of Cry proteins. Results from in vitro ligand blotting and enzyme-linked immunosorbent assays supported that the extracellular domain of CmCad contains regions recognized by both Cry1Ac and Cry2Aa. Molecular modelling and docking simulations indicated that binding to both Cry1Ac and Cry2Aa is localized primarily within a CmCad motif corresponding to residues T1417-D1435. A recombinant CmCad protein produced without residues T1417-D1435 lacked binding to Cry1Ac and Cry2Aa, confirmed our modelling predictions that CmCad has a shared Cry1Ac and Cry2Aa binding site. The potential existence of a shared binding region in CmCad suggests that caution should be taken when using combinations of Cry1Ac and Cry2Aa in pyramided transgenic rice, as their combined use could speed the evolution of resistance to both toxins.
Collapse
Affiliation(s)
- J Zhong
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - S Fang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - M Gao
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - L Lu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - X Zhang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Q Zhu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Y Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - J L Jurat-Fuentes
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, USA
| | - X Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
6
|
Yao X, Liu C, Duan Y, An S, Wei J, Liang G. ABCC2 is a functional receptor of Bacillus thuringiensis Cry1Ca in Spodoptera litura. Int J Biol Macromol 2022; 194:9-16. [PMID: 34861271 DOI: 10.1016/j.ijbiomac.2021.11.174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022]
Abstract
Spodoptera litura is a serious polyphagous pest in the whole world, which has developed resistance to most conventional insecticides and even some Bacillus thuringiensis (Bt) toxins. Cry1Ca has excellent insecticide activity against S. litura with potential application to control S. litura and delay the development of insect resistance. However, the mode of action of Cry1Ca in S. litura is poorly understood. Here, Cry1Ca-binding proteins were identified from S. litura by using pull down assays and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The results indicated that aminopeptidase-N (APN), ATP binding cassette subfamily C member 2 (ABCC2), polycalin, actin and V-type proton ATPase subunit A may bind with Cry1Ca. Further study confirmed that ABCC2 fragment expressed in vitro can bind to Cry1Ca as demonstrated by Ligand blot and homologous competition experiments. The over-expression of endogenous SlABCC2 in Sf9 cells increased Cry1Ca cytotoxicity. Correspondingly, the vivo loss of function analyses by SlABCC2 small interfering RNAs (siRNAs) in S. litura larvae decreased the toxicity of Cry1Ca to larvae. Altogether, these results show that ABCC2 of S. litura is a functional receptor that is involved in the action mode of Cry1Ca.
Collapse
Affiliation(s)
- Xue Yao
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Chen Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, PR China
| | - Yunpeng Duan
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Shiheng An
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Jizhen Wei
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China.
| | - Gemei Liang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, PR China.
| |
Collapse
|
7
|
Dutta TK, Veeresh A, Mathur C, Phani V, Mandal A, Sagar D, Nebapure SM. The induced knockdown of GmCAD receptor protein encoding gene in Galleria mellonella decreased the insect susceptibility to a Photorhabdus akhurstii oral toxin. Virulence 2021; 12:2957-2971. [PMID: 34882066 PMCID: PMC8667893 DOI: 10.1080/21505594.2021.2006996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 10/12/2021] [Accepted: 11/11/2021] [Indexed: 12/02/2022] Open
Abstract
Photorhabdus bacteria secrete a repertoire of protein toxins that can kill the host insect. Among them, toxin complex (Tc) proteins have gained significant attention due to their wider conservation across the different bacterial genera. In our laboratory, a C-terminal domain of TcaB protein was characterized from P. akhurstii bacterium that conferred the potent oral insecticidal effect on Galleria mellonella. However, the role of insect gut receptors in the TcaB intoxication process was yet to be investigated. In the current study, we examined the transcription of candidate midgut receptors in TcaB-infected larvae and subsequently cloned a cadherin-like gene, GmCAD, from G. mellonella. GmCAD was highly transcribed in the fourth-instar larval stage and specifically in the midgut tissues. Our ligand blot and binding ELISA assays indicated that TcaB binds to the truncated peptides from the GmCAD transmembrane-proximal region with greater affinity than that from the transmembrane-distal region. Oral administration of bacterially expressed GmCAD dsRNA in G. mellonella severely attenuated the expression of target mRNA, which in turn alleviated the negative effect of TcaB on insect survival (TcaB-induced mortality in CAD dsRNA pretreated larvae reduced by 72-83% compared to control), implying the association of GmCAD in the TcaB intoxication process. Present findings form a basis of future research related to the insect gut receptor interactions with Photorhabdus toxins.
