1
|
Kharat AS, Makwana N, Nasser M, Gayen S, Yadav B, Kumar D, Veeraraghavan B, Mercier C. Dramatic increase in antimicrobial resistance in ESKAPE clinical isolates over the 2010-2020 decade in India. Int J Antimicrob Agents 2024; 63:107125. [PMID: 38431109 DOI: 10.1016/j.ijantimicag.2024.107125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 03/05/2024]
Abstract
RATIONALE AND OBJECTIVES ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) constitute a threat to humans worldwide. India is now the most populous country. The goal was to investigate the evolution of the rates of antimicrobial resistance in ESKAPE pathogens across India over the 2010-20 decade. METHODS The data (89 studies) were retrieved from the Medline PubMed repository using specific keywords. RESULTS The study of 20 177 ESKAPE isolates showed that A. baumannii isolates were the most represented (35.9%, n = 7238), followed by P. aeruginosa (25.3%, n = 5113), K. pneumoniae (19.5%, n = 3934), S. aureus (16.3%, n = 3286), E. faecium (2.6%, n = 517) and Enterobacter spp. (0.4%, n = 89). A notable increase in the resistance rates to antimicrobial agents occurred over the 2010-20 decade. The most important levels of resistance were observed in 2016-20 for A. baumannii (90% of resistance to the amoxicillin-clavulanate combination) and K. pneumoniae (81.6% of resistance to gentamycin). The rise in β-lactamase activities was correlated with an increase in the positivity of Gram-negative isolates for β-lactamase genes. CONCLUSIONS This review highlighted that, in contrast to developed countries that kept resistance levels under control, a considerable increase in resistance to various classes of antibiotics occurred in ESKAPE pathogens in India over the 2010-2020 decade.
Collapse
Affiliation(s)
- Arun S Kharat
- Laboratory of Applied Microbiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
| | - Nilesh Makwana
- Laboratory of Applied Microbiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Mahfouz Nasser
- Department of Biotechnology, Dr. Babasaheb Ambedkar Marathwada University, Subcampus Osmanbad, MS, Aurangabad, Maharashtra, India; National Center for Public Health Laboratories, Hodeidah, Yemen
| | - Samarpita Gayen
- Department of Biotechnology, Dr. Babasaheb Ambedkar Marathwada University, Subcampus Osmanbad, MS, Aurangabad, Maharashtra, India
| | - Bipin Yadav
- Laboratory of Applied Microbiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Durgesh Kumar
- Laboratory of Applied Microbiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Balaji Veeraraghavan
- Department of Clinical Microbiology, Christian Medical College, Vellore Tamil Nadu, India
| | - Corinne Mercier
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France.
| |
Collapse
|
2
|
Gopikrishnan M, Haryini S, C GPD. Emerging strategies and therapeutic innovations for combating drug resistance in Staphylococcus aureus strains: A comprehensive review. J Basic Microbiol 2024; 64:e2300579. [PMID: 38308076 DOI: 10.1002/jobm.202300579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 02/04/2024]
Abstract
In recent years, antibiotic therapy has encountered significant challenges due to the rapid emergence of multidrug resistance among bacteria responsible for life-threatening illnesses, creating uncertainty about the future management of infectious diseases. The escalation of antimicrobial resistance in the post-COVID era compared to the pre-COVID era has raised global concern. The prevalence of nosocomial-related infections, especially outbreaks of drug-resistant strains of Staphylococcus aureus, have been reported worldwide, with India being a notable hotspot for such occurrences. Various virulence factors and mutations characterize nosocomial infections involving S. aureus. The lack of proper alternative treatments leading to increased drug resistance emphasizes the need to investigate and examine recent research to combat future pandemics. In the current genomics era, the application of advanced technologies such as next-generation sequencing (NGS), machine learning (ML), and quantum computing (QC) for genomic analysis and resistance prediction has significantly increased the pace of diagnosing drug-resistant pathogens and insights into genetic intricacies. Despite prompt diagnosis, the elimination of drug-resistant infections remains unattainable in the absence of effective alternative therapies. Researchers are exploring various alternative therapeutic approaches, including phage therapy, antimicrobial peptides, photodynamic therapy, vaccines, host-directed therapies, and more. The proposed review mainly focuses on the resistance journey of S. aureus over the past decade, detailing its resistance mechanisms, prevalence in the subcontinent, innovations in rapid diagnosis of the drug-resistant strains, including the applicants of NGS and ML application along with QC, it helps to design alternative novel therapeutics approaches against S. aureus infection.
