1
|
Kahl LJ, Stremmel N, Esparza-Mora MA, Wheatley RM, MacLean RC, Ralser M. Interkingdom interactions between Pseudomonas aeruginosa and Candida albicans affect clinical outcomes and antimicrobial responses. Curr Opin Microbiol 2023; 75:102368. [PMID: 37677865 DOI: 10.1016/j.mib.2023.102368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 09/09/2023]
Abstract
Infections that involve interkingdom microbial communities, such as those between bacteria and yeast pathogens, are difficult to treat, associated with worse patient outcomes, and may be a source of antimicrobial resistance. In this review, we address co-occurrence and co-infections of Candida albicans and Pseudomonas aeruginosa, two pathogens that occupy multiple infection niches in the human body, especially in immunocompromised patients. The interaction between the pathogen species influences microbe-host interactions, the effectiveness of antimicrobials and even infection outcomes, and may thus require adapted treatment strategies. However, the molecular details of bacteria-fungal interactions both inside and outside the infection sites, are insufficiently characterised. We argue that comprehensively understanding the P. aeruginosa-C. albicans interaction network through integrated systems biology approaches will capture the highly dynamic and complex nature of these polymicrobial infections and lead to a more comprehensive understanding of clinical observations such as reshaped immune defences and low antimicrobial treatment efficacy.
Collapse
Affiliation(s)
- Lisa J Kahl
- Charité Universitätsmedizin Berlin, Department of Biochemistry, 10117 Berlin, Germany
| | - Nina Stremmel
- Charité Universitätsmedizin Berlin, Department of Biochemistry, 10117 Berlin, Germany
| | | | - Rachel M Wheatley
- University of Oxford, Department of Biology, Oxford OX1 3SZ, United Kingdom
| | - R Craig MacLean
- University of Oxford, Department of Biology, Oxford OX1 3SZ, United Kingdom
| | - Markus Ralser
- Charité Universitätsmedizin Berlin, Department of Biochemistry, 10117 Berlin, Germany; University of Oxford, The Wellcome Centre for Human Genetics, Nuffield Department of Medicine, Oxford OX3 7BN, United Kingdom; Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.
| |
Collapse
|
2
|
Iwański B, Andrejko M. Changes in the apolipophorin III in Galleria mellonella larvae treated with Pseudomonas aeruginosa exotoxin A. JOURNAL OF INSECT PHYSIOLOGY 2023; 149:104536. [PMID: 37414244 DOI: 10.1016/j.jinsphys.2023.104536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
In the present study, we have demonstrated a correlation in time between changes in the amount of apolipophorin III (apoLp-III) in the fat body and hemocytes of Galleria mellonella larvae challenged with Pseudomonas aeruginosa exotoxin A (exoA). An increase in the amount of apoLp-III was detected 1-8 h after the challenge; then, a temporary decrease was observed after 15 h followed by an increase in the level of apoLp-III, however to a different extent. The profile of apoLp-III forms in the hemolymph, hemocytes, and fat body of the exoA-challenged larvae was analyzed using two-dimensional electrophoresis (IEF/SDS-PAGE) and immunoblotting with anti-apoLp-III antibodies. Two apoLp-III forms differing in isoelectric point values estimated at ∼ 6.5 and ∼ 6.1 in the hemolymph and ∼ 6.5 and ∼ 5.9 in the hemocytes as well as one isoform with pI ∼ 6.5 in the fat body with an additional apoLp-III-derived polypeptide with estimated pI ∼ 6.9 were detected in the control insects. The injection of exoA caused a significant decrease in the abundance of both apoLp-III isoforms in the insect hemolymph. In the hemocytes, a decrease in the amount of the pI ∼ 5.9 isoform was detected, while the major apoLp-III isoform (pI ∼ 6.5) remained unchanged. In addition, appearance of an additional apoLp-III-derived polypeptide with an estimated pI ∼ 5.2 was observed. Interestingly, there were no statistically significant differences in the amount of the main isoform in the fat body between the control and exoA-challenged insects, but the polypeptide with pI ∼ 6.9 disappeared completely. It should be noted that the decrease in the amount of apoLp-III and other proteins was especially noticeable at the time points when exoA was detected in the studied tissues.
