1
|
Nagaoka M, Sakai Y, Nakajima M, Fukami T. Role of carboxylesterase and arylacetamide deacetylase in drug metabolism, physiology, and pathology. Biochem Pharmacol 2024; 223:116128. [PMID: 38492781 DOI: 10.1016/j.bcp.2024.116128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/20/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
Carboxylesterases (CES1 and CES2) and arylacetamide deacetylase (AADAC), which are expressed primarily in the liver and/or gastrointestinal tract, hydrolyze drugs containing ester and amide bonds in their chemical structure. These enzymes often catalyze the conversion of prodrugs, including the COVID-19 drugs remdesivir and molnupiravir, to their pharmacologically active forms. Information on the substrate specificity and inhibitory properties of these enzymes, which would be useful for drug development and toxicity avoidance, has accumulated. Recently,in vitroandin vivostudies have shown that these enzymes are involved not only in drug hydrolysis but also in lipid metabolism. CES1 and CES2 are capable of hydrolyzing triacylglycerol, and the deletion of their orthologous genes in mice has been associated with impaired lipid metabolism and hepatic steatosis. Adeno-associated virus-mediated human CES overexpression decreases hepatic triacylglycerol levels and increases fatty acid oxidation in mice. It has also been shown that overexpression of CES enzymes or AADAC in cultured cells suppresses the intracellular accumulation of triacylglycerol. Recent reports indicate that AADAC can be up- or downregulated in tumors of various organs, and its varied expression is associated with poor prognosis in patients with cancer. Thus, CES and AADAC not only determine drug efficacy and toxicity but are also involved in pathophysiology. This review summarizes recent findings on the roles of CES and AADAC in drug metabolism, physiology, and pathology.
Collapse
Affiliation(s)
- Mai Nagaoka
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| | - Yoshiyuki Sakai
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| | - Miki Nakajima
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Tatsuki Fukami
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
2
|
Guo Z, Li H, Yu W, Ren Y, Zhu Z. Insights into the effect of benzotriazoles in liver using integrated metabolomic and transcriptomic analysis. ENVIRONMENT INTERNATIONAL 2024; 187:108716. [PMID: 38723456 DOI: 10.1016/j.envint.2024.108716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/03/2024] [Accepted: 05/02/2024] [Indexed: 05/19/2024]
Abstract
Benzotriazoles (BTRs) are a class of benzoheterocyclic chemicals that are frequently used as metal-corrosive inhibitors, both in industry and daily use. However, the exposure effect information on BTRs remains relatively limited. In this study, an integrated metabolomic and transcriptomic approach was utilized to evaluate the effect of three BTRs, benzotriazole, 6-chloro-1-hydroxi-benzotriazole, and 1-hydroxy-benzotriazole, in the mouse liver with results showing disrupted basal metabolic processes and vitamin and cofactor metabolism after 28 days. The expression of several genes that are related to the inflammatory response and aryl hydrocarbon receptor pathways, such as Gstt2 and Arntl, was altered by the exposure to BTRs. Exposure to BTRs also affected metabolites and genes that are involved in the immune system and xenobiotic responses. The altered expression of several cytochrome P450 family genes reveal a potential detoxification mechanism in the mouse liver. Taken together, our findings provide new insights into the multilayer response of the mouse liver to BTRs exposure as well as a resource for further exploration of the molecular mechanisms by which the response occurs.
Collapse
Affiliation(s)
- Zeqin Guo
- Medical College, Jiujiang University, Jiujiang, Jiangxi, 332000, China; Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, Jiujiang, Jiangxi, 332000, China.
| | - Huimin Li
- Medical College, Jiujiang University, Jiujiang, Jiangxi, 332000, China; Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, Jiujiang, Jiangxi, 332000, China
| | - Wenmin Yu
- Medical College, Jiujiang University, Jiujiang, Jiangxi, 332000, China; Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, Jiujiang, Jiangxi, 332000, China
| | - Yaguang Ren
- Medical College, Jiujiang University, Jiujiang, Jiangxi, 332000, China; Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, Jiujiang, Jiangxi, 332000, China
| | - Zhiguo Zhu
- Medical College, Jiujiang University, Jiujiang, Jiangxi, 332000, China; College of Pharmacy and Life Sciences, Jiujiang University, Jiujiang, Jiangxi, 332000, China.
