1
|
Ordóñez-García M, Bustillos-Rodríguez JC, de Jesús Ornelas-Paz J, Acosta-Muñiz CH, Salas-Marina MÁ, Cambero-Campos OJ, Estrada-Virgen MO, Morales-Ovando MA, Rios-Velasco C. Morphological, Biological, and Molecular Characterization of Type I Granuloviruses of Spodoptera frugiperda. NEOTROPICAL ENTOMOLOGY 2024; 53:917-928. [PMID: 38940947 DOI: 10.1007/s13744-024-01172-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024]
Abstract
Granuloviruses (GVs) Betabaculovirus associated with the fall armyworm (FAW), Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), especially those of the type I, have scarcely been studied. These GVs might be an effective alternative for the biocontrol of this insect. In this study, the native GVs SfGV-CH13 and SfGV-CH28 were isolated from FAW larvae and characterized for morphology, molecular traits, and insecticidal activity. The elapsed time between symptomatic infection of larvae and stop feeding as well as the weight of larvae before death or prior to pupation were also evaluated. Both GVs had ovoid shape and a length of 0.4 µm. They had the same DNA restriction profiles and their genome sizes were about 126 kb. The symptomatic infection with the tested GVs mainly caused flaccidity of larva body and discoloration of integument. The integument lysis was only observed in 8% of infected larvae. Infected larvae gradually stopped feeding. Overall, these symptoms are characteristic of infections caused by type I GVs, which are known as monoorganotropic or slow-killing GVs. The median lethal dose (LD50) values for SfGV-CH13 and SfGV-CH28 isolates were 5.4 × 102 and 1.1 × 103 OBs/larva, respectively. The median lethal time (LT50) ranged from 17 to 24 days. LT50 values decreased as the viral dose was increased. The elapsed time from symptomatic infection until pupation and body weight of larvae (third instar) were higher with SfGV-CH28 than SfGV-CH13. Both granulovirus isolates were able to kill the FAW larvae from the 12th day.
Collapse
Affiliation(s)
- Magali Ordóñez-García
- Tecnológico Nacional de México, Campus Cuauhtémoc, Chihuahua, Mexico
- Centro de Investigación en Alimentación y Desarrollo, A.C., Campus Cuauhtémoc, Chihuahua, Mexico
| | - Juan Carlos Bustillos-Rodríguez
- Tecnológico Nacional de México, Campus Cuauhtémoc, Chihuahua, Mexico
- Centro de Investigación en Alimentación y Desarrollo, A.C., Campus Cuauhtémoc, Chihuahua, Mexico
| | | | | | - Miguel Ángel Salas-Marina
- Facultad de Ingeniería, Unidad Académica Villacorzo, Univ de Ciencias y Artes de Chiapas, Tuxtla Gutiérrez, Chiapas, Mexico
| | | | | | - Mario Alberto Morales-Ovando
- Facultad de Ciencias de La Nutrición y Alimentos, Univ de Ciencias y Artes de Chiapas, Sede Acapetahua, Acapetahua, Chiapas, Mexico
| | - Claudio Rios-Velasco
- Centro de Investigación en Alimentación y Desarrollo, A.C., Campus Cuauhtémoc, Chihuahua, Mexico.
| |
Collapse
|
2
|
Natural Coinfection between Novel Species of Baculoviruses in Spodoptera ornithogalli Larvae. Viruses 2021; 13:v13122520. [PMID: 34960789 PMCID: PMC8703766 DOI: 10.3390/v13122520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 11/30/2021] [Accepted: 12/13/2021] [Indexed: 11/20/2022] Open
Abstract
Spodoptera ornithogalli (Guenée) (Lepidoptera: Noctuidae) is an important pest in different crops of economic relevance in America. For its control, strategies that include chemicals are usually used; so, the description of entomopathogens would be very useful for the formulation of biopesticides. In this regard, two different baculoviruses affecting S. ornithogalli were isolated in Colombia, with one of them being an NPV and the other a GV. Ultrastructural, molecular, and biological characterization showed that both isolates possess the 38 core genes and are novel species in Baculoviridae, named as Spodoptera ornithogalli nucleopolyhedrovirus (SporNPV) and Spodoptera ornithogalli granulovirus (SporGV). The bioassays carried out in larvae of S. ornithogalli and S. frugiperda showed infectivity in both hosts but being higher in the first. In addition, it was observed that SporGV potentiates the insecticidal action of SporNPV (maximum value in ratio 2.5:97.5). Both viruses are individually infective but coexist in nature, producing mixed infections with a synergistic effect that improves the performance of the NPV and enables the transmission of the GV, which presents a slowly killing phenotype.