Collapse
Affiliation(s)
- Mohanraj Gopikrishnan
- Department of Integrative Biology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Sree Haryini
- Department of Biomedical Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - George Priya Doss C
- Department of Integrative Biology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| |
Collapse
|
3
|
Sharma M, Rajput D, Kumar V, Jatain I, Aminabhavi TM, Mohanakrishna G, Kumar R, Dubey KK. Photocatalytic degradation of four emerging antibiotic contaminants and toxicity assessment in wastewater: A comprehensive study. ENVIRONMENTAL RESEARCH 2023; 231:116132. [PMID: 37207734 DOI: 10.1016/j.envres.2023.116132] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 05/03/2023] [Accepted: 05/12/2023] [Indexed: 05/21/2023]
Abstract
Excessive usage and unrestricted discharge of antibiotics in the environment lead to their accumulation in the ecosystem due to their highly stable and non-biodegradation nature. Photodegradation of four most consumed antibiotics such as amoxicillin, azithromycin, cefixime, and ciprofloxacin were studied using Cu2O-TiO2 nanotubes. Cytotoxicity evaluation of the native and transformed products was conducted on the RAW 264.7 cell lines. Photocatalyst loading (0.1-2.0 g/L), pH (5, 7 and 9), initial antibiotic load (50-1000 μg/mL) and cuprous oxide percentage (5, 10 and 20) were optimized for efficient photodegradation of antibiotics. Quenching experiments to evaluate the mechanism of photodegradation with hydroxyl and superoxide radicals were found the most reactive species of the selected antibiotics. Complete degradation of selected antibiotics was achieved in 90 min with 1.5 g/L of 10% Cu2O-TiO2 nanotubes with initial antibiotic concentration (100 μg/mL) at neutral pH of water matrix. The photocatalyst showed high chemical stability and reusability up to five consecutive cycles. Zeta potential studies confirms the high stability and activity of 10% C-TAC (Cuprous oxide doped Titanium dioxide nanotubes for Applied Catalysis) in the tested pH conditions. Photoluminescence and Electrochemical Impedance Spectroscopy data speculates that 10% C-TAC photocatalyst have efficient photoexcitation in the visible light for photodegradation of antibiotics samples. Inhibitory concentration (IC50) interpretation from the toxicity analysis of native antibiotics concluded that ciprofloxacin was the most toxic antibiotic among the selected antibiotics. Cytotoxicity percentage of transformed products showed r: -0.985, p: 0.01 (negative correlation) with the degradation percentage revealing the efficient degradation of selected antibiotics with no toxic by-products.
Collapse
Affiliation(s)
- Manisha Sharma
- Department of Biotechnology, Central University of Haryana, Mahendergarh, Haryana, 123 031, India
| | - Deepanshi Rajput
- Biomanufacturing and Process Development Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110 067, India
| | - Vinod Kumar
- Special Centre for Nano Science, Jawaharlal Nehru University, New Delhi, 110 067, India
| | - Indu Jatain
- Department of Biotechnology, Central University of Haryana, Mahendergarh, Haryana, 123 031, India
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, Karnataka, India
| | - Gunda Mohanakrishna
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, Karnataka, India
| | - Ravi Kumar
- Department of Biotechnology, Central University of Haryana, Mahendergarh, Haryana, 123 031, India
| | - Kashyap Kumar Dubey
- Biomanufacturing and Process Development Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110 067, India.
