1
|
Skujina I, Hooper C, Bass D, Feist SW, Bateman KS, Villalba A, Carballal MJ, Iglesias D, Cao A, Ward GM, Ryder DRG, Bignell JP, Kerr R, Ross S, Hazelgrove R, Macarie NA, Prentice M, King N, Thorpe J, Malham SK, McKeown NJ, Ironside JE. Discovery of the parasite Marteilia cocosarum sp. nov. In common cockle (Cerastoderma edule) fisheries in Wales, UK and its comparison with Marteilia cochillia. J Invertebr Pathol 2022; 192:107786. [PMID: 35700790 DOI: 10.1016/j.jip.2022.107786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/05/2022] [Accepted: 06/08/2022] [Indexed: 12/01/2022]
Abstract
Diseases of bivalve molluscs caused by paramyxid parasites of the genus Marteilia have been linked to mass mortalities and the collapse of commercially important shellfish populations. Until recently, no Marteilia spp. have been detected in common cockle (Cerastoderma edule) populations in the British Isles. Molecular screening of cockles from ten sites on the Welsh coast indicates that a Marteilia parasite is widespread in Welsh C. edule populations, including major fisheries. Phylogenetic analysis of ribosomal DNA (rDNA) gene sequences from this parasite indicates that it is a closely related but different species to Marteilia cochillia, a parasite linked to mass mortality of C. edule fisheries in Spain, and that both are related to Marteilia octospora, for which we provide new rDNA sequence data. Preliminary light and transmission electron microscope (TEM) observations support this conclusion, indicating that the parasite from Wales is located primarily within areas of inflammation in the gills and the connective tissue of the digestive gland, whereas M. cochillia is found mainly within the epithelium of the digestive gland. The impact of infection by the new species, here described as Marteilia cocosarum n. sp., upon Welsh fisheries is currently unknown.
Collapse
Affiliation(s)
- Ilze Skujina
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, Wales, UK
| | - Chantelle Hooper
- International Centre of Excellence for Aquatic Animal Health, The Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK
| | - David Bass
- International Centre of Excellence for Aquatic Animal Health, The Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK; Sustainable Aquaculture Futures, Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter UK; Department of Life Sciences, Natural History Museum, London, UK
| | - Stephen W Feist
- International Centre of Excellence for Aquatic Animal Health, The Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK
| | - Kelly S Bateman
- International Centre of Excellence for Aquatic Animal Health, The Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK
| | - Antonio Villalba
- Centro de Investigacións Mariñas, Vilanova de Arousa, Spain; Departamento de Ciencias de la Vida, Universdad de Alcalá, Alcalá de Henares, Spain; Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country, Plentzia, Spain
| | | | - David Iglesias
- Centro de Investigacións Mariñas, Vilanova de Arousa, Spain
| | - Asunción Cao
- Centro de Investigacións Mariñas, Vilanova de Arousa, Spain
| | - Georgia M Ward
- Department of Life Sciences, Natural History Museum, London, UK
| | - David R G Ryder
- International Centre of Excellence for Aquatic Animal Health, The Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK
| | - John P Bignell
- International Centre of Excellence for Aquatic Animal Health, The Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK
| | - Rose Kerr
- International Centre of Excellence for Aquatic Animal Health, The Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK
| | - Stuart Ross
- International Centre of Excellence for Aquatic Animal Health, The Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK
| | - Richard Hazelgrove
- International Centre of Excellence for Aquatic Animal Health, The Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK
| | - Nicolae A Macarie
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, Wales, UK
| | - Melanie Prentice
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, Wales, UK
| | - Nathan King
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, UK
| | - Jamie Thorpe
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, UK
| | - Shelagh K Malham
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, UK
| | - Niall J McKeown
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, Wales, UK
| | - Joseph E Ironside
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, Wales, UK.
| |
Collapse
|
2
|
Hanrio E, Batley J, Dungan CF, Dang C. Immunoassays and diagnostic antibodies for Perkinsus spp. pathogens of marine molluscs. DISEASES OF AQUATIC ORGANISMS 2021; 147:13-23. [PMID: 34734570 DOI: 10.3354/dao03635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Perkinsus sp. protozoans are parasites of a wide variety of molluscs around the world and are responsible for episodes of mass mortalities and large economic losses for aquaculture industries and fisheries. The first step towards the management of infectious episodes is the reliable detection of Perkinsus species. While historic methods for diagnosis of Perkinsus sp. infections in mollusc hosts include histological, in vitro, molecular-genetic, and immunoassays, antibody-based diagnostic assays may prove most practical with development of improved reagents and techniques. This paper reviews historic developments of antibodies against Perkinsus species, and of diagnostic immunoassays. Thirteen research papers reported the development of antibodies against Perkinsus sp. or their extracellular products, mainly P. olseni and P. marinus. Nine of those tested the cross-reactivity of their antibodies against different life stages or species than the one used as immunogen. While all antibodies raised against trophozoites labelled hypnospores, several antibodies raised against hypnospores did not label trophozoites, suggesting antigenic differences between those cell types. Antibody specificity studies showed that there is antigenic heterogeneity between Perkinsus species and Perkinsus-like organisms, and also that common epitopes occur among Perkinsus species, as well as some dinoflagellates. This review summarizes the current knowledge and aims at helping the future development of Perkinsus species-specific antibodies and immunoassays.
