1
|
Loiseau V, Peccoud J, Bouzar C, Guillier S, Fan J, Alletti GG, Meignin C, Herniou EA, Federici BA, Wennmann JT, Jehle JA, Cordaux R, Gilbert C. Monitoring insect transposable elements in large double-stranded DNA viruses reveals host-to-virus and virus-to-virus transposition. Mol Biol Evol 2021; 38:3512-3530. [PMID: 34191026 PMCID: PMC8383894 DOI: 10.1093/molbev/msab198] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The mechanisms by which transposable elements (TEs) can be horizontally transferred between animals are unknown, but viruses are possible candidate vectors. Here, we surveyed the presence of host-derived TEs in viral genomes in 35 deep sequencing data sets produced from 11 host–virus systems, encompassing nine arthropod host species (five lepidopterans, two dipterans, and two crustaceans) and six different double-stranded (ds) DNA viruses (four baculoviruses and two iridoviruses). We found evidence of viral-borne TEs in 14 data sets, with frequencies of viral genomes carrying a TE ranging from 0.01% to 26.33% for baculoviruses and from 0.45% to 7.36% for iridoviruses. The analysis of viral populations separated by a single replication cycle revealed that viral-borne TEs originating from an initial host species can be retrieved after viral replication in another host species, sometimes at higher frequencies. Furthermore, we detected a strong increase in the number of integrations in a viral population for a TE absent from the hosts’ genomes, indicating that this TE has undergone intense transposition within the viral population. Finally, we provide evidence that many TEs found integrated in viral genomes (15/41) have been horizontally transferred in insects. Altogether, our results indicate that multiple large dsDNA viruses have the capacity to shuttle TEs in insects and they underline the potential of viruses to act as vectors of horizontal transfer of TEs. Furthermore, the finding that TEs can transpose between viral genomes of a viral species sets viruses as possible new niches in which TEs can persist and evolve.
Collapse
Affiliation(s)
- Vincent Loiseau
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| | - Jean Peccoud
- Université de Poitiers, Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, 5 Rue Albert Turpain, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Clémence Bouzar
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| | - Sandra Guillier
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| | - Jiangbin Fan
- Institute for Biological Control, Julius Kühn-Institut, Darmstadt, Germany
| | | | - Carine Meignin
- Modèles Insectes d'Immunité antivirale (M3i), Université de Strasbourg, IBMC CNRS-UPR9022, F-67000, France
| | - Elisabeth A Herniou
- Institut de Recherche sur la Biologie de l'Insecte, UMR7261 CNRS - Université de Tours, 37200 Tours, France
| | - Brian A Federici
- Department of Entomology, University of California, Riverside, CA 92521, USA
| | - Jörg T Wennmann
- Institute for Biological Control, Julius Kühn-Institut, Darmstadt, Germany
| | - Johannes A Jehle
- Institute for Biological Control, Julius Kühn-Institut, Darmstadt, Germany
| | - Richard Cordaux
- Université de Poitiers, Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, 5 Rue Albert Turpain, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Clément Gilbert
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| |
Collapse
|
2
|
Fan J, Jehle JA, Wennmann JT. Population structure of Cydia pomonella granulovirus isolates revealed by quantitative analysis of genetic variation. Virus Evol 2021; 7:veaa073. [PMID: 33505705 PMCID: PMC7816688 DOI: 10.1093/ve/veaa073] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Genetic diversity of viruses is driven by genomic mutations and selection through its host, resulting in differences in virulence as well as host responses. For baculoviruses, which are naturally occurring pathogens of insects and which are frequently sprayed on hundred thousands to millions of hectares as biocontrol agents of insect pests, the phenomenon of virus-host co-evolution is of particular scientific interest and economic importance because high virulence of baculovirus products is essential and emergence of host resistance needs to be avoided as much as possible. In the present study, the population structure of twenty isolates of the Cydia pomonella granulovirus (CpGV), including twelve isolates from different geographic origins and eight commercial formulations, were studied on the basis of next-generation sequencing data and by analyzing the distribution of single nucleotide polymorphisms (SNPs). An entirely consensus sequence-free quantitative SNP analysis was applied for the identification of 753 variant SNP sites being specific for single as well as groups of CpGV isolates. Based on the quantitative SNP analysis, homogenous, heterogenous as well as mixed isolates were identified and their proportions of genotypes were deciphered, revealing a high genetic diversity of CpGV isolates from around the world. Based on hierarchical clustering on principal components (HCPC), six distinct isolate/group clusters were identified, representing the proposed main phylogenetic lineages of CpGV but comprising full genome information from virus mixtures. The relative location of different isolates in HCPC reflected the proportion of variable compositions of different genotypes. The established methods provide novel analysis tools to decipher the molecular complexity of genotype mixtures in baculovirus isolates, thus depicting the population structure of baculovirus isolates in a more adequate form than consensus based analyses.
Collapse
Affiliation(s)
- Jiangbin Fan
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Biological Control, Heinrichstr. 243, 64287 Darmstadt, Germany
| | - Johannes A Jehle
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Biological Control, Heinrichstr. 243, 64287 Darmstadt, Germany
| | - Jörg T Wennmann
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Biological Control, Heinrichstr. 243, 64287 Darmstadt, Germany
| |
Collapse
|