Collapse
Affiliation(s)
- Tushar K. Dutta
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Arudhimath Veeresh
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Chetna Mathur
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Victor Phani
- Department of Agricultural Entomology, College of Agriculture, Uttar Banga Krishi Viswavidyalaya, Dakshin Dinajpur, India
| | - Abhishek Mandal
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Doddachowdappa Sagar
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Suresh M. Nebapure
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
8
|
Cooper AM, Song H, Yu Z, Biondi M, Bai J, Shi X, Ren Z, Weerasekara SM, Hua DH, Silver K, Zhang J, Zhu KY. Comparison of strategies for enhancing RNA interference efficiency in Ostrinia nubilalis. PEST MANAGEMENT SCIENCE 2021; 77:635-645. [PMID: 33002336 PMCID: PMC7855606 DOI: 10.1002/ps.6114] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/13/2020] [Accepted: 10/01/2020] [Indexed: 05/15/2023]
Abstract
BACKGROUND Targeting insect-specific genes through post-transcriptional gene silencing with RNA interference (RNAi) is a new strategy for insect pest management. However, lepidopterans are recalcitrant to RNAi, which prevents application of novel RNAi technology to many notorious pests, including Ostrinia nubilalis (ECB). Strategies for enhancing RNAi efficiency, including large doses of double-stranded RNA (dsRNA), nuclease inhibitors, transfection reagents, and nanoparticles, have proved useful in other insects exhibiting substantial dsRNA degradation, a major mechanism limiting RNAi efficacy. To determine if similar strategies can enhance RNAi efficiency in ECB, various reagents were tested for their ability to enhance dsRNA stability in ECB tissues, then compared for their effectiveness in whole ECB. RESULTS Ex vivo incubation experiments revealed that Meta dsRNA lipoplexes, EDTA, chitosan-based dsRNA nanoparticles, and Zn2+ enhanced dsRNA stability in ECB hemolymph and gut content extracts, compared with uncoated dsRNA. Despite these positive results, the reagents used in this study were ineffective at enhancing RNAi efficiency in ECB in vivo. To reduce assay time and required dsRNA, midguts were dissected and incubated in tissue culture medium containing dsRNA with and without reagents. These experiments showed that RNAi efficiency varied between target genes, and nuclease inhibitors improved RNAi efficiency for only a portion of the refractory target genes investigated ex vivo. CONCLUSION These results indicate that enhancing dsRNA stability is insufficient to improve RNAi efficiency in ECB and suggests the existence of additional, complex mechanisms contributing to low RNAi efficiency in ECB.
Collapse
Affiliation(s)
- Anastasia M.W. Cooper
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA
| | - Huifang Song
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Zhitao Yu
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA
| | - Marie Biondi
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA
| | - Jun Bai
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA
- School of Life Science, South China Normal University, Guangzhou, Guangdong, 510631, China
| | - Xuekai Shi
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Zhaoyang Ren
- Department of Chemistry, 213 CBC Building, Kansas State University, Manhattan, KS 66506, USA
| | - Sahani M. Weerasekara
- Department of Chemistry, 213 CBC Building, Kansas State University, Manhattan, KS 66506, USA
| | - Duy H. Hua
- Department of Chemistry, 213 CBC Building, Kansas State University, Manhattan, KS 66506, USA
| | - Kristopher Silver
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA
| | - Jianzhen Zhang
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Kun Yan Zhu
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA
- Author for correspondence: (K.Y. Zhu)
| |
Collapse
|
9
|
Huang J, Xu Y, Zuo Y, Yang Y, Tabashnik BE, Wu Y. Evaluation of five candidate receptors for three Bt toxins in the beet armyworm using CRISPR-mediated gene knockouts. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 121:103361. [PMID: 32199887 DOI: 10.1016/j.ibmb.2020.103361] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/06/2020] [Accepted: 03/15/2020] [Indexed: 05/29/2023]
Abstract
Insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) can provide safe and effective control of some major pests, but evolution of resistance by pests diminishes these benefits. Better understanding of the genetics and mechanisms of resistance is urgently needed to improve methods for monitoring, managing, and countering pest resistance to Bt toxins. Here we used CRISPR-mediated knockouts to evaluate the role of five genes encoding candidate Bt toxin receptors in Spodoptera exigua (beet armyworm), a devastating pest of vegetable, field and flower crops. We compared susceptibility to Bt toxins Cry1Ac, Cry1Fa, and Cry1Ca between the parent susceptible strain and each of five strains homozygous for the knockout of one of the candidate genes (SeAPN1, SeCad1, SeABCC1, SeABCC2 or SeABCC3). The results from the 15 pairwise comparisons reveal that SeABCC2 has a major role and SeCad1 a minor role in mediating toxicity of Cry1Ac and Cry1Fa. SeABCC2 also has a minor role in toxicity of Cry1Ca. In addition, the results imply little or no role for the other three candidate receptors in toxicity of Cry1Ac or Cry1Fa; or for the four candidate receptors other than SeABCC2 in toxicity of Cry1Ca.
Collapse
Affiliation(s)
- Jianlei Huang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yanjun Xu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yayun Zuo
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yihua Yang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Bruce E Tabashnik
- Department of Entomology, University of Arizona, Tucson, AZ, 85721, USA.
| | - Yidong Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
10
|
Liu J, Wang L, Zhou G, Gao S, Sun T, Liu J, Gao B. Midgut transcriptome analysis of Clostera anachoreta treated with lethal and sublethal Cry1Ac protoxin. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 103:e21638. [PMID: 31702074 DOI: 10.1002/arch.21638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/28/2019] [Accepted: 10/06/2019] [Indexed: 06/10/2023]
Abstract
Clostera anachoreta is one of the important Lepidoptera insect pests in forestry, especially in poplars woods in China, Europe, Japan, and India, and so forth, and also the target insect of Cry1Ac toxin and Bt plants. Six genes, HSC70, GNB2L/RACK1, PNLIP, BI1-like, arylphorin type 2, and PKM were found in this study, and they might be associated with the response to the Cry1Ac toxin, found by analyzing the transcriptome data. And the PI3K-Akt pathway was highly enriched in differentially expressed unigenes and linked to several crucial pathways, including the B-cell receptor signaling pathway, toll-like receptor pathway, and mitogen-activated protein kinase signaling pathway. They might be involved in the recovery stage of the damaged midgut during the response to sublethal doses of Cry1Ac toxin. This is the first study conducted to specifically investigate C. anachoreta response to Cry toxin stress using large-scale sequencing technologies, and the results highlighted some important genes and pathways that could be involved in Btcry1Ac resistance development or could serve as targets for biologically based control mechanisms of this insect pest.
