1
|
Kruchinin SE, Kislinskaya EE, Chuev GN, Fedotova MV. Protein 3D Hydration: A Case of Bovine Pancreatic Trypsin Inhibitor. Int J Mol Sci 2022; 23:ijms232314785. [PMID: 36499117 PMCID: PMC9737982 DOI: 10.3390/ijms232314785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Characterization of the hydrated state of a protein is crucial for understanding its structural stability and function. In the present study, we have investigated the 3D hydration structure of the protein BPTI (bovine pancreatic trypsin inhibitor) by molecular dynamics (MD) and the integral equation method in the three-dimensional reference interaction site model (3D-RISM) approach. Both methods have found a well-defined hydration layer around the protein and revealed the localization of BPTI buried water molecules corresponding to the X-ray crystallography data. Moreover, under 3D-RISM calculations, the obtained positions of waters bound firmly to the BPTI sites are in reasonable agreement with the experimental results mentioned above for the BPTI crystal form. The analysis of the 3D hydration structure (thickness of hydration shell and hydration numbers) was performed for the entire protein and its polar and non-polar parts using various cut-off distances taken from the literature as well as by a straightforward procedure proposed here for determining the thickness of the hydration layer. Using the thickness of the hydration shell from this procedure allows for calculating the total hydration number of biomolecules properly under both methods. Following this approach, we have obtained the thickness of the BPTI hydration layer of 3.6 Å with 369 water molecules in the case of MD simulation and 3.9 Å with 333 water molecules in the case of the 3D-RISM approach. The above procedure was also applied for a more detailed description of the BPTI hydration structure near the polar charged and uncharged radicals as well as non-polar radicals. The results presented for the BPTI as an example bring new knowledge to the understanding of protein hydration.
Collapse
Affiliation(s)
- Sergey E. Kruchinin
- G.A. Krestov Institute of Solution Chemistry, The Russian Academy of Sciences, Akademicheskaya St., 1, 153045 Ivanovo, Russia
| | - Ekaterina E. Kislinskaya
- Department of Fundamental and Applied Chemistry, Institute of Mathematics, Information Technology and Science, Ivanovo State University, Ermak St., 39, 153025 Ivanovo, Russia
| | - Gennady N. Chuev
- Institute of Theoretical and Experimental Biophysics, The Russian Academy of Sciences, Institutskaya St., Pushchino, 142290 Moscow, Russia
- Correspondence: (G.N.C.); (M.V.F.)
| | - Marina V. Fedotova
- G.A. Krestov Institute of Solution Chemistry, The Russian Academy of Sciences, Akademicheskaya St., 1, 153045 Ivanovo, Russia
- Correspondence: (G.N.C.); (M.V.F.)
| |
Collapse
|
2
|
Effect of solvent model when probing protein dynamics with molecular dynamics. J Mol Graph Model 2017; 71:80-87. [DOI: 10.1016/j.jmgm.2016.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 12/17/2022]
|
3
|
Pharo EA, Cane KN, McCoey J, Buckle AM, Oosthuizen WH, Guinet C, Arnould JPY. A colostrum trypsin inhibitor gene expressed in the Cape fur seal mammary gland during lactation. Gene 2016; 578:7-16. [PMID: 26639991 DOI: 10.1016/j.gene.2015.11.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 10/13/2015] [Accepted: 11/25/2015] [Indexed: 10/22/2022]
Abstract
The colostrum trypsin inhibitor (CTI) gene and transcript were cloned from the Cape fur seal mammary gland and CTI identified by in silico analysis of the Pacific walrus and polar bear genomes (Order Carnivora), and in marine and terrestrial mammals of the Orders Cetartiodactyla (yak, whales, camel) and Perissodactyla (white rhinoceros). Unexpectedly, Weddell seal CTI was predicted to be a pseudogene. Cape fur seal CTI was expressed in the mammary gland of a pregnant multiparous seal, but not in a seal in its first pregnancy. While bovine CTI is expressed for 24-48 h postpartum (pp) and secreted in colostrum only, Cape fur seal CTI was detected for at least 2-3 months pp while the mother was suckling its young on-shore. Furthermore, CTI was expressed in the mammary gland of only one of the lactating seals that was foraging at-sea. The expression of β-casein (CSN2) and β-lactoglobulin II (LGB2), but not CTI in the second lactating seal foraging at-sea suggested that CTI may be intermittently expressed during lactation. Cape fur seal and walrus CTI encode putative small, secreted, N-glycosylated proteins with a single Kunitz/bovine pancreatic trypsin inhibitor (BPTI) domain indicative of serine protease inhibition. Mature Cape fur seal CTI shares 92% sequence identity with Pacific walrus CTI, but only 35% identity with BPTI. Structural homology modelling of Cape fur seal CTI and Pacific walrus trypsin based on the model of the second Kunitz domain of human tissue factor pathway inhibitor (TFPI) and porcine trypsin (Protein Data Bank: 1TFX) confirmed that CTI inhibits trypsin in a canonical fashion. Therefore, pinniped CTI may be critical for preventing the proteolytic degradation of immunoglobulins that are passively transferred from mother to young via colostrum and milk.
