1
|
Wang X, Zhu L, Huo C, He D, Tian H, Fan X, Lyu Y, Li Y. Genetic characterization of immune adaptor molecule MyD88 in Culex pipiens complex (Diptera: Culicidae) mosquitoes from China. JOURNAL OF MEDICAL ENTOMOLOGY 2025; 62:29-38. [PMID: 39436778 DOI: 10.1093/jme/tjae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/18/2024] [Accepted: 09/21/2024] [Indexed: 10/25/2024]
Abstract
Mosquitoes of the Culex (Cx.) pipiens complex are vectors of severe diseases including West Nile fever by West Nile virus, Japanese encephalitis by Japanese encephalitis virus, and Lymphatic filariasis by filarial nematode Wuchereria bancrofti. As a major portion of mosquito immune system, the Toll pathway implicates in response against infections of mosquito-borne pathogens and biocontrol agents. The genetic diversity of immune-related molecules is expected to be a feasible and effective introduction to expand our knowledge of the mosquito-microbe interplay. However, a comprehensive description is currently lacking regarding the genetic characteristic of the Toll pathway molecules in Cx. pipiens complex mosquitoes. In the present study, genetic changes in Cx. pipiens complex MyD88 (Myeloid differentiation primary response protein 88) were analyzed as a precedent for the Toll pathway molecules in this taxon. MyD88 is a critical adaptor of the pathway transducing signals from TIR-containing receptors to downstream death domain-containing molecules. Our results revealed that adaptive selection has influenced the genetic changes of the molecule, giving rise to acceleration of diversity at a number of amino acid sites. The adaptively selected sites lie in the death domain, intermediate domain, and C-terminal extension. The characteristics of the genetic changes shed insights into the prominent molecular-level structural basis and the involvement strategy of the adaptor in the arms race against exogenous challenges. This finding would be beneficial for further exploration and deeper understanding of the mosquitoes' vectorial capacity and facilitating the effectiveness and sustainability of the biocontrol agents.
Collapse
Affiliation(s)
- Xueting Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Lilan Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Caifei Huo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Dan He
- College of Animal Science, Guizhou University, Guiyang, People's Republic of China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, People's Republic of China
| | - Haifeng Tian
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, People's Republic of China
| | - Xiaolan Fan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Yongqing Lyu
- The First Hospital of Kunming, Kunming, People's Republic of China
| | - Yan Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, People's Republic of China
| |
Collapse
|
2
|
Paixão FRS, Falvo ML, Huarte-Bonnet C, Santana M, García JJ, Fernandes ÉKK, Pedrini N. Pathogenicity of microsclerotia from Metarhizium robertsii against Aedes aegypti larvae and antimicrobial peptides expression by mosquitoes during fungal-host interaction. Acta Trop 2024; 249:107061. [PMID: 37918505 DOI: 10.1016/j.actatropica.2023.107061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Aedes aegypti is a vector of various disease-causing arboviruses. Chemical insecticide-based methods for mosquito control have increased resistance in different parts of the world. Thus, alternative control agents such as the entomopathogenic fungi are excellent candidates to control mosquitoes as part of an ecofriendly strategy. There is evidence of the potential of entomopathogenic fungal conidia and blastospores for biological control of eggs, larval and adult stages, as well as the pathogenicity of fungal microsclerotia against adults and eggs. However, there are no studies on the pathogenicity of microsclerotia against either aquatic insects or insects that develop part of their life cycle in the water, such as the A. aegypti larvae. In this study, we assayed the production of microsclerotia and their pathogenicity against A. aegypti larvae of two isolates of Metarhizium robertsii, i.e., CEP 423 isolated in La Plata, Argentina, and the model ARSEF 2575. Both isolates significantly reduced the survival of A. aegypti exposed to their microsclerotia. The fungus-larva interaction resulted in a delayed response in the host. This was evidenced by the expression of some humoral immune system genes such as defensins and cecropin on the 9th day post-infection, when the fungal infection was consolidated as a successful process that culminates in larvae mortality. In conclusion, M. robertsii microsclerotia are promising propagules to be applied as biological control agents against mosquitoes since they produce pathogenic conidia against A. aegypti larvae.