| |
Collapse
|
3
|
Kweon SM, Irimia-Dominguez J, Kim G, Fueger PT, Asahina K, Lai KK, Allende DS, Lai QR, Lou CH, Tsark WM, Yang JD, Ng DS, Lee JS, Tso P, Huang W, Lai KKY. Heterozygous midnolin knockout attenuates severity of nonalcoholic fatty liver disease in mice fed a Western-style diet high in fat, cholesterol, and fructose. Am J Physiol Gastrointest Liver Physiol 2023; 325:G147-G157. [PMID: 37129245 PMCID: PMC10393367 DOI: 10.1152/ajpgi.00011.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/03/2023]
Abstract
Although midnolin has been studied for over 20 years, its biological roles in vivo remain largely unknown, especially due to the lack of a functional animal model. Indeed, given our recent discovery that the knockdown of midnolin suppresses liver cancer cell tumorigenicity and that this antitumorigenic effect is associated with modulation of lipid metabolism, we hypothesized that knockout of midnolin in vivo could potentially protect from nonalcoholic fatty liver disease (NAFLD) which has become the most common cause of chronic liver disease in the Western world. Accordingly, in the present study, we have developed and now report on the first functional global midnolin knockout mouse model. Although the overwhelming majority of global homozygous midnolin knockout mice demonstrated embryonic lethality, heterozygous knockout mice were observed to be similar to wild-type mice in their viability and were used to determine the effect of reduced midnolin expression on NAFLD. We found that global heterozygous midnolin knockout attenuated the severity of NAFLD in mice fed a Western-style diet, high in fat, cholesterol, and fructose, and this attenuation in disease was associated with significantly reduced levels of large lipid droplets, hepatic free cholesterol, and serum LDL, with significantly differential gene expression involved in cholesterol/lipid metabolism. Collectively, our results support a role for midnolin in regulating cholesterol/lipid metabolism in the liver. Thus, midnolin may represent a novel therapeutic target for NAFLD. Finally, our observation that midnolin was essential for survival underscores the broad importance of this gene beyond its role in liver biology.NEW & NOTEWORTHY We have developed and now report on the first functional global midnolin knockout mouse model. We found that global heterozygous midnolin knockout attenuated the severity of nonalcoholic fatty liver disease (NAFLD) in mice fed a Western-style diet, high in fat, cholesterol, and fructose, and this attenuation in disease was associated with significantly reduced levels of large lipid droplets, hepatic free cholesterol, and serum LDL, with significantly differential gene expression involved in cholesterol/lipid metabolism.
Collapse
Affiliation(s)
- Soo-Mi Kweon
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, California, United States
| | - Jose Irimia-Dominguez
- Department of Molecular and Cellular Endocrinology and Comprehensive Metabolic Phenotyping Core, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, California, United States
| | - Gayeoun Kim
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, California, United States
| | - Patrick T Fueger
- Department of Molecular and Cellular Endocrinology and Comprehensive Metabolic Phenotyping Core, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, California, United States
- City of Hope Comprehensive Cancer Center, Duarte, California, United States
| | - Kinji Asahina
- Central Research Laboratory, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Japan
| | - Keith K Lai
- Department of Pathology, Cleveland Clinic, Cleveland, Ohio, United States
- Contra Costa Pathology Associates, Pleasant Hill, California, United States
| | - Daniela S Allende
- Department of Pathology, Cleveland Clinic, Cleveland, Ohio, United States
| | - Quincy R Lai
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, California, United States
| | - Chih-Hong Lou
- Gene Editing and Viral Vector Core, Beckman Research Institute of City of Hope, Duarte, California, United States
| | - Walter M Tsark
- Transgenic/Knockout Mouse Program, Center for Comparative Medicine, Beckman Research Institute of City of Hope, Duarte, California, United States
| | - Ju Dong Yang
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, California, United States
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, California, United States
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Dominic S Ng
- Departments of Medicine, Physiology, and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Ju-Seog Lee
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, California, United States
- City of Hope Comprehensive Cancer Center, Duarte, California, United States
| | - Keane K Y Lai
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, California, United States
- City of Hope Comprehensive Cancer Center, Duarte, California, United States
| |
Collapse
|
4
|
Guo Y, Cen XF, Li D, Qiu HL, Chen YJ, Zhang M, Huang SH, Xia H, Xu M. Identify Tcea3 as a novel anti-cardiomyocyte hypertrophy gene involved in fatty acid oxidation and oxidative stress. Front Cardiovasc Med 2023; 10:1137429. [PMID: 37404738 PMCID: PMC10315901 DOI: 10.3389/fcvm.2023.1137429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/07/2023] [Indexed: 07/06/2023] Open