Collapse
Affiliation(s)
- Elizabeth A Pharo
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3010, Australia; Cooperative Research Centre for Innovative Dairy Products, Australia.
| | - Kylie N Cane
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3010, Australia; Cooperative Research Centre for Innovative Dairy Products, Australia.
| | - Julia McCoey
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia.
| | - Ashley M Buckle
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia.
| | - W H Oosthuizen
- Oceans and Coasts, Department of Environmental Affairs, Private Bag X2, Roggebaai 8012, South Africa.
| | - Christophe Guinet
- Centre d'Etudes Biologiques de Chizé, CNRS, 79360 Villiers en Bois, France.
| | - John P Y Arnould
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3010, Australia; Cooperative Research Centre for Innovative Dairy Products, Australia; School of Life and Environmental Sciences, Deakin University, Burwood, VIC 3125, Australia.
| |
Collapse
|
4
|
Scoppola E, Sodo A, McLain SE, Ricci MA, Bruni F. Water-peptide site-specific interactions: a structural study on the hydration of glutathione. Biophys J 2014; 106:1701-9. [PMID: 24739169 DOI: 10.1016/j.bpj.2014.01.046] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 01/08/2014] [Accepted: 01/31/2014] [Indexed: 10/25/2022] Open
Abstract
Water-peptide interactions play an important role in determining peptide structure and function. Nevertheless, a microscopic description of these interactions is still incomplete. In this study we have investigated at the atomic scale length the interaction between water and the tripeptide glutathione. The rationale behind this work, based on the combination between a neutron diffraction experiment and a computer simulation, is twofold. It extends previous studies on amino acids, addressing issues such as the perturbation of the water network brought by a larger biomolecule in solution. In addition, and more importantly, it seeks a possible link between the atomic length scale description of the glutathione-water interaction with the specific biological functionality of glutathione, an important intracellular antioxidant. Results indicate a rather weak hydrogen bond between the thiol (-SH) group of cysteine and its first neighbor water molecule. This -SH group serves as a proton donor, is responsible for the biological activity of glutathione, and it is involved in the formation of glutathione disulfide, the oxidized form of glutathione. Moreover, the hydration shell of the chemically identical carboxylate group on the glutamic acid residue and on the glycine residue shows an intriguing different spatial location of water molecules and coordination numbers around the two CO2(-) groups.
Collapse
Affiliation(s)
- Ernesto Scoppola
- Dipartimento di Scienze, Università degli Studi di Roma Tre, Via della Vasca Navale 84, 00146 Roma, Italy
| | - Armida Sodo
- Dipartimento di Scienze, Università degli Studi di Roma Tre, Via della Vasca Navale 84, 00146 Roma, Italy
| | - Sylvia E McLain
- Department of Biochemistry, University of Oxford, South Park Road, Oxford, Oxfordshire OX1 3QU
| | - Maria Antonietta Ricci
- Dipartimento di Scienze, Università degli Studi di Roma Tre, Via della Vasca Navale 84, 00146 Roma, Italy
| | - Fabio Bruni
- Dipartimento di Scienze, Università degli Studi di Roma Tre, Via della Vasca Navale 84, 00146 Roma, Italy.
