1
|
Van Caenegem W, Blondelle A, Dumolein I, Santamaria B, Dick CW, Hiller T, Liu J, Quandt CA, Villarreal Saucedo RV, Verbeken A, Haelewaters D. Five new species of Gloeandromyces (Fungi, Laboulbeniales) from tropical American bat flies (Diptera, Streblidae), revealed by morphology and phylogenetic reconstruction. Mycologia 2023; 115:714-737. [PMID: 37589548 DOI: 10.1080/00275514.2023.2230114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/23/2023] [Indexed: 08/18/2023]
Abstract
This paper describes and illustrates five new species of Gloeandromyces (Ascomycota, Laboulbeniales) associated with tropical American bat flies (Diptera, Streblidae). These are Gloeandromyces cusucoensis sp. nov. from Trichobius uniformis in Costa Rica and Honduras, G. diversiformis sp. nov. from Strebla wiedemanni in Costa Rica, G. plesiosaurus sp. nov. from Trichobius yunkeri in Panama, G. pseudodickii sp. nov. from Trichobius longipes in Ecuador and Panama, and G. verbekeniae sp. nov. from Strebla galindoi in Ecuador and Panama. The description of these five species doubles the number of known species in the genus. Morphological characteristics, host association, and a three-locus (18S nuc rDNA, 28S nuc rDNA, TEF1) phylogenetic reconstruction support placement of these taxa in the genus Gloeandromyces. Three of the new species are polymorphic; they have multiple morphotypes that grow in specific positions on the host integument: G. diversiformis f. diversiformis, f. musiformis, and f. vanillicarpiformis; G. plesiosaurus f. asymmetricus and f. plesiosaurus; and G. verbekeniae f. verbekeniae and f. inflexus. Finally, a dichotomous key to all species and morphotypes is presented.
Collapse
Affiliation(s)
- Warre Van Caenegem
- Research Group Mycology, Department of Biology, Ghent University, Ghent 9000, Belgium
| | - Aimée Blondelle
- Research Group Mycology, Department of Biology, Ghent University, Ghent 9000, Belgium
| | - Iris Dumolein
- Research Group Mycology, Department of Biology, Ghent University, Ghent 9000, Belgium
| | - Brianna Santamaria
- Research Group Mycology, Department of Biology, Ghent University, Ghent 9000, Belgium
| | - Carl W Dick
- Department of Biology, Western Kentucky University, Bowling Green, Kentucky 42101
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, Illinois 60605
| | - Thomas Hiller
- Department of Ecology of Tropical Agricultural Systems, University of Hohenheim, Stuttgart 70599, Germany
| | - Jingyu Liu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| | - C Alisha Quandt
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado 80309
| | | | - Annemieke Verbeken
- Research Group Mycology, Department of Biology, Ghent University, Ghent 9000, Belgium
| | - Danny Haelewaters
- Research Group Mycology, Department of Biology, Ghent University, Ghent 9000, Belgium
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado 80309
- Herbario UCH, Universidad Autónoma de Chiriquí, Apartado Postal 0427, David, Panama
- Centro de Investigaciones Micológicas, Universidad Autónoma de Chiriquí, Apartado Postal 0427, David, Panama
| |
Collapse
|
2
|
Urbieta GL, Graciolli G, da Cunha Tavares V. Review of studies about bat-fly interactions inside roosts, with observations on partnership patterns for publications. Parasitol Res 2022; 121:3051-3061. [PMID: 36048267 PMCID: PMC9433524 DOI: 10.1007/s00436-022-07635-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 08/19/2022] [Indexed: 12/04/2022]
Abstract
Pressures from anthropogenic disturbances have triggered a wealth of studies focusing on the assessment and mitigation of the negative impacts of these disturbances on inter and intraspecific ecological interactions, including bats and bat flies in their roosts. The heterogeneity of research methods employed for these studies and the scientific imbalance between countries may constrain advances and the consolidation of the knowledge on this subject. We reviewed the literature regarding bat and bat-ectoparasite interactions in roosts assessing global research trends and patterns of author collaborative work to be able to identify key questions for future studies and potential initiatives to improve the knowledge on this subject. Current information available has mostly come from the Americas and is predominantly focused on the recognition and description of parasite-host interactions between bats and bat flies. Our findings suggest the value of increasing collaboration for future research, as several countries with largely diverse environments and high organismal richness are disconnected from the countries that produce the most publications in this area, and/or have low records of publications. These regions are in the Global South, mostly in South American and African countries. We suggest that more collaborative networks may increase scientific production in the area, and that investing in local research development and enhancing partnerships for publications may strengthen the field. These research programs and collaborations are key for the development of conservation strategies for bats and bat flies, for their roosts, and for understanding bat and bat-ectoparasite interactions.