| |
Collapse
|
4
|
Omulo S, Ita T, Mugoh R, Ayodo C, Luvsansharav U, Bollinger S, Styczynski A, Ramay BM, Caudell MA, Palmer GH, Kariuki S, Call DR, Smith RM. Risk Factors for Colonization With Extended-Spectrum Cephalosporin-Resistant and Carbapenem-Resistant Enterobacterales Among Hospitalized Patients in Kenya: An Antibiotic Resistance in Communities and Hospitals (ARCH) Study. Clin Infect Dis 2023; 77:S97-S103. [PMID: 37406042 DOI: 10.1093/cid/ciad258] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND The spread of extended-spectrum cephalosporin-resistant Enterobacterales (ESCrE) and carbapenem-resistant Enterobacterales (CRE) represents a significant global public health threat. We identified putative risk factors for ESCrE and CRE colonization among patients in 1 urban and 3 rural hospitals in Kenya. METHODS During a January 2019 and March 2020 cross-sectional study, stool samples were collected from randomized inpatients and tested for ESCrE and CRE. The Vitek2 instrument was used for isolate confirmation and antibiotic susceptibility testing, and least absolute shrinkage and selection operator (LASSO) regression models were used to identify colonization risk factors while varying antibiotic use measures. RESULTS Most (76%) of the 840 enrolled participants received ≥1 antibiotic in the 14 days preceding their enrollment, primarily ceftriaxone (46%), metronidazole (28%), or benzylpenicillin-gentamycin (23%). For LASSO models that included ceftriaxone administration, ESCrE colonization odds were higher among patients hospitalized for ≥3 days (odds ratio, 2.32 [95% confidence interval, 1.6-3.37]; P < .001), intubated patients (1.73 [1.03-2.91]; P = .009), and persons living with human immunodeficiency virus (1.70 [1.03-2.8]; P = .029). CRE colonization odds were higher among patients receiving ceftriaxone (odds ratio, 2.23 [95% confidence interval, 1.14-4.38]; P = .025) and for every additional day of antibiotic use (1.08 [1.03-1.13]; P = .002). CONCLUSIONS While CRE colonization was strongly associated with ceftriaxone use and duration of antibiotic use, the odds of ESCrE colonization increased with exposure to the hospital setting and invasive medical devices, which may reflect nosocomial transmission. These data suggest several areas where hospitals can intervene to prevent colonization among hospitalized patients, both through robust infection prevention and control practices and antibiotic stewardship programs.
Collapse
Affiliation(s)
- Sylvia Omulo
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, USA
- Washington State University Global Health-Kenya, Nairobi, Kenya
- University of Nairobi Institute of Tropical and Infectious Diseases, Nairobi, Kenya
| | - Teresa Ita
- Washington State University Global Health-Kenya, Nairobi, Kenya
| | - Robert Mugoh
- Washington State University Global Health-Kenya, Nairobi, Kenya
| | - Charchil Ayodo
- Washington State University Global Health-Kenya, Nairobi, Kenya
| | - Ulzii Luvsansharav
- Division of Healthcare Quality Promotion, US Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Susan Bollinger
- Division of Healthcare Quality Promotion, US Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Ashley Styczynski
- Division of Healthcare Quality Promotion, US Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Brooke M Ramay
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, USA
- Center for Health Studies, Universidad del Valle de Guatemala, Guatemala City, Guatemala
| | - Mark A Caudell
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, USA
| | - Guy H Palmer
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, USA
- Washington State University Global Health-Kenya, Nairobi, Kenya
- University of Nairobi Institute of Tropical and Infectious Diseases, Nairobi, Kenya
| | | | - Douglas R Call
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, USA
| | - Rachel M Smith
- Division of Healthcare Quality Promotion, US Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
5
|
Yashwant CP, Rajendran V, Krishnamoorthy S, Nagarathinam B, Rawson A, Anandharaj A, Sivanandham V. Antibiotic resistance profiling and valorization of food waste streams to starter culture biomass and exopolysaccharides through fed-batch fermentations. Food Sci Biotechnol 2023; 32:863-874. [PMID: 37041804 PMCID: PMC10082887 DOI: 10.1007/s10068-022-01222-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022] Open
Abstract
The present study evaluated antibiotic resistance (ABR) in bacteria isolated from different food wastes viz., meat slaughterhouses, dairy and restaurants. About 120 strains isolated from the food waste were subjected to ABR screening. More than 50% of all the strains were resistant to Vancomycin, Neomycin and Methicilin, which belong to third-generation antibiotics. Two lactic acid bacteria (LAB) free of ABR were chosen to be used as starter cultures in media formulated from food waste. Food waste combination (FWC-4) was found to be on par with the nutrient broth in biomass production. The non-ABR LAB strains showed excellent probiotic properties, and in the fed-batch fermentation process, adding a nitrogen source (soya protein) enhanced the microbial biomass (3.7 g/l). Additionally, exopolysaccharide production was found to be 2.3 g/l. This study highlights the ABR incidence in food waste medium and its economic advantage for starter culture biomass production. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s10068-022-01222-9.