Abstract
Background Chronic pressure overload triggers pathological cardiac hypertrophy that eventually leads to heart failure. Effective biomarkers and therapeutic targets for heart failure remain to be defined. The aim of this study is to identify key genes associated with pathological cardiac hypertrophy by combining bioinformatics analyses with molecular biology experiments. Methods Comprehensive bioinformatics tools were used to screen genes related to pressure overload-induced cardiac hypertrophy. We identified differentially expressed genes (DEGs) by overlapping three Gene Expression Omnibus (GEO) datasets (GSE5500, GSE1621, and GSE36074). Correlation analysis and BioGPS online tool were used to detect the genes of interest. A mouse model of cardiac remodeling induced by transverse aortic constriction (TAC) was established to verify the expression of the interest gene during cardiac remodeling by RT-PCR and western blot. By using RNA interference technology, the effect of transcription elongation factor A3 (Tcea3) silencing on PE-induced hypertrophy of neonatal rat ventricular myocytes (NRVMs) was detected. Next, gene set enrichment analysis (GSEA) and the online tool ARCHS4 were used to predict the possible signaling pathways, and the fatty acid oxidation relevant pathways were enriched and then verified in NRVMs. Furthermore, the changes of long-chain fatty acid respiration in NRVMs were detected using the Seahorse XFe24 Analyzer. Finally, MitoSOX staining was used to detect the effect of Tcea3 on mitochondrial oxidative stress, and the contents of NADP(H) and GSH/GSSG were detected by relevant kits. Results A total of 95 DEGs were identified and Tcea3 was negatively correlated with Nppa, Nppb and Myh7. The expression level of Tcea3 was downregulated during cardiac remodeling both in vivo and in vitro. Knockdown of Tcea3 aggravated cardiomyocyte hypertrophy induced by PE in NRVMs. GSEA and online tool ARCHS4 predict Tcea3 involved in fatty acid oxidation (FAO). Subsequently, RT-PCR results showed that knockdown of Tcea3 up-regulated Ces1d and Pla2g5 mRNA expression levels. In PE induced cardiomyocyte hypertrophy, Tcea3 silencing results in decreased fatty acid utilization, decreased ATP synthesis and increased mitochondrial oxidative stress. Conclusion Our study identifies Tcea3 as a novel anti-cardiac remodeling target by regulating FAO and governing mitochondrial oxidative stress.
Collapse
Affiliation(s)
- Yingying Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xian-feng Cen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dan Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hong-liang Qiu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ya-jie Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Meng Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Si-hui Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hao Xia
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Man Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Uehara K, Sostre-Colón J, Gavin M, Santoleri D, Leonard KA, Jacobs RL, Titchenell PM. Activation of Liver mTORC1 Protects Against NASH via Dual Regulation of VLDL-TAG Secretion and De Novo Lipogenesis. Cell Mol Gastroenterol Hepatol 2022; 13:1625-1647. [PMID: 35240344 PMCID: PMC9046248 DOI: 10.1016/j.jcmgh.2022.02.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND & AIMS Dysregulation of liver lipid metabolism is associated with the development and progression of nonalcoholic fatty liver disease, a spectrum of liver diseases including nonalcoholic steatohepatitis (NASH). In the liver, insulin controls lipid homeostasis by increasing triglyceride (TAG) synthesis, suppressing fatty acid oxidation, and enhancing TAG export via very low-density lipoproteins. Downstream of insulin signaling, the mechanistic target of rapamycin complex 1 (mTORC1), is a key regulator of lipid metabolism. Here, we define the role of hepatic mTORC1 activity in mouse models of NASH and investigate the mTORC1-dependent mechanisms responsible for protection against liver damage in NASH. METHODS Utilizing 2 rodent NASH-promoting diets, we demonstrate that hepatic mTORC1 activity was reduced in mice with NASH, whereas under conditions of insulin resistance and benign fatty liver, mTORC1 activity was elevated. To test the beneficial effects of hepatic mTORC1 activation in mouse models of NASH, we employed an acute, liver-specific knockout model of TSC1 (L-TSC-KO), a negative regulator of mTORC1. RESULTS L-TSC-KO mice are protected from and have improved markers of NASH including reduced steatosis, decreased circulating transaminases, and reduced expression of inflammation and fibrosis genes. Mechanistically, protection from hepatic inflammation and fibrosis by constitutive mTORC1 activity occurred via promotion of the phosphatidylcholine synthesizing enzyme, CCTα, and enhanced very low-density lipoprotein-triglyceride export. Additionally, activation of mTORC1 protected from hepatic steatosis via negative feedback of the mTORC2-AKT-FOXO-SREBP1c lipogenesis axis. CONCLUSIONS Collectively, this study identifies a protective role for liver mTORC1 signaling in the initiation and progression of NASH in mice via dual control of lipid export and synthesis.