Collapse
|
3
|
Loiseau V, Peccoud J, Bouzar C, Guillier S, Fan J, Alletti GG, Meignin C, Herniou EA, Federici BA, Wennmann JT, Jehle JA, Cordaux R, Gilbert C. Monitoring insect transposable elements in large double-stranded DNA viruses reveals host-to-virus and virus-to-virus transposition. Mol Biol Evol 2021; 38:3512-3530. [PMID: 34191026 PMCID: PMC8383894 DOI: 10.1093/molbev/msab198] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The mechanisms by which transposable elements (TEs) can be horizontally transferred between animals are unknown, but viruses are possible candidate vectors. Here, we surveyed the presence of host-derived TEs in viral genomes in 35 deep sequencing data sets produced from 11 host–virus systems, encompassing nine arthropod host species (five lepidopterans, two dipterans, and two crustaceans) and six different double-stranded (ds) DNA viruses (four baculoviruses and two iridoviruses). We found evidence of viral-borne TEs in 14 data sets, with frequencies of viral genomes carrying a TE ranging from 0.01% to 26.33% for baculoviruses and from 0.45% to 7.36% for iridoviruses. The analysis of viral populations separated by a single replication cycle revealed that viral-borne TEs originating from an initial host species can be retrieved after viral replication in another host species, sometimes at higher frequencies. Furthermore, we detected a strong increase in the number of integrations in a viral population for a TE absent from the hosts’ genomes, indicating that this TE has undergone intense transposition within the viral population. Finally, we provide evidence that many TEs found integrated in viral genomes (15/41) have been horizontally transferred in insects. Altogether, our results indicate that multiple large dsDNA viruses have the capacity to shuttle TEs in insects and they underline the potential of viruses to act as vectors of horizontal transfer of TEs. Furthermore, the finding that TEs can transpose between viral genomes of a viral species sets viruses as possible new niches in which TEs can persist and evolve.
Collapse
Affiliation(s)
- Vincent Loiseau
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| | - Jean Peccoud
- Université de Poitiers, Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, 5 Rue Albert Turpain, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Clémence Bouzar
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| | - Sandra Guillier
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| | - Jiangbin Fan
- Institute for Biological Control, Julius Kühn-Institut, Darmstadt, Germany
| | | | - Carine Meignin
- Modèles Insectes d'Immunité antivirale (M3i), Université de Strasbourg, IBMC CNRS-UPR9022, F-67000, France
| | - Elisabeth A Herniou
- Institut de Recherche sur la Biologie de l'Insecte, UMR7261 CNRS - Université de Tours, 37200 Tours, France
| | - Brian A Federici
- Department of Entomology, University of California, Riverside, CA 92521, USA
| | - Jörg T Wennmann
- Institute for Biological Control, Julius Kühn-Institut, Darmstadt, Germany
| | - Johannes A Jehle
- Institute for Biological Control, Julius Kühn-Institut, Darmstadt, Germany
| | - Richard Cordaux
- Université de Poitiers, Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, 5 Rue Albert Turpain, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Clément Gilbert
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| |
Collapse
|
4
|
Erlandson MA, Toprak U, Hegedus DD. Role of the peritrophic matrix in insect-pathogen interactions. JOURNAL OF INSECT PHYSIOLOGY 2019; 117:103894. [PMID: 31175854 DOI: 10.1016/j.jinsphys.2019.103894] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/27/2019] [Accepted: 06/05/2019] [Indexed: 05/12/2023]
Abstract
The peritrophic matrix (PM) is an acellular chitin and glycoprotein layer that lines the invertebrate midgut. The PM has long been considered a physical as well as a biochemical barrier, protecting the midgut epithelium from abrasive food particles, digestive enzymes and pathogens infectious per os. This short review will focus on the latter function, as a barrier to pathogens infectious per os. We focus on the evidence confirming the role of the PM as protective barrier against pathogenic microorganisms of insects, mainly bacteria and viruses, as well as the evolution of a variety of mechanisms used by pathogens to overcome the PM barrier.
Collapse
Affiliation(s)
- Martin A Erlandson
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, Canada; Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| | - Umut Toprak
- Molecular Entomology Laboratory, Faculty of Agriculture, Ankara University, Ankara, Turkey
| | - Dwayne D Hegedus
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, Canada; Department of Food and Bioproduct Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
5
|
Chen Y, Qi B, Zheng G, Zhang Y, Deng F, Wan F, Li C. Identification and genomic sequence analysis of a new Spodoptera exigua multiple nucleopolyhedrovirus, SeMNPV-QD, isolated from Qingdao, China. J Invertebr Pathol 2019; 160:8-17. [DOI: 10.1016/j.jip.2018.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/18/2018] [Accepted: 11/26/2018] [Indexed: 01/07/2023]
|
6
|
Gueli Alletti G, Carstens EB, Weihrauch B, Jehle JA. Agrotis segetum nucleopolyhedrovirus but not Agrotis segetum granulovirus replicate in AiE1611T cell line of Agrotisipsilon. J Invertebr Pathol 2018; 151:7-13. [DOI: 10.1016/j.jip.2017.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/17/2017] [Accepted: 10/23/2017] [Indexed: 01/01/2023]
|