Collapse
Affiliation(s)
- Chavan Priyanka Yashwant
- National Institute of Food Technology, Entrepreneurship and Management, Thanjavur (NIFTEM-T), Thanjavur, 613005 Tamil Nadu India
| | - Vijay Rajendran
- National Institute of Food Technology, Entrepreneurship and Management, Thanjavur (NIFTEM-T), Thanjavur, 613005 Tamil Nadu India
| | - Srinivasan Krishnamoorthy
- National Institute of Food Technology, Entrepreneurship and Management, Thanjavur (NIFTEM-T), Thanjavur, 613005 Tamil Nadu India
| | - Baskaran Nagarathinam
- National Institute of Food Technology, Entrepreneurship and Management, Thanjavur (NIFTEM-T), Thanjavur, 613005 Tamil Nadu India
| | - Ashish Rawson
- National Institute of Food Technology, Entrepreneurship and Management, Thanjavur (NIFTEM-T), Thanjavur, 613005 Tamil Nadu India
| | - Arunkumar Anandharaj
- National Institute of Food Technology, Entrepreneurship and Management, Thanjavur (NIFTEM-T), Thanjavur, 613005 Tamil Nadu India
| | - Vignesh Sivanandham
- National Institute of Food Technology, Entrepreneurship and Management, Thanjavur (NIFTEM-T), Thanjavur, 613005 Tamil Nadu India
| |
Collapse
|
6
|
Zajmi A, Shiranee F, Gee Hoon Tang S, A.M. Alhoot M, Abdul Karim S. Multidrug-Resistant Staphylococcus aureus as Coloniser in Healthy Individuals. Infect Dis (Lond) 2022. [DOI: 10.5772/intechopen.108410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Staphylococcus aureus is a common human pathogen that can cause mild superficial infections to deep-seated abscesses and sepsis. One of the characteristics of S. aureus is the ability to colonise healthy individuals while leaving them asymptomatic. These carriers’ risk harbouring an antibiotic-resistant strain that may be harmful to the individual and the community. S. aureus carriage in healthcare personnel is being studied extensively in many parts of the world. However, the relationship between colonisation and disease among those with no previous exposure to healthcare remains untouched. Colonisation of the nasal cavity and its surrounding by pathogenic organisms such as S. aureus leads to the increased risk of infection. Hospital-acquired infections associated with S. aureus infections are common and studies related to these types of infections among various study groups are largely documented. However, over the last decade, an increase in community-associated methicillin-resistant S. aureus has been noted, increasing the need to identify the prevalence of the organism among healthy individuals and assessing the antibiotic resistance patterns. Systemic surveillance of the community for colonisation of S. aureus and identifying the antibiotic-resistant pattern is critical to determine the appropriate empiric antibiotic treatment.