| |
Collapse
|
5
|
Entropy-enthalpy transduction caused by conformational shifts can obscure the forces driving protein-ligand binding. Proc Natl Acad Sci U S A 2012; 109:20006-11. [PMID: 23150595 DOI: 10.1073/pnas.1213180109] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Molecular dynamics simulations of unprecedented duration now can provide new insights into biomolecular mechanisms. Analysis of a 1-ms molecular dynamics simulation of the small protein bovine pancreatic trypsin inhibitor reveals that its main conformations have different thermodynamic profiles and that perturbation of a single geometric variable, such as a torsion angle or interresidue distance, can select for occupancy of one or another conformational state. These results establish the basis for a mechanism that we term entropy-enthalpy transduction (EET), in which the thermodynamic character of a local perturbation, such as enthalpic binding of a small molecule, is camouflaged by the thermodynamics of a global conformational change induced by the perturbation, such as a switch into a high-entropy conformational state. It is noted that EET could occur in many systems, making measured entropies and enthalpies of folding and binding unreliable indicators of actual thermodynamic driving forces. The same mechanism might also account for the high experimental variance of measured enthalpies and entropies relative to free energies in some calorimetric studies. Finally, EET may be the physical mechanism underlying many cases of entropy-enthalpy compensation.
Collapse
|
6
|
Complex assemblies of factors IX and X regulate the initiation, maintenance, and shutdown of blood coagulation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 99:51-103. [PMID: 21238934 DOI: 10.1016/b978-0-12-385504-6.00002-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Blood hemostasis is accomplished by a complex network of (anti-)coagulatory and fibrinolytic processes. These physiological processes are implemented by the assembly of multiprotein complexes involving both humoral and cellular components. Coagulation factor X, and particularly, factor IX, exemplify the dramatic enhancement that is obtained by the synergistic interaction of cell surface, inorganic and protein cofactors, protease, and substrate. With a focus on structure-function relationship, we review the current knowledge of activity modulation principles in the coagulation proteases factors IX and X and indicate future challenges for hemostasis research. This chapter is organized by describing the principles of hierarchical activation of blood coagulation proteases, including endogenous and exogenous protease activators, cofactor binding, substrate specificities, and protein inhibitors. We conclude by outlining pharmaceutical opportunities for unmet needs in hemophilia and thrombosis.
Collapse
|
7
|
Wang S, Ng DTW. Evasion of endoplasmic reticulum surveillance makes Wsc1p an obligate substrate of Golgi quality control. Mol Biol Cell 2010; 21:1153-65. [PMID: 20130083 PMCID: PMC2847520 DOI: 10.1091/mbc.e09-10-0910] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In the endoplasmic reticulum (ER), most newly synthesized proteins are retained by quality control mechanisms until folded. Misfolded molecules are sorted to ER-associated degradation (ERAD) pathways for disposal. Reports of mutant proteins degraded in the vacuole/lysosome suggested an independent Golgi-based mechanism also at work. Although little is understood of the post-ER pathway, the growing number of variants using it suggests a major role in quality control. Why seemingly redundant mechanisms in sequential compartments are needed is unclear. To understand their physiological relationship, the identification of endogenous pathway-specific substrates is a prerequisite. With ERAD substrates already well characterized, the discovery of Wsc1p as an obligate substrate of Golgi quality control enabled detailed cross-pathway analyses for the first time. By analyzing a panel of engineered substrates, the data show that the surveillance mode is determined by each polypeptide's intrinsic design. Although most secretory pathway proteins can display ERAD determinants when misfolded, the lack thereof shields Wsc1p from inspection by ER surveillance. Additionally, a powerful ER export signal mediates transport whether the luminal domain is folded or not. By evading ERAD through these passive and active mechanisms, Wsc1p is fully dependent on the post-ER system for its quality control.
