1
|
Secure Surveillance Systems Using Partial-Regeneration-Based Non-Dominated Optimization and 5D-Chaotic Map. Symmetry (Basel) 2021. [DOI: 10.3390/sym13081447] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Due to Internet of Things (IoT), it has become easy to surveil the critical regions. Images are important parts of Surveillance Systems, and it is required to protect the images during transmission and storage. These secure surveillance frameworks are required in IoT systems, because any kind of information leakage can thwart the legal system as well as personal privacy. In this paper, a secure surveillance framework for IoT systems is proposed using image encryption. A hyperchaotic map is used to generate the pseudorandom sequences. The initial parameters of the hyperchaotic map are obtained using partial-regeneration-based non-dominated optimization (PRNDO). The permutation and diffusion processes are applied to generate the encrypted images, and the convolution neural network (CNN) can play an essential role in this part. The performance of the proposed framework is assessed by drawing comparisons with competitive techniques based on security parameters. It shows that the proposed framework provides promising results as compared to the existing techniques.
Collapse
|
2
|
A Novel Intermittent Jumping Coupled Map Lattice Based on Multiple Chaotic Maps. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11093797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Coupled Map Lattice (CML) usually serves as a pseudo-random number generator for encrypting digital images. Based on our analysis, the existing CML-based systems still suffer from problems like limited parameter space and local chaotic behavior. In this paper, we propose a novel intermittent jumping CML system based on multiple chaotic maps. The intermittent jumping mechanism seeks to incorporate the multi-chaos, and to dynamically switch coupling states and coupling relations, varying with spatiotemporal indices. Extensive numerical simulations and comparative studies demonstrate that, compared with the existing CML-based systems, the proposed system has a larger parameter space, better chaotic behavior, and comparable computational complexity. These results highlight the potential of our proposal for deployment into an image cryptosystem.
Collapse
|