1
|
Rebai H, Sholkamy EN, Abdelhamid MAA, Prakasam Thanka P, Aly Hassan A, Pack SP, Ki MR, Boudemagh A. Soil Actinobacteria Exhibit Metabolic Capabilities for Degrading the Toxic and Persistent Herbicide Metribuzin. TOXICS 2024; 12:709. [PMID: 39453129 PMCID: PMC11511370 DOI: 10.3390/toxics12100709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/13/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024]
Abstract
Metribuzin, a widely used triazine herbicide, persists in agricultural soils and poses significant environmental pollution threats globally. The aim of this study was to investigate the biodegradation of metribuzin by actinobacterial strains in vitro at different environmental conditions. From an initial screen of 12 actinobacterial strains, four bacteria exhibited robust growth in the presence of the metribuzin as the sole carbon source at 50 mg/L concentration. The optimization of metribuzin biodegradation under different conditions (pH, temperature and inoculum size) using a spectrophotometric method revealed that maximum degradation of metribuzin occurred at a pH of 7.2, a temperature 30 °C, and at an inoculum volume of 4%. Subsequent GC-MS validation confirmed the remarkable biodegradation capabilities of the actinobacterial isolates, where the strain C1 showed the highest rate of metribuzin degradation of 83.12%. Detailed phylogenetic identified the active strains as Streptomyces toxytricini (CH), Streptomyces stelliscabiei (B2), and two Streptomyces heliomycini (C1, C3). Structural analysis by ATR-FTIR spectroscopy confirmed the extensive biotransformation of the herbicide molecule. Our findings highlight the immense untapped potential of soil actinobacteria, particularly the Streptomyces heliomycini C1 strain, as versatile bioremediation agents for removing persistent agrochemical pollutants.
Collapse
Affiliation(s)
- Hadjer Rebai
- Laboratory of Molecular and Cellular Biology, Constantine 1—Frères Mentouri University, Chaâbat Erssas Campus, Ain El Bey Road, Constantine 25000, Algeria; (H.R.)
- Department of Microbiology, Constantine 1—Frères Mentouri University, Chaâbat Erssas Campus, Ain El Bey Road, Constantine 25000, Algeria
| | - Essam Nageh Sholkamy
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohamed A. A. Abdelhamid
- Biology Department, Faculty of Education and Arts, Sohar University, Sohar 311, Oman;
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea; (S.P.P.); (M.-R.K.)
| | - Pratheesh Prakasam Thanka
- Department of Civil and Environmental Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (P.P.T.); (A.A.H.)
| | - Ashraf Aly Hassan
- Department of Civil and Environmental Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (P.P.T.); (A.A.H.)
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea; (S.P.P.); (M.-R.K.)
| | - Mi-Ran Ki
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea; (S.P.P.); (M.-R.K.)
- Institute of Industrial Technology, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea
| | - Allaoueddine Boudemagh
- Laboratory of Molecular and Cellular Biology, Constantine 1—Frères Mentouri University, Chaâbat Erssas Campus, Ain El Bey Road, Constantine 25000, Algeria; (H.R.)
| |
Collapse
|
2
|
Sholkamy EN, Abdelhamid MAA, Khalifa HO, Ki MR, Pack SP. Bioinspired Synthesis and Characterization of Dual-Function Zinc Oxide Nanoparticles from Saccharopolyspora hirsuta: Exploring Antimicrobial and Anticancer Activities. Biomimetics (Basel) 2024; 9:456. [PMID: 39194435 DOI: 10.3390/biomimetics9080456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024] Open
Abstract
Microbial synthesis offers a sustainable and eco-friendly approach for nanoparticle production. This study explores the biogenic synthesis of zinc oxide nanoparticles (ZnO-NPs) utilizing the actinomycete Saccharopolyspora hirsuta (Ess_amA6) isolated from Tapinoma simrothi. The biosynthesized ZnO-NPs were characterized using various techniques to confirm their formation and properties. UV-visible spectroscopy revealed a characteristic peak at 372 nm, indicative of ZnO-NPs. X-ray diffraction (XRD) analysis confirmed the crystalline structure of the ZnO-NPs as hexagonal wurtzite with a crystallite size of approximately 37.5 ± 13.60 nm. Transmission electron microscopy (TEM) analysis showed the presence of both spherical and roughly hexagonal ZnO nanoparticles in an agglomerated state with a diameter of approximately 44 nm. The biogenic ZnO-NPs exhibited promising biomedical potential. They demonstrated selective cytotoxic activity against human cancer cell lines, demonstrating higher efficacy against Hep-2 cells (IC50 = 73.01 µg/mL) compared to MCF-7 cells (IC50 = 112.74 µg/mL). Furthermore, the biosynthesized ZnO-NPs displayed broad-spectrum antimicrobial activity against both Pseudomonas aeruginosa and Staphylococcus aureus with clear zones of inhibition of 12.67 mm and 14.33 mm, respectively. The MIC and MBC values against P. aeruginosa and S. aureus ranged between 12.5 and 50 µg/mL. These findings suggest the potential of S. hirsuta-mediated ZnO-NPs as promising biocompatible nanomaterials with dual applications as antimicrobial and anticancer agents.