Collapse
Affiliation(s)
- Jie Liu
- Ecological Laboratory, Forestry College, Agricultural University of Hebei, Baoding, China
| | - Liucheng Wang
- Ecological Laboratory, Forestry College, Agricultural University of Hebei, Baoding, China
| | - Guona Zhou
- Ecological Laboratory, Forestry College, Agricultural University of Hebei, Baoding, China
| | - Suhong Gao
- Ecological Laboratory, Forestry College, Agricultural University of Hebei, Baoding, China
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Changli, China
| | - Tianhua Sun
- Ecological Laboratory, Forestry College, Agricultural University of Hebei, Baoding, China
| | - Junxia Liu
- Ecological Laboratory, Forestry College, Agricultural University of Hebei, Baoding, China
| | - Baojia Gao
- Ecological Laboratory, Forestry College, Agricultural University of Hebei, Baoding, China
| |
Collapse
|
11
|
Ren X, Wang Y, Ma Y, Jiang W, Ma X, Hu H, Wang D, Ma Y. Midgut de novo transcriptome analysis and gene expression profiling of Spodoptera exigua larvae exposed with sublethal concentrations of Cry1Ca protein. 3 Biotech 2020; 10:138. [PMID: 32158634 DOI: 10.1007/s13205-020-2129-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 02/11/2020] [Indexed: 12/01/2022] Open
Abstract
Spodoptera exigua (Hübner) is a polyphagous pest on agricultural crops, whose control is based mainly on the application of chemical insecticides. Bacillus thuringiensis (Bt) is one of the most important biological agents that have been successfully applied as a biological control, and Cry1Ca protein is considered to be active against S. exigua. Therefore, to understand the response of S. exigua to Cry1Ca protein, high-throughput sequencing was used to analyse the S. exigua larval midgut after treatment with sublethal concentrations of Cry1Ca protein. Transcriptome data showed that a total of 98,571 unigenes with an N50 value of 1135 bp and a mean length of 653 bp were obtained. Furthermore, 2962 differentially expressed genes (DEGs) were identified after Cry1Ca challenge, including 1508 up-regulated and 1454 down-regulated unigenes. Among these DEGs, detoxification (CYP, CarE, and GST) and Bt resistance (ALP, APN, and ABC transporter)-related genes were differentially expressed in the midgut of S. exigua after Cry1Ca treatment. However, most DEGs of protective enzymes were down-regulated, while most DEGs related with serine protease and REPAT were up-regulated. Furthermore, almost all DEGs related to the immune signaling pathway, antimicrobial protein, and lysozyme were up-regulated by Cry1Ca treatment. These results indicated that the detoxification enzyme, protective enzymes, Bt resistance-related genes, serine protease, REPAT, and the immune response might have been involved in the response of S. exigua to Cry1Ca protein. In summary, analysis of the transcriptomal expression of genes involved in Cry1Ca protein against S. exigua provided potential clues for elucidating the host response processes and defensive mechanisms underlying Cry1Ca toxicity.
Collapse
Affiliation(s)
- Xiangliang Ren
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 Henan China
| | - Yingying Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 Henan China
- Honghu Agricultural Technology Extension Center, Jingzhou, 433200 Hubei China
| | - Yajie Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 Henan China
| | - Weili Jiang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 Henan China
| | - Xiaoyan Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 Henan China
| | - Hongyan Hu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 Henan China
| | - Dan Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 Henan China
| | - Yan Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 Henan China
| |
Collapse
|
12
|
Wei J, Zhang Y, An S. The progress in insect cross-resistance among Bacillus thuringiensis toxins. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 102:e21547. [PMID: 30864250 DOI: 10.1002/arch.21547] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 06/09/2023]
Abstract
Bt crop pyramids produce two or more Bt proteins active to broaden the spectrum of action and to delay the development of resistance in exposed insect populations. The cross-resistance between Bt toxins is a vital restriction factor for Bt crop pyramids, which may reduce the effect of pyramid strategy. In this review, the status of the cross-resistance among more than 20 Bt toxins that are most commonly used against 13 insect pests was analyzed. The potential mechanisms of cross-resistance are discussed. The corresponding measures, including pyramid RNA interference and Bt toxin, "high dose/refuge," and so on are advised to be taken for adopting the pyramided strategy to delay the Bt evolution of resistance and control the target pest insect.