Collapse
Affiliation(s)
- Songyu Wang
- Department of Biological Sciences, National University of Singapore, Singapore
| | | |
Collapse
|
8
|
Paesen GC, Siebold C, Dallas ML, Peers C, Harlos K, Nuttall PA, Nunn MA, Stuart DI, Esnouf RM. An ion-channel modulator from the saliva of the brown ear tick has a highly modified Kunitz/BPTI structure. J Mol Biol 2009; 389:734-47. [PMID: 19394347 DOI: 10.1016/j.jmb.2009.04.045] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 04/17/2009] [Accepted: 04/21/2009] [Indexed: 12/17/2022]
Abstract
Ra-KLP, a 75 amino acid protein secreted by the salivary gland of the brown ear tick Rhipicephalus appendiculatus has a sequence resembling those of Kunitz/BPTI proteins. We report the detection, purification and characterization of the function of Ra-KLP. In addition, determination of the three-dimensional crystal structure of Ra-KLP at 1.6 A resolution using sulphur single-wavelength anomalous dispersion reveals that much of the loop structure of classical Kunitz domains, including the protruding protease-binding loop, has been replaced by beta-strands. Even more unusually, the N-terminal portion of the polypeptide chain is pinned to the "Kunitz head" by two disulphide bridges not found in classical Kunitz/BPTI proteins. The disulphide bond pattern has been further altered by the loss of the bridge that normally stabilizes the protease-binding loop. Consistent with the conversion of this loop into a beta-strand, Ra-KLP shows no significant anti-protease activity; however, it activates maxiK channels in an in vitro system, suggesting a potential mechanism for regulating host blood supply during feeding.
Collapse
|
9
|
Crowhurst KA, Mayo SL. NMR-detected conformational exchange observed in a computationally designed variant of protein G 1. Protein Eng Des Sel 2008; 21:577-87. [DOI: 10.1093/protein/gzn035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
10
|
Water structure around dipeptides in aqueous solutions. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2008; 37:647-55. [DOI: 10.1007/s00249-008-0292-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2007] [Revised: 02/07/2008] [Accepted: 02/11/2008] [Indexed: 11/30/2022]
|
11
|
Hanson WM, Domek GJ, Horvath MP, Goldenberg DP. Rigidification of a flexible protease inhibitor variant upon binding to trypsin. J Mol Biol 2006; 366:230-43. [PMID: 17157870 PMCID: PMC1847787 DOI: 10.1016/j.jmb.2006.11.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 10/27/2006] [Indexed: 11/22/2022]
Abstract
The Tyr35-->Gly replacement in bovine pancreatic trypsin inhibitor (BPTI) has previously been shown to dramatically enhance the flexibility of the trypsin-binding region of the free inhibitor and to destabilize the interaction with the protease by about 3 kcal/mol. The effects of this replacement on the enzyme-inhibitor interaction were further studied here by X-ray crystallography and isothermal titration calorimetry (ITC). The co-crystal structure of Y35G BPTI bound to trypsin was determined using 1.65 A resolution X-ray diffraction data collected from cryopreserved crystals, and a new structure of the complex with wild-type BPTI under the same conditions was determined using 1.62 A data. These structures reveal that, in contrast to the free protein, Y35G BPTI adopts a conformation nearly identical with that of the wild-type protein, with a water-filled cavity in place of the missing Tyr side-chain. The crystallographic temperature factors for the two complexes indicate that the mutant inhibitor is nearly as rigid as the wild-type protein when bound to trypsin. Calorimetric measurements show that the change in enthalpy upon dissociation of the complex is 2.5 kcal/mol less favorable for the complex containing Y35G BPTI than for the complex with the wild-type inhibitor. Thus, the destabilization of the complex resulting from the Y35G replacement is due to a more favorable change in entropy upon dissociation. The heat capacity changes for dissociation of the mutant and wild-type complexes were very similar, suggesting that the entropic effects probably do not arise from solvation effects, but are more likely due to an increase in protein conformational entropy upon dissociation of the mutant inhibitor. These results define the biophysical role of a highly conserved core residue located outside of a protein-binding interface, demonstrating that Tyr35 has little impact on the trypsin-bound BPTI structure and acts primarily to define the structure of the free protein so as to maximize binding affinity.