Collapse
Affiliation(s)
- Flávia R S Paixão
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT La Plata Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata (UNLP), calles 60 y 120, 1900 La Plata, Argentina
| | - Marianel L Falvo
- Centro de Estudios Parasitológicos y de Vectores (CEPAVE), CCT La Plata Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata (UNLP), calles 60 y 122, 1900 La Plata, Argentina
| | - Carla Huarte-Bonnet
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT La Plata Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata (UNLP), calles 60 y 120, 1900 La Plata, Argentina
| | - Marianela Santana
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT La Plata Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata (UNLP), calles 60 y 120, 1900 La Plata, Argentina
| | - Juan J García
- Centro de Estudios Parasitológicos y de Vectores (CEPAVE), CCT La Plata Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata (UNLP), calles 60 y 122, 1900 La Plata, Argentina
| | - Éverton K K Fernandes
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74690-900, Goiânia, Goiás, Brazil
| | - Nicolás Pedrini
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT La Plata Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata (UNLP), calles 60 y 120, 1900 La Plata, Argentina.
| |
Collapse
|
3
|
Yang L, Li J, Yang L, Wang X, Xiao S, Xiong S, Xu X, Xu J, Ye G. Altered Gene Expression of the Parasitoid Pteromalus puparum after Entomopathogenic Fungus Beauveria bassiana Infection. Int J Mol Sci 2023; 24:17030. [PMID: 38069352 PMCID: PMC10707577 DOI: 10.3390/ijms242317030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Both parasitoids and entomopathogenic fungi are becoming increasingly crucial for managing pest populations. Therefore, it is essential to carefully consider the potential impact of entomopathogenic fungi on parasitoids due to their widespread pathogenicity and the possible overlap between these biological control tools during field applications. However, despite their importance, little research has been conducted on the pathogenicity of entomopathogenic fungi on parasitoids. In our study, we aimed to address this knowledge gap by investigating the interaction between the well-known entomopathogenic fungus Beauveria bassiana, and the pupal endoparasitoid Pteromalus puparum. Our results demonstrated that the presence of B. bassiana significantly affected the survival rates of P. puparum under laboratory conditions. The pathogenicity of B. bassiana on P. puparum was dose- and time-dependent, as determined via through surface spraying or oral ingestion. RNA-Seq analysis revealed that the immune system plays a primary and crucial role in defending against B. bassiana. Notably, several upregulated differentially expressed genes (DEGs) involved in the Toll and IMD pathways, which are key components of the insect immune system, and antimicrobial peptides were rapidly induced during both the early and late stages of infection. In contrast, a majority of genes involved in the activation of prophenoloxidase and antioxidant mechanisms were downregulated. Additionally, we identified downregulated DEGs related to cuticle formation, olfactory mechanisms, and detoxification processes. In summary, our study provides valuable insights into the interactions between P. puparum and B. bassiana, shedding light on the changes in gene expression during fungal infection. These findings have significant implications for the development of more effective and sustainable strategies for pest management in agriculture.
Collapse
Affiliation(s)
- Lei Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jinting Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Lei Yang
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaofu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shan Xiao
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shijiao Xiong
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoli Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Junfeng Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Gongyin Ye
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
4
|
Bitencourt RDOB, dos Santos-Mallet JR, Lowenberger C, Ventura A, Gôlo PS, Bittencourt VREP, Angelo IDC. A Novel Model of Pathogenesis of Metarhizium anisopliae Propagules through the Midguts of Aedes aegypti Larvae. INSECTS 2023; 14:insects14040328. [PMID: 37103143 PMCID: PMC10146130 DOI: 10.3390/insects14040328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 05/31/2023]
Abstract
We assessed the effect of the entomopathogenic fungus Metarhizium anisopliae against Aedes aegypti. Conidia of M. anisopliae strains CG 489, CG 153, and IBCB 481 were grown in Adamek medium under different conditions to improve blastospore production. Mosquito larvae were exposed to blastospores or conidia of the three fungal strains at 1 × 107 propagules mL-1. M. anisopliae IBCB 481 and CG 153 reduced larval survival by 100%, whereas CG 489 decreased survival by about 50%. Blastospores of M. anisopliae IBCB 481 had better results in lowering larval survival. M. anisopliae CG 489 and CG 153 reduced larval survival similarly. For histopathology (HP) and scanning electron microscopy (SEM), larvae were exposed to M. anisopliae CG 153 for 24 h or 48 h. SEM confirmed the presence of fungi in the digestive tract, while HP confirmed that propagules reached the hemocoel via the midgut, damaged the peritrophic matrix, caused rupture and atrophy of the intestinal mucosa, caused cytoplasmic disorganization of the enterocytes, and degraded the brush border. Furthermore, we report for the first time the potential of M. anisopliae IBCB 481 to kill Ae. aegypti larvae and methods to improve the production of blastospores.