Collapse
Affiliation(s)
- Jizhen Wei
- State Key Laboratory of Wheat and Maize Crop Science, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Yaling Zhang
- State Key Laboratory of Wheat and Maize Crop Science, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa, China
| | - Shiheng An
- State Key Laboratory of Wheat and Maize Crop Science, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
13
|
Tian P, Qiu L, Zhou A, Chen G, He H, Ding W, Li Y. Evaluation of Appropriate Reference Genes For Investigating Gene Expression in Chlorops oryzae (Diptera: Chloropidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:2207-2214. [PMID: 31145453 DOI: 10.1093/jee/toz142] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Indexed: 06/09/2023]
Abstract
Reverse transcription quantitative polymerase chain reaction (PCR) has become an invaluable technique for analyzing gene expression in many insects. However, this approach requires the use of stable reference genes to normalize the data. Chlorops oryzae causes significant economic damage to rice crops throughout Asia. The lack of suitable reference genes has hindered research on the molecular mechanisms underlying many physiological processes of this species. In this study, we used quantitative real-time PCR to evaluate the expression of eight C. oryzae housekeeping genes glyceraldehyde-3-phosphate dehydrogenase (GAPDH), β-actin (βACT), beta-tubulin (βTUB), Delta Elongation factor-1 (EF1δ), ribosomal protein S11 (RPS11), RPS15, C-terminal-Binding Protein (CtBP), and ribosomal protein 49 (RP49) in different developmental stages and tissues in both larvae and adults. We analyzed the data with four different software packages: geNorm, NormFinder, BestKeeper, and RefFinder and compared the results obtained with each method. The results indicate that PRS15 and RP49 can be used as stable reference genes for quantifying gene expression in different developmental stages and larval tissues. GAPDH and βACT, which have been considered stable reference genes by previous studies, were the least stable of the candidate genes with respect to larval tissues. GAPDH was, however, the most stable reference gene for adult tissues. We verified the candidate reference genes identified and found that the expression levels of Cadherins (Cads) changed when different reference genes were used to normalize gene expression. This study provides a valuable foundation for future research on gene function, and investigating the molecular basis of physiological processes, in C. oryzae.
Collapse
Affiliation(s)
- Ping Tian
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Lin Qiu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Ailin Zhou
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Guo Chen
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Hualiang He
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Wenbing Ding
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Hunan Provincial Engineering and Technology Research Center for Biopesticide and Formulation Processing, Changsha, China
| | - Youzhi Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| |
Collapse
|
14
|
Synthesis and Characterization of Cry2Ab-AVM Bioconjugate: Enhanced Affinity to Binding Proteins and Insecticidal Activity. Toxins (Basel) 2019; 11:toxins11090497. [PMID: 31461921 PMCID: PMC6783867 DOI: 10.3390/toxins11090497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/15/2019] [Accepted: 08/15/2019] [Indexed: 12/23/2022] Open
Abstract
Bacillus thuringiensis insecticidal proteins (Bt toxins) have been widely used in crops for agricultural pest management and to reduce the use of chemical insecticides. Here, we have engineered Bt toxin Cry2Ab30 and bioconjugated it with 4"-O-succinyl avermectin (AVM) to synthesize Cry2Ab-AVM bioconjugate. It was found that Cry2Ab-AVM showed higher insecticidal activity against Plutella xylostella, up to 154.4 times compared to Cry2Ab30. The binding results showed that Cry2Ab-AVM binds to the cadherin-like binding protein fragments, the 10th and 11th cadherin repeat domains in the P. xylostella cadherin (PxCR10-11), with a much higher affinity (dissociation equilibrium constant KD = 3.44 nM) than Cry2Ab30 (KD = 28.7 nM). Molecular docking suggested that the macrolide lactone group of Cry2Ab-AVM ligand docking into the PxCR10-11 is a potential mechanism to enhance the binding affinity of Cry2Ab-AVM to PxCR10-11. These findings offer scope for the engineering of Bt toxins by bioconjugation for improved pest management.
Collapse
|
15
|
Ren XL, Hu HY, Jiang WL, Ma XY, Ma YJ, Li GQ, Ma Y. Three GPI-anchored alkaline phosphatases are involved in the intoxication of Cry1Ca toxin to Spodoptera exigua larvae. J Invertebr Pathol 2018; 151:32-40. [DOI: 10.1016/j.jip.2017.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 10/22/2017] [Accepted: 10/26/2017] [Indexed: 02/08/2023]
|
16
|
Vatanparast M, Kim Y. Optimization of recombinant bacteria expressing dsRNA to enhance insecticidal activity against a lepidopteran insect, Spodoptera exigua. PLoS One 2017; 12:e0183054. [PMID: 28800614 PMCID: PMC5553977 DOI: 10.1371/journal.pone.0183054] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/30/2017] [Indexed: 11/19/2022] Open
Abstract
Double-stranded RNA (dsRNA) has been applied to control insect pests due to its induction of RNA interference (RNAi) of a specific target gene expression. However, developing dsRNA-based insecticidal agent has been a great challenge especially against lepidopteran insect pests due to variations in RNAi efficiency. The objective of this study was to screen genes of chymotrypsins (SeCHYs) essential for the survival of the beet armyworm, Spodoptera exigua, to construct insecticidal dsRNA. In addition, an optimal oral delivery method was developed using recombinant bacteria. At least 7 SeCHY genes were predicted from S. exigua transcriptomes. Subsequent analyses indicated that SeCHY2 was widely expressed in different developmental stages and larval tissues by RT-PCR and its expression knockdown by RNAi caused high mortality along with immunosuppression. However, a large amount of dsRNA was required to efficiently kill late instars of S. exigua because of high RNase activity in their midgut lumen. To minimize dsRNA degradation, bacterial expression and formulation of dsRNA were performed in HT115 Escherichia coli using L4440 expression vector. dsRNA (300 bp) specific to SeCHY2 overexpressed in E. coli was toxic to S. exigua larvae after oral administration. To enhance dsRNA release from E. coli, bacterial cells were sonicated before oral administration. RNAi efficiency of sonicated bacteria was significantly increased, causing higher larval mortality at oral administration. Moreover, targeting young larvae possessing weak RNase activity in the midgut lumen significantly enhanced RNAi efficiency and subsequent insecticidal activity against S. exigua.