Collapse
Affiliation(s)
- Bartłomiej Iwański
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland.
| | - Mariola Andrejko
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| |
Collapse
|
3
|
Admella J, Torrents E. Investigating bacterial infections in Galleria mellonella larvae: Insights into pathogen dissemination and behavior. J Invertebr Pathol 2023; 200:107975. [PMID: 37541571 DOI: 10.1016/j.jip.2023.107975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/04/2023] [Accepted: 07/30/2023] [Indexed: 08/06/2023]
Abstract
The insect Galleria mellonella is an alternative animal model widely used for studying bacterial infections. It presents a wide range of advantages, including its low cost, easy maintenance and lack of ethical constraints. Among other features, their innate immune system is very similar to that of mammals. In this study, we dissected several larvae infected with important human pathogens: Mycobacterium abscessus, Staphylococcus aureus and Pseudomonas aeruginosa. By observing the fat body, gut, trachea, and hemolymph under the microscope, we were able to describe where bacteria tend to disseminate. We also quantified the number of bacteria in the hemolymph throughout the infection course and found significant differences between the different pathogens. With this work, we aimed to better understand the behavior and dissemination of bacteria in the infected larvae.
Collapse
Affiliation(s)
- Joana Admella
- Bacterial Infections and Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 15-21, 08028 Barcelona, Spain; Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 643 Diagonal Ave., 08028 Barcelona, Spain
| | - Eduard Torrents
- Bacterial Infections and Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 15-21, 08028 Barcelona, Spain; Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 643 Diagonal Ave., 08028 Barcelona, Spain.
| |
Collapse
|
4
|
Pseudomonas aeruginosa exotoxin A induces apoptosis in Galleria mellonella hemocytes. J Invertebr Pathol 2023; 197:107884. [PMID: 36642365 DOI: 10.1016/j.jip.2023.107884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/05/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023]
Abstract
The cellular immune response of the greater wax moth Galleria mellonella to Pseudomonas aeruginosa exotoxin A was investigated for the first time. The insects were challenged with a sublethal dose of exoA, and then hemocyte parameters were assessed. The analysis showed a statistically significant decrease in the total hemocyte count (THC), which was associated with significant decreases in the number of granulocytes and plasmatocytes. In turn, no statistically significant changes were observed in the number of spherulocytes and oenocytoides. Fluorescent staining indicated that cells collected from the exoA-challenged larvae exhibited features characteristic for apoptotic and autophagic cell death, e.g. cytoplasm vacuolization and chromatin condensation. The flow cytometry analysis revealed a significant increase in the number of phosphatidylserine- and active caspase 3-positive hemocytes challenged with exoA, which proved apoptosis induction. Our results will help in understanding the role of exotoxin A during P. aeruginosa infections not only in insects but also in mammals, including humans.
