1
|
Horváth AK, Gao Q. Autoinhibition in (Bio)Chemistry: Identification and Mechanistic Classification. Chembiochem 2024; 25:e202400505. [PMID: 39587883 DOI: 10.1002/cbic.202400505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/10/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 11/27/2024]
Abstract
Autoinhibition is a frequently invoked self-regulatory mechanism involved in various cellular processes to interpret clearly how these cells may control their complex functioning. This type of temporal behavior generally results in self-retardation or even in complete shuts down of the undesired reactions to occur meaning that the rate of a certain biochemical reaction is partially or completely retarded. Precise characterization and classification of a complex system where deceleration of the reaction rate is found, however, requires special circumspection to avoid false interpretation. Hereby, it was clearly demonstrated that the retardation effect of an inhibitor is unexpectedly often misidentified as autoinhibition, especially in complex biochemical enzymatic systems. It prompted us to clarify unambiguously the difference between inhibition and autoinhibition. The latter kinetic phenomenon is a special type of inhibition where the inhibitor forms by the result of a chemical or biochemical event exerting the self-decelerating effect on the rate of its own formation resulting thus in significantly different temporal patterns compared to the ones observed in the case of simple inhibitions. Kinetic activity of autoinhibitor towards the species involved in the given system allowed us to classify direct, indirect and dual autoinhibitions to be supported by real chemical examples.
Collapse
Affiliation(s)
- Attila K Horváth
- Department of General and Inorganic Chemistry, Institute of Chemistry, Faculty of Sciences, University of Pécs, H-7624, Pécs, Ifjúság útja 6, Hungary
| | - Qingyu Gao
- School of Chemical Engineering, China University of Mining and Technology, Xuzhou, 221116, People's Republic of China
| |
Collapse
|
2
|
Fu Z, MacKinnon R. Structure of the flotillin complex in a native membrane environment. Proc Natl Acad Sci U S A 2024; 121:e2409334121. [PMID: 38985763 PMCID: PMC11260169 DOI: 10.1073/pnas.2409334121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/09/2024] [Accepted: 05/30/2024] [Indexed: 07/12/2024] Open
Abstract
In this study, we used cryoelectron microscopy to determine the structures of the Flotillin protein complex, part of the Stomatin, Prohibitin, Flotillin, and HflK/C (SPFH) superfamily, from cell-derived vesicles without detergents. It forms a right-handed helical barrel consisting of 22 pairs of Flotillin1 and Flotillin2 subunits, with a diameter of 32 nm at its wider end and 19 nm at its narrower end. Oligomerization is stabilized by the C terminus, which forms two helical layers linked by a β-strand, and coiled-coil domains that enable strong charge-charge intersubunit interactions. Flotillin interacts with membranes at both ends; through its SPFH1 domains at the wide end and the C terminus at the narrow end, facilitated by hydrophobic interactions and lipidation. The inward tilting of the SPFH domain, likely triggered by phosphorylation, suggests its role in membrane curvature induction, which could be connected to its proposed role in clathrin-independent endocytosis. The structure suggests a shared architecture across the family of SPFH proteins and will promote further research into Flotillin's roles in cell biology.
Collapse
Affiliation(s)
- Ziao Fu
- Laboratory of Molecular Neurobiology and Biophysics, The Rockefeller University, New York, NY10065
- HHMI, The Rockefeller University, New York, NY10065
| | - Roderick MacKinnon
- Laboratory of Molecular Neurobiology and Biophysics, The Rockefeller University, New York, NY10065
- HHMI, The Rockefeller University, New York, NY10065
| |
Collapse
|
3
|
Liu Y, Xu C, Zhou H, Wang W, Liu B, Li Y, Hu X, Yu F, He J. The crystal structures of Sau3AI with and without bound DNA suggest a self-activation-based DNA cleavage mechanism. Structure 2023; 31:1463-1472.e2. [PMID: 37652002 DOI: 10.1016/j.str.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/09/2022] [Revised: 06/12/2023] [Accepted: 08/04/2023] [Indexed: 09/02/2023]
Abstract
The type II restriction endonuclease Sau3AI cleaves the sequence 5'-GATC-3' in double-strand DNA producing two sticky ends. Sau3AI cuts both DNA strands regardless of methylation status. Here, we report the crystal structures of the active site mutant Sau3AI-E64A and the C-terminal domain Sau3AI-C with a bound GATC substrate. Interestingly, the catalytic site of the N-terminal domain (Sau3AI-N) is spatially blocked by the C-terminal domain, suggesting a potential self-inhibition of the enzyme. Interruption of Sau3AI-C binding to substrate DNA disrupts Sau3AI function, suggesting a functional linkage between the N- and C-terminal domains. We propose that Sau3AI-C behaves as an allosteric effector binding one GATC substrate, which triggers a conformational change to open the N-terminal catalytic site, resulting in the subsequent GATC recognition by Sau3AI-N and cleavage of the second GATC site. Our data indicate that Sau3AI and UbaLAI might represent a new subclass of type IIE restriction enzymes.