Collapse
Affiliation(s)
- Mohammad Vatanparast
- Department of Plant Protection, College of Agriculture, University of Bu-Ali Sina, Hamedan, Iran
| | - Yonggyun Kim
- Department of Plant Medicals, Andong National University, Andong, Korea
- * E-mail:
| |
Collapse
|
17
|
Zhao M, Yuan X, Wei J, Zhang W, Wang B, Myint Khaing M, Liang G. Functional roles of cadherin, aminopeptidase-N and alkaline phosphatase from Helicoverpa armigera (Hübner) in the action mechanism of Bacillus thuringiensis Cry2Aa. Sci Rep 2017; 7:46555. [PMID: 28488696 PMCID: PMC5424343 DOI: 10.1038/srep46555] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 03/17/2017] [Indexed: 11/08/2022] Open
Abstract
A pyramid strategy combining the Cry1A and Cry2A toxins in Bt crops has been widely used throughout the world to delay pest adaption to transgenic crops and broaden the insecticidal spectrum. Midgut membrane-bound cadherin (CAD), aminopeptidase-N (APN) and alkaline phosphatase (ALP) are important for Cry1A toxicity in some lepidopteran larvae, but the proteins that bind Cry2A in the midgut of target insects and their role in the Cry2A mechanism of action are still unclear. In this study, we found that heterologously expressed CAD, APN4 and ALP2 peptides from the midgut of Helicoverpa armigera could bind to the Cry2Aa toxin with a high affinity. Additionally, the efficiency of Cry2Aa insecticidal activity against H. armigera larvae was obviously reduced after the genes encoding these proteins were silenced with specific siRNAs: CAD- and ALP2-silenced larvae showed significantly similar reductions in mortality due to the Cry2Aa toxin (41.67% and 43.06%, respectively), whereas a larger reduction in mortality was observed in APN4-silenced larvae (61.11%) than in controls. These results suggest that CAD, APN4 and ALP2 are involved in the mechanism of action of Cry2Aa in H. armigera and may play important functional roles in the toxicity of the Cry2Aa toxin.
Collapse
Affiliation(s)
- Man Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiangdong Yuan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jizhen Wei
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wanna Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bingjie Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Myint Myint Khaing
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Gemei Liang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
18
|
Ren XL, Jiang WL, Ma YJ, Hu HY, Ma XY, Ma Y, Li GQ. The Spodoptera exigua (Lepidoptera: Noctuidae) ABCC2 Mediates Cry1Ac Cytotoxicity and, in Conjunction with Cadherin, Contributes to Enhance Cry1Ca Toxicity in Sf9 Cells. JOURNAL OF ECONOMIC ENTOMOLOGY 2016; 109:2281-2289. [PMID: 27986933 DOI: 10.1093/jee/tow193] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/09/2016] [Indexed: 06/06/2023]
Abstract
In insects, the mode of Cry1A toxins action has been studied in detail and many receptors that participate in the process are known. Recent evidence has revealed that an ABC transporter (ABCC2) is involved in conferring resistance to Cry1A toxins and that ABCC2 could be a receptor of Cry1A. However, it is not known whether Cry1Ca interacts with the same receptor proteins as Cry1A. In this study, we report the cloning of an ABC transporter gene, SeABCC2b, from the midgut of Spodoptera exigua (Hübner) larvae, and its expression in Sf9 cells for a functional analysis. The addition of Cry1Ca and Cry1Ac to Sf9 cell culture caused swelling in 28.5% and 93.9% of the SeABCC2-expressing cells, respectively. In contrast, only 7.4% and 1.3% of the controls cells swelled in the presence of Cry1Ca and Cry1Ac. Thus, SeABCC2b-expressing Sf9 cells had increased susceptibility to Cry1Ca and Cry1Ac. Similarly, S. exigua cadherin (SeCad1b) expressed in Sf9 cells caused 47.1% and 1.8% of the SeCad1b-expressing cells to swell to Cry1Ca and Cry1Ac exposure. Therefore, Sf9 cells expressing SeCad1b were more sensitive to Cry1Ca than Cry1Ac. Together, our data suggest that SeABCC2b from S. exigua mediates Cry1Ac cytotoxicity and, in conjunction with SeCad1b, contributes to enhance Cry1Ca toxicity in Sf9 cells.