Collapse
|
7
|
Chanthasena P, Hua Y, Rosyidah A, Pathom-Aree W, Limphirat W, Nantapong N. Isolation and Identification of Bioactive Compounds from Streptomyces actinomycinicus PJ85 and Their In Vitro Antimicrobial Activities against Methicillin-Resistant Staphylococcus aureus. Antibiotics (Basel) 2022; 11:antibiotics11121797. [PMID: 36551454 PMCID: PMC9774200 DOI: 10.3390/antibiotics11121797] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/28/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Antibiotic-resistant strains are a global health-threatening problem. Drug-resistant microbes have compromised the control of infectious diseases. Therefore, the search for a novel class of antibiotic drugs is necessary. Streptomycetes have been described as the richest source of bioactive compounds, including antibiotics. This study was aimed to characterize the antibacterial compounds of Streptomyces sp. PJ85 isolated from dry dipterocarp forest soil in Northeast Thailand. The 16S rRNA gene sequence and phylogenetic analysis showed that PJ85 possessed a high similarity to Streptomyces actinomycinicus RCU-197T of 98.90%. The PJ85 strain was shown to produce antibacterial compounds that were active against Gram-positive bacteria including methicillin-resistant Staphylococcus aureus (MRSA). The active compounds of PJ85 were extracted and purified using silica gel column chromatography. Two active antibacterial compounds, compound 1 and compound PJ85_F39, were purified and characterized with spectroscopy, including liquid chromatography and mass spectrometry (LC-MS). Compound 1 was identified as actinomycin D, and compound PJ85_F39 was identified as dihomo-γ-linolenic acid (DGLA). To the best of our knowledge, this is the first report of the purification and characterization of the antibacterial compounds of S. actinomycinicus.
Collapse
Affiliation(s)
- Panjamaphon Chanthasena
- School of Preclinical Sciences, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Yanling Hua
- The Center for Scientific and Technological Equipment, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - A’liyatur Rosyidah
- Research Center for Vaccine and Drug, National Research and Innovation Agency (BRIN), Bogor 16911, Indonesia
| | - Wasu Pathom-Aree
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wanwisa Limphirat
- Synchrotron Light Research Institute, 111 University Avenue, Nakhon Ratchasima 30000, Thailand
| | - Nawarat Nantapong
- School of Preclinical Sciences, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Correspondence: ; Tel.: +66-442-242-82
| |
Collapse
|
8
|
Luo X, Ye X, Ding L, Zhu W, Yi P, Zhao Z, Gao H, Shu Z, Li S, Sang M, Wang J, Zhong W, Chen Z. Fine-Tuning of Alkaline Residues on the Hydrophilic Face Provides a Non-toxic Cationic α-Helical Antimicrobial Peptide Against Antibiotic-Resistant ESKAPE Pathogens. Front Microbiol 2021; 12:684591. [PMID: 34335511 PMCID: PMC8319832 DOI: 10.3389/fmicb.2021.684591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/11/2021] [Indexed: 11/18/2022] Open
Abstract
Antibiotic-resistant ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) has become a serious threat to public health worldwide. Cationic α-helical antimicrobial peptides (CαAMPs) have attracted much attention as promising solutions in post-antibiotic era. However, strong hemolytic activity and in vivo inefficacy have hindered their pharmaceutical development. Here, we attempt to address these obstacles by investigating BmKn2 and BmKn2-7, two scorpion-derived CαAMPs with the same hydrophobic face and a distinct hydrophilic face. Through structural comparison, mutant design and functional analyses, we found that while keeping the hydrophobic face unchanged, increasing the number of alkaline residues (i.e., Lys + Arg residues) on the hydrophilic face of BmKn2 reduces the hemolytic activity and broadens the antimicrobial spectrum. Strikingly, when keeping the total number of alkaline residues constant, increasing the number of Lys residues on the hydrophilic face of BmKn2-7 significantly reduces the hemolytic activity but does not influence the antimicrobial activity. BmKn2-7K, a mutant of BmKn2-7 in which all of the Arg residues on the hydrophilic face were replaced with Lys, showed the lowest hemolytic activity and potent antimicrobial activity against antibiotic-resistant ESKAPE pathogens. Moreover, in vivo experiments indicate that BmKn2-7K displays potent antimicrobial efficacy against both the penicillin-resistant S. aureus and the carbapenem- and multidrug-resistant A. baumannii, and is non-toxic at the antimicrobial dosages. Taken together, our work highlights the significant functional disparity of Lys vs Arg in the scorpion-derived antimicrobial peptide BmKn2-7, and provides a promising lead molecule for drug development against ESKAPE pathogens.