Collapse
Affiliation(s)
- Gustavo Lima Urbieta
- Programa de Pós-Graduação em Ciências Biológicas, Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba (UFPB), João Pessoa, Brazil.
- Laboratório de Mamíferos, Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba (UFPB), João Pessoa, PB, 58059-900, Brazil.
| | - Gustavo Graciolli
- Laboratório de Sistemática, Ecologia e Evolução (LSEE), Instituto de Biociências (INBIO), Universidade Federal de Mato Grosso Do Sul (UFMS), Campo Grande, Brazil
| | - Valéria da Cunha Tavares
- Programa de Pós-Graduação em Ciências Biológicas, Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba (UFPB), João Pessoa, Brazil
- Instituto Tecnológico Vale (ITV), Belém, PA, 66055-090, Brazil
| |
Collapse
|
3
|
Péter Á, Mihalca AD, Haelewaters D, Sándor AD. Focus on Hyperparasites: Biotic and Abiotic Traits Affecting the Prevalence of Parasitic Microfungi on Bat Ectoparasites. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.795020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The tritrophic association of bats, bat flies, and Laboulbeniales microfungi is a remarkably understudied system that may reveal patterns applicable to community ecology theory of (hyper)parasites. Laboulbeniales are biotrophic microfungi, exclusively associated with arthropods, with several species that are specialized on bat flies, which themselves are permanent ectoparasites of bats. Several hypotheses were tested on biotic and abiotic traits that may influence the presence and prevalence of hyperparasitic Laboulbeniales fungi on bat flies, based on southeastern European data. We found a wide distribution of fungal infection on bat flies, with underground-dwelling bats hosting more Laboulbeniales-infected flies compared to crevice-dwelling species. Bat host behavior, sociality, roost selection (underground versus crevice), bat fly sex, and season all have significant effects on the prevalence of fungal infection. Laboulbeniales infections are more common on bat flies that are infecting bat species with dense and long-lasting colonies (Miniopterus schreibersii, Myotis myotis, Myotis blythii), which roost primarily in underground sites. Inside these sites, elevated temperature and humidity may enhance the development and transmission of Laboulbeniales fungi. Sexual differences in bat hosts’ behavior also have an effect on fungal infection risk, with densely roosting female bat hosts harboring more Laboulbeniales-infected bat flies.
Collapse
|
4
|
Bahram M, Netherway T. Fungi as mediators linking organisms and ecosystems. FEMS Microbiol Rev 2021; 46:6468741. [PMID: 34919672 PMCID: PMC8892540 DOI: 10.1093/femsre/fuab058] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/15/2021] [Indexed: 12/03/2022] Open
Abstract
Fungi form a major and diverse component of most ecosystems on Earth. They are both micro and macroorganisms with high and varying functional diversity as well as great variation in dispersal modes. With our growing knowledge of microbial biogeography, it has become increasingly clear that fungal assembly patterns and processes differ from other microorganisms such as bacteria, but also from macroorganisms such as plants. The success of fungi as organisms and their influence on the environment lies in their ability to span multiple dimensions of time, space, and biological interactions, that is not rivalled by other organism groups. There is also growing evidence that fungi mediate links between different organisms and ecosystems, with the potential to affect the macroecology and evolution of those organisms. This suggests that fungal interactions are an ecological driving force, interconnecting different levels of biological and ecological organisation of their hosts, competitors, and antagonists with the environment and ecosystem functioning. Here we review these emerging lines of evidence by focusing on the dynamics of fungal interactions with other organism groups across various ecosystems. We conclude that the mediating role of fungi through their complex and dynamic ecological interactions underlie their importance and ubiquity across Earth's ecosystems.