Collapse
Affiliation(s)
- Xiang-Liang Ren
- Institute of Cotton Research of CAAS/State Key Laboratory of Cotton Biology, Anyang, Henan 455000, China
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Wei-Li Jiang
- Institute of Cotton Research of CAAS/State Key Laboratory of Cotton Biology, Anyang, Henan 455000, China
| | - Ya-Jie Ma
- Institute of Cotton Research of CAAS/State Key Laboratory of Cotton Biology, Anyang, Henan 455000, China
| | - Hong-Yan Hu
- Institute of Cotton Research of CAAS/State Key Laboratory of Cotton Biology, Anyang, Henan 455000, China
| | - Xiao-Yan Ma
- Institute of Cotton Research of CAAS/State Key Laboratory of Cotton Biology, Anyang, Henan 455000, China
| | - Yan Ma
- Institute of Cotton Research of CAAS/State Key Laboratory of Cotton Biology, Anyang, Henan 455000, China
| | - Guo-Qing Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| |
Collapse
|
19
|
Xu J, Wang XF, Chen P, Liu FT, Zheng SC, Ye H, Mo MH. RNA Interference in Moths: Mechanisms, Applications, and Progress. Genes (Basel) 2016; 7:E88. [PMID: 27775569 PMCID: PMC5083927 DOI: 10.3390/genes7100088] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 12/14/2022] Open
Abstract
The vast majority of lepidopterans, about 90%, are moths. Some moths, particularly their caterpillars, are major agricultural and forestry pests in many parts of the world. However, some other members of moths, such as the silkworm Bombyx mori, are famous for their economic value. Fire et al. in 1998 initially found that exogenous double-stranded RNA (dsRNA) can silence the homolog endogenous mRNA in organisms, which is called RNA interference (RNAi). Soon after, the RNAi technique proved to be very promising not only in gene function determination but also in pest control. However, later studies demonstrate that performing RNAi in moths is not as straightforward as shown in other insect taxa. Nevertheless, since 2007, especially after 2010, an increasing number of reports have been published that describe successful RNAi experiments in different moth species either on gene function analysis or on pest management exploration. So far, more than 100 peer-reviewed papers have reported successful RNAi experiments in moths, covering 10 families and 25 species. By using classic and novel dsRNA delivery methods, these studies effectively silence the expression of various target genes and determine their function in larval development, reproduction, immunology, resistance against chemicals, and other biological processes. In addition, a number of laboratory and field trials have demonstrated that RNAi is also a potential strategy for moth pest management. In this review, therefore, we summarize and discuss the mechanisms and applications of the RNAi technique in moths by focusing on recent progresses.
Collapse
Affiliation(s)
- Jin Xu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China.
- Institute of Plant Protection, Yunnan Academy of Forestry, Kunming 650201, China.
| | - Xia-Fei Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China.
| | - Peng Chen
- Institute of Plant Protection, Yunnan Academy of Forestry, Kunming 650201, China.
| | - Fang-Tao Liu
- School of Physical Education, Wenshan Institute, Wenshan 663000, China.
| | - Shuai-Chao Zheng
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China.
| | - Hui Ye
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China.
| | - Ming-He Mo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China.
| |
Collapse
|
20
|
|
21
|
Kim E, Park Y, Kim Y. A Transformed Bacterium Expressing Double-Stranded RNA Specific to Integrin β1 Enhances Bt Toxin Efficacy against a Polyphagous Insect Pest, Spodoptera exigua. PLoS One 2015; 10:e0132631. [PMID: 26171783 DOI: 10.1371/journal.pone.00132631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 06/16/2015] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Oral toxicity of double-stranded RNA (dsRNA) specific to integrin β1 subunit (SeINT) was known in a polyphagous insect pest, Spodoptera exigua. For an application of the dsRNA to control the insect pest, this study prepared a transformed Escherichia coli expressing dsRNA specific to SeINT. PRINCIPAL FINDINGS The dsRNA expression was driven by T7 RNA polymerase overexpressed by an inducer in the transformed E. coli. The produced dsRNA amount was proportional to the number of the cultured bacteria. The transformed bacteria gave a significant oral toxicity to S. exigua larvae with a significant reduction of the SeINT expression. The resulting insect mortality increased with the fed number of the bacteria. Pretreatment with an ultra-sonication to disrupt bacterial cell wall/membrane significantly increased the insecticidal activity of the transformed bacteria. The larvae treated with the transformed bacteria suffered tissue damage in the midgut epithelium, which exhibited a marked loss of cell-cell contacts and underwent a remarkable cell death. Moreover, these treated larvae became significantly susceptible to a Cry toxin derived from Bacillus thuringiensis (Bt). CONCLUSIONS This study provides a novel and highly efficient application technique to use dsRNA specific to an integrin gene by mixing with a biopesticide, Bt.
Collapse
Affiliation(s)
- Eunseong Kim
- Department of Bioresource Sciences, Andong National University, Andong, 760-749, Republic of Korea
| | - Youngjin Park
- Department of Bioresource Sciences, Andong National University, Andong, 760-749, Republic of Korea
| | - Yonggyun Kim
- Department of Bioresource Sciences, Andong National University, Andong, 760-749, Republic of Korea
| |
Collapse
|
22
|
Kim E, Park Y, Kim Y. A Transformed Bacterium Expressing Double-Stranded RNA Specific to Integrin β1 Enhances Bt Toxin Efficacy against a Polyphagous Insect Pest, Spodoptera exigua. PLoS One 2015; 10:e0132631. [PMID: 26171783 PMCID: PMC4501564 DOI: 10.1371/journal.pone.0132631] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 06/16/2015] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Oral toxicity of double-stranded RNA (dsRNA) specific to integrin β1 subunit (SeINT) was known in a polyphagous insect pest, Spodoptera exigua. For an application of the dsRNA to control the insect pest, this study prepared a transformed Escherichia coli expressing dsRNA specific to SeINT. PRINCIPAL FINDINGS The dsRNA expression was driven by T7 RNA polymerase overexpressed by an inducer in the transformed E. coli. The produced dsRNA amount was proportional to the number of the cultured bacteria. The transformed bacteria gave a significant oral toxicity to S. exigua larvae with a significant reduction of the SeINT expression. The resulting insect mortality increased with the fed number of the bacteria. Pretreatment with an ultra-sonication to disrupt bacterial cell wall/membrane significantly increased the insecticidal activity of the transformed bacteria. The larvae treated with the transformed bacteria suffered tissue damage in the midgut epithelium, which exhibited a marked loss of cell-cell contacts and underwent a remarkable cell death. Moreover, these treated larvae became significantly susceptible to a Cry toxin derived from Bacillus thuringiensis (Bt). CONCLUSIONS This study provides a novel and highly efficient application technique to use dsRNA specific to an integrin gene by mixing with a biopesticide, Bt.