Collapse
Affiliation(s)
| | - Jacenir Reis dos Santos-Mallet
- Oswaldo Cruz Foundation, IOC-FIOCRUZ-RJ, Rio de Janeiro 21040-900, RJ, Brazil
- Oswaldo Cruz Foundation, IOC-FIOCRUZ-PI, Teresina 64001-350, PI, Brazil
- Laboratory of Surveillance and Biodiversity in Health, Iguaçu University-UNIG, Nova Iguaçu 28300-000, RJ, Brazil
| | - Carl Lowenberger
- Centre for Cell Biology, Development and Disease, Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Adriana Ventura
- Department of Animal Biology, Institute of Health and Biological Sciences, Federal Rural University of Rio de Janeiro, Seropédica 23890-000, RJ, Brazil
| | - Patrícia Silva Gôlo
- Department of Animal Parasitology, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropédica 23890-000, RJ, Brazil
| | | | - Isabele da Costa Angelo
- Department of Epidemiology and Public Health, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropédica 23890-000, RJ, Brazil
| |
Collapse
|
5
|
Zhu G, Ding W, Zhao H, Xue M, Chu P, Jiang L. Effects of the Entomopathogenic Fungus Mucor hiemalis BO-1 on the Physical Functions and Transcriptional Signatures of Bradysia odoriphaga Larvae. INSECTS 2023; 14:162. [PMID: 36835731 PMCID: PMC9964685 DOI: 10.3390/insects14020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/25/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Mucor hiemalis BO-1 is an entomopathogenic fungus that infects Bradysia odoriphaga, a destructive root maggot. M. hiemalis BO-1 possesses stronger pathogenicity to the larvae than to other stages of B. odoriphaga, and provides satisfactory field control. However, the physiological response of B. odoriphaga larvae to infection and the infection mechanism of M. hiemalis are unknown. We detected some physiological indicators of diseased B. odoriphaga larvae infected by M. hiemalis BO-1. These included changes in consumption, nutrient contents, and digestive and antioxidant enzymes. We performed transcriptome analysis of diseased B. odoriphaga larvae, and found that M. hiemalis BO-1 showed acute toxicity to B. odoriphaga larvae and was as toxic as some chemical pesticides. The food consumption of diseased B. odoriphaga after inoculation with M. hiemalis spores decreased significantly, and there was a significant decrease in total protein, lipid, and carbohydrates in diseased larvae. Key digestive enzymes (protease, α-amylase, lipase, and cellulase) were significantly inhibited during infection. Peroxidase maintained high activity, and the activity of other antioxidant enzymes (catalase, superoxide dismutase, and glutathione S-transferases) first increased and then decreased. Combined with the transcriptional signatures of diseased B. odoriphaga larvae, M. hiemalis BO-1 infection resulted in decreased food consumption, reduced digestive enzyme activity, and altered energy metabolism and material accumulation. Infection was also accompanied by fluctuations in immune function, such as cytochrome P450 and the Toll pathway. Therefore, our results laid a basis for the further study of the interactions between M. hiemalis BO-1 and B. odoriphaga and promoted the genetic improvement of entomopathogenic fungi.
Collapse
Affiliation(s)
- Guodong Zhu
- College of Agronomy, Liaocheng University, Liaocheng 252000, China
- College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China
| | - Wenjuan Ding
- College of Agronomy, Liaocheng University, Liaocheng 252000, China
- College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China
| | - Haipeng Zhao
- College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China
| | - Ming Xue
- College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China
| | - Pengfei Chu
- College of Agronomy, Liaocheng University, Liaocheng 252000, China
| | - Liwei Jiang
- College of Agronomy, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
6
|
de Oliveira Barbosa Bitencourt R, Corrêa TA, Santos-Mallet J, Santos HA, Lowenberger C, Moreira HVS, Gôlo PS, Bittencourt VREP, da Costa Angelo I. Beauveria bassiana interacts with gut and hemocytes to manipulate Aedes aegypti immunity. Parasit Vectors 2023; 16:17. [PMID: 36650591 PMCID: PMC9847134 DOI: 10.1186/s13071-023-05655-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/05/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Mosquito-borne diseases affect millions of people. Chemical insecticides are currently employed against mosquitoes. However, many cases of insecticide resistance have been reported. Entomopathogenic fungi (EPF) have demonstrated potential as a bioinsecticide. Here, we assessed the invasion of the EPF Beauveria bassiana into Aedes aegypti larvae and changes in the activity of phenoloxidase (PO) as a proxy for the general activation of the insect innate immune system. In addition, other cellular and humoral responses were evaluated. METHODS Larvae were exposed to blastospores or conidia of B. bassiana CG 206. After 24 and 48 