Collapse
Affiliation(s)
- Mohammad Bahram
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Ulls väg 16, 756 51 Sweden.,Institute of Ecology and Earth Sciences, University of Tartu, Tartu, 40 Lai St. Estonia
| | - Tarquin Netherway
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Ulls väg 16, 756 51 Sweden
| |
Collapse
|
5
|
Penetrative and non-penetrative interaction between Laboulbeniales fungi and their arthropod hosts. Sci Rep 2021; 11:22170. [PMID: 34773061 PMCID: PMC8589835 DOI: 10.1038/s41598-021-01729-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/01/2021] [Indexed: 11/08/2022] Open
Abstract
Laboulbeniales are a highly specialized group of fungi living only on arthropods. They have high host specificity and spend their entire life-cycle on an arthropod host. Taxonomic characters of Laboulbeniales are based on the architecture of the cells of the parenchymal thallus, i.e. the visible part of the fungus outside the host. The extent of the fungus spreading inside the host-the haustorium-remains largely unknown. The attachment to the arthropod host is fundamental to understand the fungus-animal interaction, but how this truly occurs is unclear. Recent evidences question the strictly parasitic life-style of Laboulbeniales. We used micro-computed tomography (µCT) and 3D reconstructions to visualize, for the first time, the complete structure of Laboulbeniales species in situ on their hosts. We compared the haustoriate species, Arthrorhynchus nycteribiae on an insect host to the non-haustoriate species, Rickia gigas on a millipede host. Our results confirm that some Laboulbeniales species are ectoparasitic and have a haustorial structure that penetrates the host's cuticle, while others are ectobionts and are only firmly attached to the host's cuticle without penetrating it. The presence and the morphology of the haustorium are important traits for Laboulbeniales evolution, and key factors for future understanding of host dependence and specificity.
Collapse
|
6
|
Sendra A, Palero F, Jiménez-Valverde A, Reboleira ASPS. Diplura in caves: diversity, ecology, evolution and biogeography. Zool J Linn Soc 2020. [DOI: 10.1093/zoolinnean/zlaa116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Abstract
Diplurans (Hexapoda) are considered the ‘ideal cavernicolous animal’ having one of the highest ratios of cave-adapted vs. non-cave-adapted species. They are successful colonizers of subterranean habitats, thriving in all cryptic, dark, terrestrial environments. Diplurans play an important role in the decomposition of organic matter below the ground and are sensitive to anthropogenic pressures. We present the first comprehensive review about cave Diplura diversity, ecology, evolution, distribution and biogeography. We provide a roadmap for research questions regarding the ecology, aimed at stimulating the pursuit of new studies on this fascinating group. Filling these current knowledge gaps will contribute to conservation efforts for cave ecosystems.
Collapse
Affiliation(s)
- Alberto Sendra
- Colecciones Entomológicas Torres-Sala, Servei de Patrimoni Històric, Ajuntament de València, València, Spain
| | - Ferran Palero
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de Valencia, C/Catedrático Jose Beltran 2, 46980 Paterna, Spain
- Department of Life Sciences, The Natural History Museum, London, UK
| | - Alberto Jiménez-Valverde
- Research Team on Soil Biology and Subterranean Ecosystems. Department of Life Sciences. Faculty of Science. University of Alcalá (UAH). A.P. 20. Campus Universitario. E-28805, Alcalá de Henares, Madrid, Spain
| | - Ana Sofia P S Reboleira
- Natural History Museum of Denmark, University of Copenhagen, 2100 Copenhagen, Denmark
- Centre for Ecology, Evolution and Environmental Changes (cE3c), and Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
7
|
Santamaria S, Enghoff H, Reboleira AS. The first Laboulbeniales (Ascomycota, Laboulbeniomycetes) from an American millipede, discovered through social media. MycoKeys 2020; 67:45-53. [PMID: 32476982 PMCID: PMC7242483 DOI: 10.3897/mycokeys.67.51811] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/08/2020] [Indexed: 11/16/2022] Open
Abstract
Laboulbeniales are highly specialized arthropod-associated fungi. The majority of the almost 2200 known species live on insects, although they also occur on other arthropod hosts. Recently, the number of Laboulbeniales associated with millipedes has increased considerably. Here we describe the first species of a Laboulbeniales fungus, Troglomyces twitteri sp. nov., from an American millipede. The new species was initially discovered on a photo of Cambala annulata (Say, 1821) from Ohio, USA, which had been shared on Twitter. A subsequent microscopic study of Cambala millipedes in museum collections in Denmark and France confirmed the discovery.