Collapse
Affiliation(s)
- Kahealani Uehara
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jaimarie Sostre-Colón
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Matthew Gavin
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Dominic Santoleri
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kelly-Ann Leonard
- Department of Agricultural, Food and Nutritional Science Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - René L Jacobs
- Department of Agricultural, Food and Nutritional Science Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Paul M Titchenell
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
6
|
Mild Choline Deficiency and MTHFD1 Synthetase Deficiency Interact to Increase Incidence of Developmental Delays and Defects in Mice. Nutrients 2021; 14:nu14010127. [PMID: 35011003 PMCID: PMC8747146 DOI: 10.3390/nu14010127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 01/07/2023] Open
Abstract
Folate and choline are interconnected metabolically. The MTHFD1 R653Q SNP is a risk factor for birth defects and there are concerns that choline deficiency may interact with this SNP and exacerbate health risks. 80–90% of women do not meet the Adequate Intake (AI) for choline. The objective of this study was to assess the effects of choline deficiency on maternal one-carbon metabolism and reproductive outcomes in the MTHFD1-synthetase deficient mouse (Mthfd1S), a model for MTHFD1 R653Q. Mthfd1S+/+ and Mthfd1S+/− females were fed control (CD) or choline-deficient diets (ChDD; 1/3 the amount of choline) before mating and during pregnancy. Embryos were evaluated for delays and defects at 10.5 days gestation. Choline metabolites were measured in the maternal liver, and total folate measured in maternal plasma and liver. ChDD significantly decreased choline, betaine, phosphocholine, and dimethylglycine in maternal liver (p < 0.05, ANOVA), and altered phosphatidylcholine metabolism. Maternal and embryonic genotype, and diet-genotype interactions had significant effects on defect incidence. Mild choline deficiency and Mthfd1S+/− genotype alter maternal one-carbon metabolism and increase incidence of developmental defects. Further study is required to determine if low choline intakes contribute to developmental defects in humans, particularly in 653QQ women.
Collapse
|
7
|
Grabner GF, Xie H, Schweiger M, Zechner R. Lipolysis: cellular mechanisms for lipid mobilization from fat stores. Nat Metab 2021; 3:1445-1465. [PMID: 34799702 DOI: 10.1038/s42255-021-00493-6] [Citation(s) in RCA: 288] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022]
Abstract
The perception that intracellular lipolysis is a straightforward process that releases fatty acids from fat stores in adipose tissue to generate energy has experienced major revisions over the last two decades. The discovery of new lipolytic enzymes and coregulators, the demonstration that lipophagy and lysosomal lipolysis contribute to the degradation of cellular lipid stores and the characterization of numerous factors and signalling pathways that regulate lipid hydrolysis on transcriptional and post-transcriptional levels have revolutionized our understanding of lipolysis. In this review, we focus on the mechanisms that facilitate intracellular fatty-acid mobilization, drawing on canonical and noncanonical enzymatic pathways. We summarize how intracellular lipolysis affects lipid-mediated signalling, metabolic regulation and energy homeostasis in multiple organs. Finally, we examine how these processes affect pathogenesis and how lipolysis may be targeted to potentially prevent or treat various diseases.
Collapse
Affiliation(s)
- Gernot F Grabner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Hao Xie
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Martina Schweiger
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| |
Collapse
|