Collapse
Affiliation(s)
- Xudong Luo
- Institute of Biomedicine and Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan, China.,Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Xiangdong Ye
- Institute of Biomedicine and Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan, China.,Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Li Ding
- Institute of Biomedicine and Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan, China.,Department of Clinical Laboratory, Dongfeng Hospital, Hubei University of Medicine, Shiyan, China
| | - Wen Zhu
- Institute of Biomedicine and Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan, China
| | - Pengcheng Yi
- Institute of Biomedicine and Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan, China
| | - Zhiwen Zhao
- Institute of Biomedicine and Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan, China
| | - Huanhuan Gao
- Institute of Biomedicine and Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan, China
| | - Zhan Shu
- Institute of Biomedicine and Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan, China
| | - Shan Li
- Institute of Biomedicine and Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan, China
| | - Ming Sang
- Central Laboratory of Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Shiyan, China
| | - Jue Wang
- Institute of Biomedicine and Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan, China
| | - Weihua Zhong
- Department of Rehabilitation Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Zongyun Chen
- Institute of Biomedicine and Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan, China.,Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
9
|
Regasa Dadi B, Solomon Z, Tesfaye M. Vancomycin resistant Enterococci and its associated factors among HIV infected patients on anti-retroviral therapy in Ethiopia. PLoS One 2021; 16:e0251727. [PMID: 34166383 PMCID: PMC8224944 DOI: 10.1371/journal.pone.0251727] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 04/30/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The emergence of vancomycin resistant Enterococci (VRE) has alarmed the global community due to its tendency for colonization of the gastrointestinal tract. Human Immunodeficiency Virus (HIV) patients are colonized by vancomycin resistant Enterococci than other groups. The aim of this study was to determine the incidence of vancomycin resistant Enterococci and its associated factors among HIV infected patients on Anti-Retroviral Therapy (ART). METHODS Institution based cross sectional study was conducted among HIV infected patients on ART at from June 1 to August 30, 2020. Socio-demographic and clinical data were collected by pre-tested structured questionnaire. Stool sample was collected and processed by standard microbiological techniques. Kirby Bauer Disc diffusion method was used to perform antimicrobial susceptibility testing. Data were entered by Epi data version 4.6.0.2 and analyzed by SPSS version 25. Bivariable and multivariable logistic regression model was used to analyze the association between dependent and independent variables. P-values in the multivariable analysis, adjusted odds ratio (AOR) and 95% confidence interval (CI) were used to determine the strength of association. P-value ≤0.05 was considered as significant. RESULTS Enterococci spp was isolated on 123/200 (61.50%) patients. Among these isolates, the incidence of vancomycin resistant Enterococci was 11.4% [95% CI: (6.0-17.0)]. Antimicrobial susceptibility patterns against Enterococci showed highest rate of resistance to ampicillin (69.9%). Multidrug resistances were observed in 49.59% of Enterococci isolates. Study participants who had prior antibioticexposurer more than two weeks [AOR = 7.35; 95% CI: (1.2144.64)] and hospitalization for the last six months [AOR = 5.68; 95% CI: (1.09 29.74)] were significantly associated with vancomycin resistant Enterococci. CONCLUSIONS In our study high incidence of vancomycin resistant Enterococci was found. Previous exposure to antibiotics for more than two weeks and hospitalization for more than six months were significantly associated with vancomycin resistant Enterococci. The isolated Enterococci had variable degrees of resistance to commonly prescribed antibiotics. Therefore, periodic surveillance on antimicrobial resistance pattern, adhering to rational use of antibiotics and implementing infection prevention protocols may reduce colonization by VRE.