Collapse
Affiliation(s)
- Eliot Hanrio
- The University of Western Australia, Crawley 6009, Western Australia, Australia
| | | | | | | |
Collapse
|
3
|
Canier L, Dubreuil C, Noyer M, Serpin D, Chollet B, Garcia C, Arzul I. A new multiplex real-time PCR assay to improve the diagnosis of shellfish regulated parasites of the genus Marteilia and Bonamia. Prev Vet Med 2020; 183:105126. [PMID: 32919320 DOI: 10.1016/j.prevetmed.2020.105126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 10/23/2022]
Abstract
Aquaculture including shellfish production is an important food resource worldwide which is particularly vulnerable to infectious diseases. Marteilia refringens, Bonamia ostreae and Bonamia exitiosa are regulated protozoan parasites infecting flat oysters Ostrea edulis that are endemic in Europe. Although some PCR assays have been already developed for their detection, a formal validation to assess the performances of those tools is often lacking. In order to facilitate the diagnosis of flat oyster regulated diseases, we have developed and evaluated a new multiplex Taqman® PCR allowing the detection of both M. refringens and Bonamia sp. parasites in one step. First part of this work consisted in assessing analytical sensitivity and specificity of the new PCR assay. Then, diagnostic performances were assessed by testing a panel of field samples with the new real-time PCR and currently recommended conventional PCR methods for the detection of M. refringens and Bonamia sp. Samples were collected from the main flat oyster production sites in France (N = 386 for M. refringens and N = 349 for B. ostreae). In the absence of gold standard, diagnostic sensitivity and specificity of the new PCR were estimated through Bayesian latent class analysis (DSe 87,2% and DSp 98,4% for the detection M. refringens, DSe 77,5% and DSp 98,4% for the detection of Bonamia sp.). Those results suggest equivalent performances for the detection of Bonamia sp. and an improved sensitivity for the detection of M. refringens compared to commonly used conventional protocols. Finally, the new PCR was evaluated in the context of an inter-laboratory comparison study including 17 European laboratories. Results revealed a very good reproducibility with a global accordance (intra-laboratory precision) >96% and a global concordance (inter-laboratory precision) >93% for both targets, demonstrating that this new tool is easily transferable to different laboratory settings. This is the first assay designed to detect both Marteilia refringens and Bonamia sp. in a single step and it should allow reducing the number of analysis to monitor both diseases, and where relevant to demonstrate freedom from infection.
Collapse
Affiliation(s)
- Lydie Canier
- Ifremer, RBE-SG2M-LGPMM, Station de La Tremblade, Avenue de Mus de Loup, F-17390 La Tremblade, France.
| | - Christine Dubreuil
- Ifremer, RBE-SG2M-LGPMM, Station de La Tremblade, Avenue de Mus de Loup, F-17390 La Tremblade, France
| | - Mathilde Noyer
- Ifremer, RBE-SG2M-LGPMM, Station de La Tremblade, Avenue de Mus de Loup, F-17390 La Tremblade, France
| | - Delphine Serpin
- Ifremer, RBE-SG2M-LGPMM, Station de La Tremblade, Avenue de Mus de Loup, F-17390 La Tremblade, France
| | - Bruno Chollet
- Ifremer, RBE-SG2M-LGPMM, Station de La Tremblade, Avenue de Mus de Loup, F-17390 La Tremblade, France
| | - Céline Garcia
- Ifremer, RBE-SG2M-LGPMM, Station de La Tremblade, Avenue de Mus de Loup, F-17390 La Tremblade, France
| | - Isabelle Arzul
- Ifremer, RBE-SG2M-LGPMM, Station de La Tremblade, Avenue de Mus de Loup, F-17390 La Tremblade, France
| |
Collapse
|
4
|
Ríos R, Aranguren R, Gastaldelli M, Arcangeli G, Novoa B, Figueras A. Development and validation of a specific real-time PCR assay for the detection of the parasite Perkinsus olseni. J Invertebr Pathol 2019; 169:107301. [PMID: 31794707 DOI: 10.1016/j.jip.2019.107301] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 10/31/2019] [Accepted: 11/29/2019] [Indexed: 11/18/2022]
Abstract
Perkinsus olseni is a protozoan parasite that infects a wide variety of molluscs worldwide, causing economic losses in the aquaculture sector. In the present study, a quantitative PCR (qPCR) assay was developed for the detection and quantification of P. olseni in clam gill tissue and hemolymph (Ruditapes philippinarum and R. decussatus), and the results were compared with those of the standard diagnostic methods recommended by the O.I.E. (World Organisation for Animal Health): Ray's fluid thioglycollate culture method (RFTM), a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay and histopathology. The efficiency, sensitivity and reproducibility of the newly described qPCR assay were also determined. The highest prevalence was detected using the qPCR assay, and the strongest linear correlation was obtained between the RFTM infection levels and the threshold cycle (Ct) number from the gill tissue. Although better results were obtained from gill than from the hemolymph in the qPCR assays, especially with lower infection levels of the parasite, a significant linear correlation was observed between Ct values from the gill and hemolymph. The qPCR assay that was developed in this study showed high sensitivity, specificity and reproducibility for the detection and quantification of P. olseni.
Collapse
Affiliation(s)
- R Ríos
- Instituto de Investigaciones Marinas (CSIC), Eduardo Cabello 6, 36208 Vigo, Spain
| | - R Aranguren
- Instituto de Investigaciones Marinas (CSIC), Eduardo Cabello 6, 36208 Vigo, Spain
| | - M Gastaldelli
- Istituto zooprofilattico sperimentale delle Venezie V. le Università, 10 35020 Legnaro (Pd), Italy
| | - G Arcangeli
- Istituto zooprofilattico sperimentale delle Venezie V. le Università, 10 35020 Legnaro (Pd), Italy
| | - B Novoa
- Instituto de Investigaciones Marinas (CSIC), Eduardo Cabello 6, 36208 Vigo, Spain
| | - A Figueras
- Instituto de Investigaciones Marinas (CSIC), Eduardo Cabello 6, 36208 Vigo, Spain.
| |
Collapse
|