Collapse
Affiliation(s)
- Sergi Santamaria
- Unitat de Botànica. Departament de Biologia Animal, de Biologia Vegetal i d’Ecologia. Facultat de Biociències. Universitat Autònoma de Barcelona. 08193-Bellaterra (Barcelona), SpainUniversitat Autònoma de BarcelonaBellaterraSpain
| | - Henrik Enghoff
- Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, DenmarkUniversity of CopenhagenCopenhagenDenmark
| | - Ana Sofia Reboleira
- Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, DenmarkUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
8
|
Szentiványi T, Estók P, Pigeault R, Christe P, Glaizot O. Effects of fungal infection on the survival of parasitic bat flies. Parasit Vectors 2020; 13:23. [PMID: 31931866 PMCID: PMC6958713 DOI: 10.1186/s13071-020-3895-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 01/07/2020] [Indexed: 11/10/2022] Open
Abstract
Background Parasites are able to alter numerous aspects of their hosts’ life history, behaviour and distribution. One central question in parasitology is to determine the degree of impact that parasites have on their hosts. Laboulbeniales (Fungi: Ascomycota) are ectoparasitic fungi of arthropods. Even though these fungi are widely distributed, little is known about their ecology and their possible physiological effects on their hosts. We used a highly specific bat fly-fungi association to assess the effect of these fungal parasites on their dipteran hosts. Methods We collected bat flies (Diptera: Nycteribiidae) belonging to two species, Nycteribia schmidlii and Penicillidia conspicua from their bat host Miniopterus schreibersii (Chiroptera: Miniopteridae). We experimentally tested the effect of infection on the lifespan of bat flies. Results The prevalence of Laboulbeniales fungi was 17.9% in N. schmidlii and 64.8% in P. conspicua. Two fungi species were identified, Arthrorhynchus eucampsipodae and A. nycteribiae, both showing strict host specificity with N. schmidlii and P. conspicua, respectively. We found that fungal infection reduced by half the survival rate of P. conspicua regardless of sex, whereas N. schmidlii was not affected by the infection. Moreover, the intensity of infection showed negative correlation with the lifespan of P. conspicua. Conclusions To our knowledge, this is the first indication that fungal infection can alter bat fly survival and thus may play a significant role in the population dynamics of these bat ectoparasites.![]()
Collapse
Affiliation(s)
- Tamara Szentiványi
- Museum of Zoology, Palais de Rumine, Place de la Riponne 6, 1014, Lausanne, Switzerland. .,Department of Ecology and Evolution, University of Lausanne, Biophore, 1015, Lausanne, Switzerland.
| | - Péter Estók
- Department of Zoology, Eszterházy Károly University, Eszterházy tér 1, 3300, Eger, Hungary
| | - Romain Pigeault
- Department of Ecology and Evolution, University of Lausanne, Biophore, 1015, Lausanne, Switzerland
| | - Philippe Christe
- Department of Ecology and Evolution, University of Lausanne, Biophore, 1015, Lausanne, Switzerland
| | - Olivier Glaizot
- Museum of Zoology, Palais de Rumine, Place de la Riponne 6, 1014, Lausanne, Switzerland.,Department of Ecology and Evolution, University of Lausanne, Biophore, 1015, Lausanne, Switzerland
| |
Collapse
|