Collapse
Affiliation(s)
| | - Zerihun Solomon
- Department of Medical Microbiology, Arba Minch University, Arba Minch, Ethiopia
| | - Mheret Tesfaye
- Department of Medical Microbiology, Arba Minch University, Arba Minch, Ethiopia
| |
Collapse
|
10
|
Algburi A, Al-Hasani HM, Ismael TK, Abdelhameed A, Weeks R, Ermakov AM, Chikindas ML. Antimicrobial Activity of Bacillus subtilis KATMIRA1933 and Bacillus amyloliquefaciens B-1895 Against Staphylococcus aureus Biofilms Isolated from Wound Infection. Probiotics Antimicrob Proteins 2021; 13:125-134. [PMID: 32556931 DOI: 10.1007/s12602-020-09673-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Staphylococcal wound infections range from mild to severe with life-threatening complications. The challenge of controlling such infections is related to bacterial biofilm formation, which is a major factor contributing to antibiotic resistance and infection recurrence. In this study, four clinical isolates of staphylococci species; two isolates of methicillin-resistant Staphylococcus aureus (MRSA) and two methicillin-sensitive Staphylococcus aureus (MSSA) isolates. The identification of bacterial species based on cell morphology, initial biochemical tests, and the VITEK2 system were used to confirm the clinical microbiological diagnosis. Antibiotic sensitivity testing showed that the isolated staphylococci were highly resistant to the following antibiotics, amoxicillin, penicillin G, cefotaxime, and methicillin. Combinations of cefotaxime with the cell-free supernatants (CFS) of Bacillus subtilis KATMIRA1933 and Bacillus amyloliquefaciens B-1895, each one separately showed complementary activity against the tested staphylococci. The co-aggregation capability of the tested bacilli as beneficial bacteria against isolated staphylococci was also evaluated. The data showed a strong co-aggregation with scores (+ 3, + 4) which were reported between the bacilli strains and the isolated staphylococci. Furthermore, the CFS of bacilli strains showed an inhibitory effect against biofilm-associated MRSA and MSSA. These findings confirmed the ability of beneficial bacteria to compete with the pathogens at the site of colonization or for the source of nutrients and, eventually, lead to inhibition of the pathogens' capability of causing a wound infection. Such beneficial bacteria could play an important role in future pharmaceutical and industrial applications.
Collapse
Affiliation(s)
- Ammar Algburi
- Department of Biotechnology, College of Science, University of Diyala, Baqubah, Iraq. .,Department of Scholarship and Cultural Relations, Presidency of Diyala University, Baqubah, Iraq.
| | - Halah M Al-Hasani
- Department of Biotechnology, College of Science, University of Diyala, Baqubah, Iraq
| | - Thurya K Ismael
- Educational Laboratories, General Teaching Hospital of Baqubah, Baqubah, Iraq
| | - Alyaa Abdelhameed
- Department of Biotechnology, College of Science, University of Diyala, Baqubah, Iraq
| | - Richard Weeks
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ, USA
| | | | - Michael L Chikindas
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ, USA.,Don State Technical University, Rostov-on-Don, Russia
| |
Collapse
|
11
|
Zhao Z, Zhang K, Zhu W, Ye X, Ding L, Jiang H, Li F, Chen Z, Luo X. Two new cationic α-helical peptides identified from the venom gland of Liocheles australasiae possess antimicrobial activity against methicillin-resistant staphylococci. Toxicon 2021; 196:63-73. [PMID: 33836178 DOI: 10.1016/j.toxicon.2021.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/29/2021] [Accepted: 04/02/2021] [Indexed: 12/12/2022]
Abstract
Methicillin-resistant staphylococci have become growing threats to human health, and novel antimicrobials are urgently needed. Natural antimicrobial peptides (AMPs) are promising alternatives to traditional antibiotics. Here, two novel cationic α-helical antimicrobial peptides, Lausporin-1 and Lausporin-2, were identified from the venom gland of the scorpion L. australasiae through a cDNA library screening strategy. Biochemical analyses demonstrated that Lausporin-1 and Lausporin-2 are cationic α-helical amphipathic molecules. Antimicrobial assays demonstrated that the two peptides possess antibacterial activities against several species of antibiotic-resistant staphylococci. Importantly, they are active against methicillin-resistant Staphylococcus aureus, Staphylococcus epidermidis and Staphylococcus capitis, with the minimum inhibitory concentrations ranging from 2.5 to 10 μg/ml. Moreover, both peptides can induce dose-dependent plasma membrane disruptions of the bacteria. In short, our work expands the knowledge of the scorpion L. australasiae venom-derived AMPs and sheds light on the potential of Lausporin-1 and Lausporin-2 in the development of novel drugs against methicillin-resistant staphylococci.