h, scanning electron microscopy (SEM) was conducted on the larvae. The hemolymph was collected to determine changes in total hemocyte concentration (THC), the dynamics of hemocytes, and to observe hemocyte-fungus interactions. In addition, the larvae were macerated to assess the activity of PO using L-DOPA conversion, and the expression of antimicrobial peptides (AMPs) was measured using quantitative Real-Time PCR. RESULTS Propagules invaded mosquitoes through the midgut, and blastopores were detected inside the hemocoel. Both propagules decreased the THC regardless of the time. By 24 h after exposure to conidia the percentage of granulocytes and oenocytoids increased while the prohemocytes decreased. By 48 h, the oenocytoid percentage increased significantly (P < 0.05) in larvae exposed to blastospores; however, the other hemocyte types did not change significantly. Regardless of the time, SEM revealed hemocytes adhering to, and nodulating, blastospores. For the larvae exposed to conidia, these interactions were observed only at 48 h. Irrespective of the propagule, the PO activity increased only at 48 h. At 24 h, cathepsin B was upregulated by infection with conidia, whereas both propagules resulted in a downregulation of cecropin and defensin A. At 48 h, blastospores and conidia increased the expression of defensin A suggesting this may be an essential AMP against EPF. CONCLUSION By 24 h, B. bassiana CG 206 occluded the midgut, reduced THC, did not stimulate PO activity, and downregulated AMP expression in larvae, all of which allowed the fungus to impair the larvae to facilitate infection. Our data reports a complex interplay between Ae. aegypti larvae and B. bassiana CG 206 demonstrating how this fungus can infect, affect, and kill Ae. aegypti larvae.
Collapse
Affiliation(s)
- Ricardo de Oliveira Barbosa Bitencourt
- grid.412391.c0000 0001 1523 2582Graduate Program in Veterinary Sciences, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropédica, RJ Brazil
| | - Thaís Almeida Corrêa
- grid.412391.c0000 0001 1523 2582Graduate Program in Veterinary Sciences, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropédica, RJ Brazil
| | - Jacenir Santos-Mallet
- grid.418068.30000 0001 0723 0931Oswaldo Cruz Foundation, IOC-FIOCRUZ-RJ, Rio de Janeiro, RJ Brazil ,FIOCRUZ-PI, Teresina, Piauí Brazil ,grid.441915.c0000 0004 0501 3011Iguaçu University-UNIG, Nova Iguaçu, RJ Brazil
| | - Huarrison Azevedo Santos
- grid.412391.c0000 0001 1523 2582Department of Epidemiology and Public Health, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropédica, RJ Brazil
| | - Carl Lowenberger
- grid.61971.380000 0004 1936 7494Centre for Cell Biology, Development and Disease, Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6 Canada
| | - Haika Victória Sales Moreira
- grid.412391.c0000 0001 1523 2582Graduate Program in Veterinary Sciences, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropédica, RJ Brazil
| | - Patrícia Silva Gôlo
- grid.412391.c0000 0001 1523 2582Department of Animal Parasitology, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropédica, RJ Brazil
| | - Vânia Rita Elias Pinheiro Bittencourt
- grid.412391.c0000 0001 1523 2582Department of Animal Parasitology, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropédica, RJ Brazil
| | - Isabele da Costa Angelo
- Department of Epidemiology and Public Health, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil.
| |
Collapse
|
7
|
The Entomopathogenic Fungus Beauveria bassiana Shows Its Toxic Side within Insects: Expression of Genes Encoding Secondary Metabolites during Pathogenesis. J Fungi (Basel) 2022; 8:jof8050488. [PMID: 35628744 PMCID: PMC9143124 DOI: 10.3390/jof8050488] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 01/23/2023] Open
Abstract
Entomopathogenic fungi are extensively used for the control of insect pests worldwide. Among them, Beauveria bassiana (Ascomycota: Hypocreales) produce a plethora of toxic secondary metabolites that either facilitate fungal invasion or act as immunosuppressive compounds. These toxins have different chemical natures, such as nonribosomal peptides and polyketides. Even though their precise role is poorly understood, they are usually linked to virulence. These fungal secondary metabolites are produced by the expression of gene clusters encoding the various proteins needed for their biosynthesis. Each cluster includes synthetases for nonribosomal peptides (NRPS), polyketides (PKS), or hybrid NRPS–PKS genes. The aim of this review is to summarize the information available from transcriptomics and quantitative PCR studies related to the expression of B. bassiana NRPS and PKS genes inside different insects as the infection progresses; as for the host immune response, to help understand the mechanisms that these toxins trigger as virulence factors, antimicrobials, or immunosuppressives within the context of a fungus–insect interaction.