Collapse
|
5
|
Wang Y, Jian S, Li W, Zhao L, Ye G, Shi F, Li L, Zou Y, Song X, Zhao X, Yin Z, Li Y, Tang H. Epigallocatechin-3-gallate ameliorates liver injury secondary to Pseudomonas aeruginosa pneumonia. Int Immunopharmacol 2022; 112:109239. [PMID: 36113316 DOI: 10.1016/j.intimp.2022.109239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/05/2022]
Abstract
Pseudomonas aeruginosa is a dangerous pathogen causing nosocomial pneumonia. P. aeruginosa infection-induced liver damage is another fatal threat, and antibiotic treatment is not effective in relieving P. aeruginosa virulence-triggered damage. We here evaluated the protective effect of epigallocatechin gallate (EGCG), a substance that inhibits virulence of P. aeruginosa through quorum quenching, on liver damage secondary to P. aeruginosa infection. Mice were pretreated with EGCG (20, 40, and 80 mg/kg) for 3 days, and then infected with P. aeruginosa through intratracheal instillation to model acute pneumonia. The mice were sacrificed after 24 h of infection, and samples were harvested for subsequent analysis. EGCG significantly decreased the serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Histopathological changes of liver were significantly ameliorated by EGCG. It also significantly reduced oxidative stress that induced liver damage in P. aeruginosa infection, which relied not on the activation of the Nrf2-HO-1 pathway but on the upregulation of the activity of antioxidative enzymes. Then, the inflammatory response in the liver was tested. EGCG inhibited the release of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) by blocking the inflammation regulating signaling of the TLR4-myD88-NF-κB pathway. EGCG upregulated the activation of nuclear receptors to stronger the liver protective activity against P. aeruginosa infection. Conclusively, EGCG exhibited a significant hepatoprotective effective against P. aeruginosa infection.
Collapse
Affiliation(s)
- Yingjie Wang
- Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, China
| | - Shanqiu Jian
- Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, China
| | - Wen Li
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China
| | - Ling Zhao
- Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, China
| | - Gang Ye
- Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, China
| | - Fei Shi
- Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, China
| | - Lixia Li
- Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuanfeng Zou
- Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, China
| | - Xu Song
- Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinghong Zhao
- Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhongqiong Yin
- Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, China
| | - Yinglun Li
- Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, China
| | - Huaqiao Tang
- Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
6
|
Cao W, Zhang B, Liu Y. Efficacy and Safety of rCCK96-104PE38 Targeted Drug in the General Surgical Treatment of Colon Cancer. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7145606. [PMID: 35722465 PMCID: PMC9200555 DOI: 10.1155/2022/7145606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/13/2022] [Accepted: 05/03/2022] [Indexed: 11/28/2022]
Abstract
To evaluate the clinical efficacy and safety of the rCCK96-104PE38 targeted drug in patients with colon cancer in general surgery, data of 80 patients with colon cancer who were admitted to the hospital from April 2019 to July 2021 were selected and randomly divided into the treatment group and the control group, with 40 cases in each group. Patients in the treatment group were treated with the rCCK96-104PE38 targeted drug, and those in the control group were treated with oxaliplatin. The treatment efficiency and incidence of adverse reactions were compared between the two groups. The inverse cholecystokinin (CCK96-104) was fused with pseudomonas aeruginosa exotoxin (PE38 toxin) through the gene amplification technique to construct a prokaryotic expression vector. Then, the rCCK96-104PE38 was purified by Ni-nitrilotriacetate (Ni-NTA) affinity chromatography, and the antitumor activity of rCCK96-104PE38 was verified. The results showed that the amplified rCCK96-104PE38 sequence was correct and the pET-28a prokaryotic expression system was adopted to successfully achieve active expression. The purified recombinant protein could induce the apoptosis of colon cancer cells in vitro and inhibit tumor growth in vivo. The total effective rate in the treatment group (80%, 32/40) was higher than that in the control group (60%, 24/40) (P < 0.05). To sum up, the recombinant toxin rCCK96-104PE38 could not only specifically adsorb the colon cancer cells with high expression of CCK2R but also effectively inhibit tumor tissue growth and proliferation. Besides, the rCCK96-104PE38 protein had a good anticancer effect that helped effectively reduce the incidence of adverse reactions in patients, which was worthy of promoting.
Collapse
Affiliation(s)
- Wenbin Cao
- North China University of Science and Technology Affiliated Hospital, Tangshan, 063000 Hebei, China
| | - Bo Zhang
- North China University of Science and Technology Affiliated Hospital, Tangshan, 063000 Hebei, China
| | - Yang Liu
- North China University of Science and Technology Affiliated Hospital, Tangshan, 063000 Hebei, China
| |
Collapse
|