Collapse
Affiliation(s)
- W Miachel Hanson
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112-0840, USA
| | | | | | | |
Collapse
|
12
|
McLain SE, Soper AK, Watts A. Structural Studies on the Hydration of l-Glutamic Acid in Solution. J Phys Chem B 2006; 110:21251-8. [PMID: 17048953 DOI: 10.1021/jp062383e] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A combination of neutron diffraction augmented with isotopic substitution and computer modeling using empirical potential structure refinement has been used to extract detailed structural information for L-glutamic acid dissolved in 2 M NaOH solution. This work shows that the tetrahedral hydrogen bonding network in water is severely disrupted by the addition of glutamic acid and NaOH, with the number of water-water hydrogen bonds being reduced from 1.8 bonds per water molecule in pure water to 1.4 bonds per water molecule in the present solution. In the glutamic acid molecule, each carboxylate oxygen atom forms an average of three hydrogen bonds with the surrounding water solvent with one of these hydrogens being shared between the two oxygen atoms on each carboxylate group, while each amine hydrogen forms a single hydrogen bond with the surrounding water solvent. Additionally, the average conformation of the glutamic acid molecules in these solutions is extracted.
Collapse
Affiliation(s)
- Sylvia E McLain
- Rutherford Appleton Laboratory, ISIS Facility, Chilton, Didcot, Oxfordshire OX11 0QX, United Kingdom.
| | | | | |
Collapse
|
13
|
Abstract
The native intracellular environment of proteins is crowded with metabolites and macromolecules. However, most biophysical information concerning proteins is acquired in dilute solution. To determine whether there are differences in dynamics, nuclear magnetic resonance spectroscopy can be used to measure 15N relaxation in uniformly 15N-enriched apocytochrome b5 inside living Escherichia coli and in dilute solution. Such data can then be used to compare the fast backbone dynamics of the partially folded protein in cells to its dynamics in dilute solution by using Lipari-Szabo analysis. It appears that the intracellular environment does not alter the protein's structure, or significantly change its fast dynamics. Specifically, the cytosol does not change the amplitude of fast backbone motions, but does increase the average timescale of these motions, most likely due to the increase in viscosity of the cytosol.
Collapse
Affiliation(s)
- Julie E Bryant
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
14
|
Bulaj G, Koehn RE, Goldenberg DP. Alteration of the disulfide-coupled folding pathway of BPTI by circular permutation. Protein Sci 2004; 13:1182-96. [PMID: 15096625 PMCID: PMC2286756 DOI: 10.1110/ps.03563704] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The kinetics of disulfide-coupled folding and unfolding of four circularly permuted forms of bovine pancreatic trypsin inhibitor (BPTI) were studied and compared with previously published results for both wild-type BPTI and a cyclized form. Each of the permuted proteins was found to be less stable than either the wild-type or circular proteins, by 3-8 kcal/mole. These stability differences were used to estimate effective concentrations of the chain termini in the native proteins, which were 1 mM for the wild-type protein and 2.5 to 4000 M for the permuted forms. The circular permutations increased the rates of unfolding and caused a variety of effects on the kinetics of refolding. For two of the proteins, the rates of a direct disulfide-formation pathway were dramatically increased, making this process as fast or faster than the competing disulfide rearrangement mechanism that predominates in the folding of the wild-type protein. These two permutations break the covalent connectivity among the beta-strands of the native protein, and removal of these constraints appears to facilitate direct formation and reduction of nearby disulfides that are buried in the folded structure. The effects on folding kinetics and mechanism do not appear to be correlated with relative contact order, a measure of overall topological complexity. These observations are consistent with the results of other recent experimental and computational studies suggesting that circular permutation may generally influence folding mechanisms by favoring or disfavoring specific interactions that promote alternative pathways, rather than through effects on the overall topology of the native protein.
Collapse
Affiliation(s)
- Grzegorz Bulaj
- Department of Biology, University of Utah, Salt Lake City, Utah 84112-0840, USA
| | | | | |
Collapse
|