Collapse
Affiliation(s)
- Yahui Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Chunyan Xu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Huan Zhou
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Weiwei Wang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Bing Liu
- Department of Laboratory Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yan Li
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, China; Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiaojian Hu
- School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Feng Yu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
| | - Jianhua He
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
4
|
Manakova E, Mikutenaite M, Golovenko D, Gražulis S, Tamulaitiene G. Crystal structure of restriction endonuclease Kpn2I of CCGG-family. Biochim Biophys Acta Gen Subj 2021; 1865:129926. [PMID: 33965438 DOI: 10.1016/j.bbagen.2021.129926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/30/2020] [Revised: 05/02/2021] [Accepted: 05/04/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Restriction endonucleases belong to prokaryotic restriction-modification systems, that protect host cells from invading DNA. Type II restriction endonucleases recognize short 4-8 bp sequences in the target DNA and cut both DNA strands producing double strand breaks. Type II restriction endonuclease Kpn2I cleaves 5'-T/CCGGA DNA sequence ("/" marks the cleavage position). Analysis of protein sequences suggested that Kpn2I belongs to the CCGG-family, which contains ten enzymes that recognize diverse nucleotides outside the conserved 5'-CCGG core and share similar motifs for the 5'-CCGG recognition and cleavage. METHODS We solved a crystal structure of Kpn2I in a DNA-free form at 2.88 Å resolution. From the crystal structure we predicted active center and DNA recognition residues and tested them by mutational analysis. We estimated oligomeric state of Kpn2I by SEC-MALS and performed plasmid DNA cleavage assay to elucidate DNA cleavage mechanism. RESULTS Structure comparison confirmed that Kpn2I shares a conserved active site and structural determinants for the 5'-CCGG tetranucleotide recognition with other restriction endonucleases of the CCGG-family. Guided by structural similarity between Kpn2I and the CCGG-family restriction endonucleases PfoI and AgeI, Kpn2I residues involved in the outer base pair recognition were proposed. CONCLUSIONS Kpn2I is an orthodox Type IIP restriction endonuclease, which acts as a dimer. Kpn2I shares structural similarity to the CCGG-family restriction endonucleases PfoI, AgeI and PspGI. GENERAL SIGNIFICANCE The Kpn2I structure concluded the studies of the CCGG-family, covering detailed structural and biochemical characterization of eleven restriction enzymes and their complexes with DNA.
Collapse
Affiliation(s)
- Elena Manakova
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| | - Migle Mikutenaite
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| | - Dmitrij Golovenko
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| | - Saulius Gražulis
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| | - Giedre Tamulaitiene
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania.