Collapse
Affiliation(s)
- Essam N Sholkamy
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohamed A A Abdelhamid
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea
- Department of Botany and Microbiology, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Hazim O Khalifa
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Mi-Ran Ki
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea
- Institute of Industrial Technology, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea
| |
Collapse
|
3
|
Vijayakumar R, Raja SSS, Muthukumar C, Karuppiah P, Panneerselvam A, Rajabathar JR, Thajuddin N, Ayyamperumal R. Production, optimization and characterization of partially purified anti-mycotic compound from marine soil derived streptomycetes originating at unexplored region of Bay of Bengal, India. ENVIRONMENTAL RESEARCH 2024; 251:118698. [PMID: 38518906 DOI: 10.1016/j.envres.2024.118698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/28/2024] [Accepted: 03/11/2024] [Indexed: 03/24/2024]
Abstract
Sixty-eight morphologically distinct isolates of marine actinomycetes were derived from seashore, mangrove, and saltpan ecosystems located between the Palk Strait and Gulf of Mannar region, Bay of Bengal, Tamilnadu. Twenty-five (36.8%) isolates exhibited anti-mycotic activity against Candida albicans and Cryptococcus neoformans in preliminary screening, and 4 isolates with prominent activity were identified and designated at the genus level as Streptomyces sp. VPTS3-I, Streptomyces sp. VPTS3-2, Streptomyces sp. VPTSA1-4 and Streptomyces sp. VPTSA1-8. All the potential antagonistic isolates were further characterized with phenotypic and genotypic properties including 16S rRNA gene sequencing and identified species level as Streptomyces afghaniensis VPTS3-1, S. matensis VPTS3-2, S. tuirus VPTSA1-4 and S. griseus VPTSA1-8. In addition, the active fractions from the potential antagonistic streptomycetes were extracted with organic solvents by shake flask culture method and the anti-mycotic efficacies were evaluated. The optimization parameters for the production of the anti-mycotic compound were found to be pH between 7 and 8, the temperature at 30ᵒC, the salinity of 2%, incubation of 9 days, and starch and KNO3 as the suitable carbon and nitrogen sources respectively in starch casein medium.
Collapse
Affiliation(s)
- Ramasamy Vijayakumar
- Department of Microbiology, Bharathidasan University, Palkalaiperur, Tiruchirappalli, 620 024, Tamil Nadu, India.
| | - Suresh S S Raja
- Department of Microbiology, Bharathidasan University, Palkalaiperur, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Chinnasamy Muthukumar
- Department of Botany, National College (Autonomous), Tiruchirappalli, 620 001, Tamil Nadu, India
| | - Ponmurugan Karuppiah
- Department of Botany and Microbiology, College of Science, King Saud University, Post Box: 2455, Riyadh, Saudi Arabia
| | - Annamalai Panneerselvam
- Post Graduate and Research Department of Botany and Microbiology, A.V.V.M. Sri Pushpam College (Autonomous), Poondi, 613 503, Tamil Nadu, India
| | - Jothi Ramalingam Rajabathar
- Department of Chemistry, College of Science, King Saud University, Post Box: 2455, Riyadh 11451, Saudi Arabia.
| | - Nooruddin Thajuddin
- Department of Microbiology, Bharathidasan University, Tiruchirappalli, 620 024, India; Crescent Global Outreach Mission, B S Abdur Rahman Crescent Institute of Science and Technology (Deemed to be University), Vandalur, Chennai - 600 048, India
| | - Ramamoorthy Ayyamperumal
- College of Earth Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China; Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai, 600077, India.
| |
Collapse
|
4
|
Meliani H, Makhloufi A, Cherif A, Mahjoubi M, Makhloufi K. Biocontrol of toxinogenic Aspergillus flavus and Fusarium oxysporum f. sp. albedinis by two rare Saharan actinomycetes strains and LC-ESI/MS-MS profiling of their antimicrobial products. Saudi J Biol Sci 2022; 29:103288. [PMID: 35574281 PMCID: PMC9095889 DOI: 10.1016/j.sjbs.2022.103288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/19/2022] [Accepted: 04/17/2022] [Indexed: 11/10/2022] Open
Abstract
Fungi colonizing fruits in the field and post-harvest constitute a major threat to the global food sector. This study focuses on the biocontrol of Aspergillus flavus (aflatoxin-producing mold considered carcinogenic by IARC) and Fusarium oxysporum f. sp. albedinis (FOA) (phytopathogenic agent, causal of El Bayoud in the Algerian and Moroccan Sahara). These molds have a significant economic impact and pose a serious human health problem. The aim of this work is to study the antifungal activity of two rare actinomycetes strains; Saccharothrix sp. COL22 and Actinomadura sp. COL08 strains against toxinogenic A. flavus and F. oxysporum f. sp. albedinis. The strains are isolated from Citrullus colocynthis rhizosphere on different media: ISP2, GLM, TSA, Starch-casein-agar and WYE and with different treatments of the samples (physical, chemical treatment and enrichment). The antifungal tests against the pathogenic microorganisms were performed on ISP2, GLM and TSA medium by means of the agar cylinders method. The kinetics of antibiotic production were performed on ISP medium over 16 days. The characterization of the antimicrobial compounds by LC-ESI/MS-MS showed that the bacterial extracts contain Antibiotic SF 2738C, Tetrodecamycin and Aplysillamide B. The phenotypic and molecular studies showed that Saccharothrix sp. COL22 is closely related to the Saccharothrix longispora strain type and that Actinomadura sp. COL08 is closely related to the Actinomadura hibisca strain type. The two strains are rare and showed an interesting activity against toxinogenic A. flavus and F. oxysporum f. sp. albedinis.
Collapse
|
5
|
Chakraborty B, Kumar RS, Almansour AI, Perumal K, Nayaka S, Brindhadevi K. Streptomyces filamentosus strain KS17 isolated from microbiologically unexplored marine ecosystems exhibited a broad spectrum of antimicrobial activity against human pathogens. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|