Collapse
Affiliation(s)
- Eunseong Kim
- Department of Bioresource Sciences, Andong National University, Andong, 760–749, Republic of Korea
| | - Youngjin Park
- Department of Bioresource Sciences, Andong National University, Andong, 760–749, Republic of Korea
| | - Yonggyun Kim
- Department of Bioresource Sciences, Andong National University, Andong, 760–749, Republic of Korea
- * E-mail:
| |
Collapse
|
23
|
Qiu L, Hou L, Zhang B, Liu L, Li B, Deng P, Ma W, Wang X, Fabrick JA, Chen L, Lei C. Cadherin is involved in the action of Bacillus thuringiensis toxins Cry1Ac and Cry2Aa in the beet armyworm, Spodoptera exigua. J Invertebr Pathol 2015; 127:47-53. [DOI: 10.1016/j.jip.2015.02.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 02/20/2015] [Accepted: 02/27/2015] [Indexed: 12/23/2022]
|
24
|
de Assis Fonseca FC, Firmino AAP, de Macedo LLP, Coelho RR, de Sousa Júnior JDA, Silva-Junior OB, Togawa RC, Pappas GJ, de Góis LAB, da Silva MCM, Grossi-de-Sá MF. Sugarcane giant borer transcriptome analysis and identification of genes related to digestion. PLoS One 2015; 10:e0118231. [PMID: 25706301 PMCID: PMC4338194 DOI: 10.1371/journal.pone.0118231] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 01/11/2015] [Indexed: 11/25/2022] Open
Abstract
Sugarcane is a widely cultivated plant that serves primarily as a source of sugar and ethanol. Its annual yield can be significantly reduced by the action of several insect pests including the sugarcane giant borer (Telchin licus licus), a lepidopteran that presents a long life cycle and which efforts to control it using pesticides have been inefficient. Although its economical relevance, only a few DNA sequences are available for this species in the GenBank. Pyrosequencing technology was used to investigate the transcriptome of several developmental stages of the insect. To maximize transcript diversity, a pool of total RNA was extracted from whole body insects and used to construct a normalized cDNA database. Sequencing produced over 650,000 reads, which were de novo assembled to generate a reference library of 23,824 contigs. After quality score and annotation, 43% of the contigs had at least one BLAST hit against the NCBI non-redundant database, and 40% showed similarities with the lepidopteran Bombyx mori. In a further analysis, we conducted a comparison with Manduca sexta midgut sequences to identify transcripts of genes involved in digestion. Of these transcripts, many presented an expansion or depletion in gene number, compared to B. mori genome. From the sugarcane giant borer (SGB) transcriptome, a number of aminopeptidase N (APN) cDNAs were characterized based on homology to those reported as Cry toxin receptors. This is the first report that provides a large-scale EST database for the species. Transcriptome analysis will certainly be useful to identify novel developmental genes, to better understand the insect's biology and to guide the development of new strategies for insect-pest control.
Collapse
Affiliation(s)
- Fernando Campos de Assis Fonseca
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, Distrito Federal, Brazil
- Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - Alexandre Augusto Pereira Firmino
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, Distrito Federal, Brazil
- Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Leonardo Lima Pepino de Macedo
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, Distrito Federal, Brazil
- Universidade Católica de Brasília, Brasília, Distrito Federal, Brazil
| | - Roberta Ramos Coelho
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, Distrito Federal, Brazil
- Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | | | - Orzenil Bonfim Silva-Junior
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, Distrito Federal, Brazil
- Universidade Católica de Brasília, Brasília, Distrito Federal, Brazil
| | | | | | | | | | - Maria Fátima Grossi-de-Sá
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, Distrito Federal, Brazil
- Universidade Católica de Brasília, Brasília, Distrito Federal, Brazil
| |
Collapse
|
25
|
Guo Z, Kang S, Zhu X, Wu Q, Wang S, Xie W, Zhang Y. The midgut cadherin-like gene is not associated with resistance to Bacillus thuringiensis toxin Cry1Ac in Plutella xylostella (L.). J Invertebr Pathol 2015; 126:21-30. [PMID: 25595643 DOI: 10.1016/j.jip.2015.01.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 12/24/2014] [Accepted: 01/07/2015] [Indexed: 11/16/2022]
Abstract
The Gram-positive bacterium Bacillus thuringiensis (Bt) produces Cry toxins that have been used to control important agricultural pests. Evolution of resistance in target pests threatens the effectiveness of these toxins when used either in sprayed biopesticides or in Bt transgenic crops. Although alterations of the midgut cadherin-like receptor can lead to Bt Cry toxin resistance in many insects, whether the cadherin gene is involved in Cry1Ac resistance of Plutella xylostella (L.) remains unclear. Here, we present experimental evidence that resistance to Cry1Ac or Bt var. kurstaki (Btk) in P. xylostella is not due to alterations of the cadherin gene. The bona fide P. xylostella cadherin cDNA sequence was cloned and analyzed, and comparisons of the cadherin cDNA sequence among susceptible and resistant P. xylostella strains confirmed that Cry1Ac resistance was independent of mutations in this gene. In addition, real-time quantitative PCR (qPCR) indicated that cadherin transcript levels did not significantly differ among susceptible and resistant P. xylostella strains. RNA interference (RNAi)-mediated suppression of cadherin gene expression did not affect larval susceptibility to Cry1Ac toxin. Furthermore, genetic linkage assays using four cadherin gDNA allelic biomarkers confirmed that the cadherin gene is not linked to resistance against Cry1Ac in P. xylostella. Taken together, our findings demonstrate that Cry1Ac resistance of P. xylostella is independent of the cadherin gene.