| |
Collapse
|
5
|
Kirsanova OV, Subach FV, Loiko AG, Eritja RI, Gromova ES. EcoRII Restriction Endonuclease Forms Specific Contacts to the Bases of Its Target Sequence Flipped from DNA in a Transition Complex with Photoactivatable Substrates. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s106816202102014x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/23/2022]
|
6
|
Chen H, Zhang M, Hochstrasser M. The Biochemistry of Cytoplasmic Incompatibility Caused by Endosymbiotic Bacteria. Genes (Basel) 2020; 11:genes11080852. [PMID: 32722516 PMCID: PMC7465683 DOI: 10.3390/genes11080852] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/23/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 12/29/2022] Open
Abstract
Many species of arthropods carry maternally inherited bacterial endosymbionts that can influence host sexual reproduction to benefit the bacterium. The most well-known of such reproductive parasites is Wolbachia pipientis. Wolbachia are obligate intracellular α-proteobacteria found in nearly half of all arthropod species. This success has been attributed in part to their ability to manipulate host reproduction to favor infected females. Cytoplasmic incompatibility (CI), a phenomenon wherein Wolbachia infection renders males sterile when they mate with uninfected females, but not infected females (the rescue mating), appears to be the most common. CI provides a reproductive advantage to infected females in the presence of a threshold level of infected males. The molecular mechanisms of CI and other reproductive manipulations, such as male killing, parthenogenesis, and feminization, have remained mysterious for many decades. It had been proposed by Werren more than two decades ago that CI is caused by a Wolbachia-mediated sperm modification and that rescue is achieved by a Wolbachia-encoded rescue factor in the infected egg. In the past few years, new research has highlighted a set of syntenic Wolbachia gene pairs encoding CI-inducing factors (Cifs) as the key players for the induction of CI and its rescue. Within each Cif pair, the protein encoded by the upstream gene is denoted A and the downstream gene B. To date, two types of Cifs have been characterized based on the enzymatic activity identified in the B protein of each protein pair; one type encodes a deubiquitylase (thus named CI-inducing deubiquitylase or cid), and a second type encodes a nuclease (named CI-inducing nuclease or cin). The CidA and CinA proteins bind tightly and specifically to their respective CidB and CinB partners. In transgenic Drosophila melanogaster, the expression of either the Cid or Cin protein pair in the male germline induces CI and the expression of the cognate A protein in females is sufficient for rescue. With the identity of the Wolbachia CI induction and rescue factors now known, research in the field has turned to directed studies on the molecular mechanisms of CI, which we review here.
Collapse
Affiliation(s)
- Hongli Chen
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA; (H.C.); (M.Z.)
| | - Mengwen Zhang
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA; (H.C.); (M.Z.)
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
| | - Mark Hochstrasser
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA; (H.C.); (M.Z.)
- Department of Molecular, Cellular, & Developmental Biology, Yale University, New Haven, CT 06511, USA
- Correspondence:
| |
Collapse
|
7
|
Shen BW, Doyle L, Bradley P, Heiter DF, Lunnen KD, Wilson GG, Stoddard BL. Structure, subunit organization and behavior of the asymmetric Type IIT restriction endonuclease BbvCI. Nucleic Acids Res 2019; 47:450-467. [PMID: 30395313 PMCID: PMC6326814 DOI: 10.1093/nar/gky1059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/28/2018] [Revised: 10/15/2018] [Accepted: 10/17/2018] [Indexed: 11/17/2022] Open
Abstract
BbvCI, a Type IIT restriction endonuclease, recognizes and cleaves the seven base pair sequence 5'-CCTCAGC-3', generating 3-base, 5'-overhangs. BbvCI is composed of two protein subunits, each containing one catalytic site. Either site can be inactivated by mutation resulting in enzyme variants that nick DNA in a strand-specific manner. Here we demonstrate that the holoenzyme is labile, with the R1 subunit dissociating at low pH. Crystallization of the R2 subunit under such conditions revealed an elongated dimer with the two catalytic sites located on opposite sides. Subsequent crystallization at physiological pH revealed a tetramer comprising two copies of each subunit, with a pair of deep clefts each containing two catalytic sites appropriately positioned and oriented for DNA cleavage. This domain organization was further validated with single-chain protein constructs in which the two enzyme subunits were tethered via peptide linkers of variable length. We were unable to crystallize a DNA-bound complex; however, structural similarity to previously crystallized restriction endonucleases facilitated creation of an energy-minimized model bound to DNA, and identification of candidate residues responsible for target recognition. Mutation of residues predicted to recognize the central C:G base pair resulted in an altered enzyme that recognizes and cleaves CCTNAGC (N = any base).