Collapse
Affiliation(s)
- Zhiwen Zhao
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, China
| | - Kaiyue Zhang
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, China
| | - Wen Zhu
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, China
| | - Xiangdong Ye
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000, China
| | - Li Ding
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, China; Department of Clinical Laboratory, Dongfeng Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Huiwen Jiang
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, China
| | - Fangyan Li
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, China
| | - Zongyun Chen
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000, China
| | - Xudong Luo
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000, China.
| |
Collapse
|
12
|
Tsegaye MM, Chouhan G, Fentie M, Tyagi P, Nand P. Therapeutic Potential of Green Synthesized Metallic Nanoparticles against Staphylococcus aureus. Curr Drug Res Rev 2021; 13:172-183. [PMID: 33634763 DOI: 10.2174/2589977513666210226123920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 09/08/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The recent treatment challenges posed by the widespread emergence of pathogenic Multidrug-Resistant (MDR) bacterial strains are a cause of huge health troubles worldwide. Infections caused by MDR organisms are associated with longer period of hospitalization, increased mortality, and inflated healthcare costs. Staphylococcus aureus is one of these MDR organisms identified as an urgent threat to human health by the World Health Organization. Infections caused by S. aureus may range from simple cutaneous infestations to life threatening bacteremia. S. aureus infections get easily escalated in severely ill, hospitalized and or immunocompromised patients with incapacitated immune system. Also, in HIV-positive patients S. aureus ranks amongst one of the most common comorbidities where it can further worsen a patient's health condition. At present anti-staphylococcal therapy is reliant typically on chemotherapeutics that are gathering resistance and pose unfavorable side-effects. Thus, newer drugs are required that can bridge these shortcomings and aid effective control against S. aureus. OBJECTIVE In this review, we summarize drug resistance exhibited by S. aureus and lacunae in current anti-staphylococcal therapy, nanoparticles as an alternative therapeutic modality. The focus lays on various green synthesized nanoparticles, their mode of action and application as potent antibacterial compounds against S. aureus. CONCLUSION Use of nanoparticles as anti-bacterial drugs has gained momentum in recent past and green synthesized nanoparticles, which involves microorganisms and plants or their byproducts for synthesis of nanoparticles offer a potent, as well as environment friendly solution in warfare against MDR bacte.
Collapse
Affiliation(s)
- Meron Moges Tsegaye
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh. India
| | - Garima Chouhan
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh. India
| | - Molla Fentie
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh. India
| | - Priya Tyagi
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh. India
| | - Parma Nand
- School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh. India
| |
Collapse
|
13
|
Dubey KK, Indu, Sharma M. Reprogramming of antibiotics to combat antimicrobial resistance. Arch Pharm (Weinheim) 2020; 353:e2000168. [DOI: 10.1002/ardp.202000168] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/04/2020] [Accepted: 07/11/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Kashyap K. Dubey
- Bioprocess Engineering Laboratory, Department of Biotechnology Central University of Haryana Mahendergarh Haryana India
- School of Biotechnology Jawaharlal Nehru University New Delhi India
| | - Indu
- Bioprocess Engineering Laboratory, Department of Biotechnology Central University of Haryana Mahendergarh Haryana India
| | - Manisha Sharma
- Bioprocess Engineering Laboratory, Department of Biotechnology Central University of Haryana Mahendergarh Haryana India
| |
Collapse
|