Collapse
Affiliation(s)
- Zhaojiang Guo
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Shi Kang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Xun Zhu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Shaoli Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Wen Xie
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
26
|
Ren XL, Ma Y, Cui JJ, Li GQ. RNA interference-mediated knockdown of three putative aminopeptidases N affects susceptibility of Spodoptera exigua larvae to Bacillus thuringiensis Cry1Ca. JOURNAL OF INSECT PHYSIOLOGY 2014; 67:28-36. [PMID: 24932922 DOI: 10.1016/j.jinsphys.2014.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 06/02/2014] [Accepted: 06/06/2014] [Indexed: 06/03/2023]
Abstract
Aminopeptidase N (APN) isoforms in insects have been documented to be involved in the mode of action of insecticidal crystal proteins (Cry) from Bacillus thuringiensis. Here we cloned two novel Seapns from the larval midgut of Spodoptera exigua, a major pest of many crops of economic importance in China. According to a phylogenetic analysis, these two novel SeAPNs, along with the four SeAPN isoforms already described, belong to six different clades. All the six SeAPNs share similar structural features. From N- to C-terminus a signal peptide, a gluzincin aminopeptidase motif, a zinc binding/gluzincin motif, and a glycosylphosphatidylinositol-anchor sequence are located. The six Seapn genes were highly expressed at the larval stage, especially in the larval gut. Ingestion during four consecutive days of double-stranded RNAs (dsRNAs) targeting Seapn1, Seapn2, Seapn3, Seapn4, Seapn5 and Seapn6 significantly reduced corresponding mRNA levels by 55.6%, 45.5%, 43.2%, 56.8%, 45.4%, and 46.0% respectively, compared with those recorded in control larvae fed on non-specific dsRNA (dsegfp). When the larvae that previously ingested phosphate buffered saline (PBS)-, dsegfp-, or six dsSeapns-overlaid diets were then exposed to a diet containing Cry1Ca, the larval mortalities were 71.2%, 69.3%, 52.0%, 77.2%, 43.3%, 62.0%, 65.4% and 53.8% respectively recorded after 6days. ANOVA analysis revealed that the larvae previously fed on dsSeapn1-, dsSeapn3-, and dsSeapn6-overlaid diets had significantly lower mortalities than those previously ingested PBS-, dsegfp-, dsSeapn2-, dsSeapn4- and dsSeapn5-overlaid diets. Thus, these results suggest that SeAPN1, SeAPN3 and SeAPN6 may be candidate receptors for Cry1Ca in S. exigua.
Collapse
Affiliation(s)
- Xiang-Liang Ren
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Yan Ma
- Institute of Cotton Research of CAAS, State Key Laboratory of Cotton Biology, Anyang, Henan 455000, China
| | - Jin-Jie Cui
- Institute of Cotton Research of CAAS, State Key Laboratory of Cotton Biology, Anyang, Henan 455000, China
| | - Guo-Qing Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.
| |
Collapse
|
27
|
Pan Z, Xu L, Zhu Y, Shi H, Chen Z, Chen M, Chen Q, Liu B. Characterization of a new cry2Ab gene of Bacillus thuringiensis with high insecticidal activity against Plutella xylostella L. World J Microbiol Biotechnol 2014; 30:2655-62. [PMID: 24943249 DOI: 10.1007/s11274-014-1689-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 06/11/2014] [Indexed: 10/25/2022]
Abstract
Bacillus thuringiensis (Bt) strain FJAT-12 was a novel Bt strain isolated by Agricultural Bio-Resources Institute, Fujian Academy of Agricultural Science. In this study, a new cry2Ab gene was cloned from Bt strain FJAT-12 and named as cry2Ab30 by Bt delta-endotoxin Nomenclature Committee. The sequencing results showed there were two mutations in conservative sites which led to two amino acids modification. Homology modeling indicated that the two changes were located in β-sheet of Domain II. A prokaryotic expression vector pET30a-cry2Ab30 was constructed and the expressed protein was analyzed by western blot using Cry2Ab antibody. The expression conditions including IPTG concentration, revolution and temperature were optimized to get the highest expression level by SDS-PAGE and BandScan. The bioassay results also showed that the Cry2Ab30 toxin had high insecticidal activity against Plutella xylostella and the LC50 value was 0.0103 μg.mL(-1). The two mutations in β-sheet of Domain II might contribute to insecticidal activity of Cry2Ab30 toxin against Plutella xylostella.
Collapse
Affiliation(s)
- Zhizhen Pan
- Agricultural Bio-Resources Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | | | | | | | | | | | | | | |
Collapse
|