Collapse
|
8
|
Ahmed S, Roy MC, Choi D, Kim Y. HMG-Like DSP1 Mediates Immune Responses of the Western Flower Thrips ( Frankliniella occidentalis) Against Beauveria bassiana, a Fungal Pathogen. Front Immunol 2022; 13:875239. [PMID: 35450074 PMCID: PMC9016178 DOI: 10.3389/fimmu.2022.875239] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Western flower thrips, Frankliella occidentalis, is a serious pest by directly infesting host crops. It can also give indirect damage to host crops by transmitting a plant virus called tomato spotted wilt virus. A fungal pathogen, Beauveria bassiana, can infect thrips. It has been used as a biopesticide. However, little is known on the defense of thrips against this fungal pathogen. This study assessed the defense of thrips against the fungal infection with respect to immunity by analyzing immune-associated genes of F. occidentalis in both larvae and adults. Immunity-associated genes of western flower thrips were selected from three immunity steps: nonself recognition, mediation, and immune responses. For the pathogen recognition step, dorsal switch protein 1 (DSP1) was chosen. For the immune mediation step, phospholipase A2 (PLA2) and prostaglandin E2 synthase were also selected. For the step of immune responses, two phenoloxidases (PO) genes and four proPO-activating peptidase genes involved in melanization against pathogens were chosen. Dual oxidase gene involved in the production of reactive oxygen species and four antimicrobial peptide genes for executing humoral immune responses were selected. All immunity-associated genes were inducible to the fungal infection. Their expression levels were induced higher in adults than in larvae by the fungal infections. However, inhibitor treatments specific to DSP1 or PLA2 significantly suppressed the inducible expression of these immune-associated genes, leading to significant enhancement of fungal pathogenicity. These results suggest that immunity is essential for thrips to defend against B. bassiana, in which DSP1 and eicosanoids play a crucial role in eliciting immune responses.
Collapse
Affiliation(s)
- Shabbir Ahmed
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong, South Korea
| | - Miltan Chandra Roy
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong, South Korea
| | - Duyeol Choi
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong, South Korea
| | - Yonggyun Kim
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong, South Korea
| |
Collapse
|
9
|
Wu H, Tan M, Li Y, Zheng L, Xu J, Jiang D. The immunotoxicity of Cd exposure to gypsy moth larvae: An integrated analysis of cellular immunity and humoral immunity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 235:113434. [PMID: 35338967 DOI: 10.1016/j.ecoenv.2022.113434] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/26/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Heavy metal exposure-triggered growth retardation and physiology disorder in phytophagous insects have been widely understood, but only a few studies have investigated its immunomodulatory effects on herbivorous insects. Here, the innate immunity of gypsy moth (Lymantria dispar) larvae under Cd stress was evaluated by integrating cellular and humoral immunity, and the immunomodulation mechanism of Cd stress was further understood by the proteomics analysis of larval hemolymph. Our results showed that the total hemocyte count, as well as phagocytic, encapsulation and bacteriostatic activity, of hemolymph in gypsy moth larvae exposed to Cd stress was significantly lower than that in un-treated larvae. Further proteomic analysis revealed that Cd exposure may reduce the total hemocyte count in larval hemolymph by inducing endoplasmic reticulum pathway-mediated hemocyte apoptosis, thereby causing the collapse of cellular immunity in gypsy moth larvae. In addition, the transcriptional level of signal transduction genes (IMD, Toll, Relish, JAK and STAT) and antimicrobial peptide genes (cecropin and lebocin), as well as the protein abundance of pattern recognition receptors (PGRP and GNBP3) in the Toll, IMD and JAK/STAT signaling pathways was significantly decreased in Cd-treated larvae, clearly implying an immunosuppresive effect of Cd stress on pathogen recognition, signal transduction and effector synthesis of humoral immunity in gypsy moth larvae. Taken together, these results suggest that Cd exposure decreases both cellular immunity and humoral immunity of gypsy moth larvae, and provides a new entry point for systematically and comprehensively unraveling the heavy metal pollutants-caused immunotoxicity.
Collapse
Affiliation(s)
- Hongfei Wu
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Mingtao Tan
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Yaning Li
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Lin Zheng
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Jinsheng Xu
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Dun Jiang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|