Collapse
Affiliation(s)
- Betty W Shen
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109, USA
| | - Lindsey Doyle
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109, USA
| | - Phil Bradley
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109, USA
| | - Daniel F Heiter
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Keith D Lunnen
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | | | - Barry L Stoddard
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109, USA
| |
Collapse
|
8
|
Hosford CJ, Chappie JS. The crystal structure of the Helicobacter pylori LlaJI.R1 N-terminal domain provides a model for site-specific DNA binding. J Biol Chem 2018; 293:11758-11771. [PMID: 29895618 PMCID: PMC6066307 DOI: 10.1074/jbc.ra118.001888] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/16/2018] [Revised: 06/04/2018] [Indexed: 12/11/2022] Open
Abstract
Restriction modification systems consist of an endonuclease that cleaves foreign DNA site-specifically and an associated methyltransferase that protects the corresponding target site in the host genome. Modification-dependent restriction systems, in contrast, specifically recognize and cleave methylated and/or glucosylated DNA. The LlaJI restriction system contains two 5-methylcytosine (5mC) methyltransferases (LlaJI.M1 and LlaJI.M2) and two restriction proteins (LlaJI.R1 and LlaJI.R2). LlaJI.R1 and LlaJI.R2 are homologs of McrB and McrC, respectively, which in Escherichia coli function together as a modification-dependent restriction complex specific for 5mC-containing DNA. Lactococcus lactis LlaJI.R1 binds DNA site-specifically, suggesting that the LlaJI system uses a different mode of substrate recognition. Here we present the structure of the N-terminal DNA-binding domain of Helicobacter pylori LlaJI.R1 at 1.97-Å resolution, which adopts a B3 domain fold. Structural comparison to B3 domains in plant transcription factors and other restriction enzymes identifies key recognition motifs responsible for site-specific DNA binding. Moreover, biochemistry and structural modeling provide a rationale for how H. pylori LlaJI.R1 may bind a target site that differs from the 5-bp sequence recognized by other LlaJI homologs and identify residues critical for this recognition activity. These findings underscore the inherent structural plasticity of B3 domains, allowing recognition of a variety of substrates using the same structural core.
Collapse
Affiliation(s)
- Christopher J Hosford
- From the Department of Molecular Medicine, Cornell University, Ithaca, New York 14853
| | - Joshua S Chappie
- From the Department of Molecular Medicine, Cornell University, Ithaca, New York 14853
| |
Collapse
|
9
|
Štěpán J, Kabelka I, Koča J, Kulhánek P. Behavior of BsoBI endonuclease in the presence and absence of DNA. J Mol Model 2017; 24:22. [PMID: 29264670 DOI: 10.1007/s00894-017-3557-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/13/2017] [Accepted: 12/01/2017] [Indexed: 11/28/2022]
Abstract
BsoBI is a type II restriction endonuclease belonging to the EcoRI family. There is only one previously published X-ray structure for this endonuclease: it shows a homodimer of BsoBI completely encircling DNA in a tunnel. In this work, molecular dynamics simulations were employed to elucidate possible ways in which DNA is loaded into this complex prior to its cleavage. We found that the dimer does not open spontaneously when DNA is removed from the complex on the timescale of our simulations (~ 0.5 μs). A biased simulation had to be used to facilitate the opening, which revealed a possible way for the two catalytic domains to separate. The α-helices connecting the catalytic and helical domains were found to act as a hinge during the separation. In addition, we found that the opening of the BsoBI dimer was influenced by the type of counterions present in the environment. A reference simulation of the BsoBI/DNA complex further showed spontaneous reorganization of the active sites due to the binding of solvent ions, which led to an active-site structure consistent with other experimental structures of type II restriction endonucleases determined in the presence of metal ions.
Collapse
Affiliation(s)
- Jakub Štěpán
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Ivo Kabelka
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Jaroslav Koča
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Petr Kulhánek
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic. .,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
| |
Collapse
|
10
|
Sasnauskas G, Tamulaitienė G, Tamulaitis G, Čalyševa J, Laime M, Rimšelienė R, Lubys A, Siksnys V. UbaLAI is a monomeric Type IIE restriction enzyme. Nucleic Acids Res 2017; 45:9583-9594. [PMID: 28934493 PMCID: PMC5766183 DOI: 10.1093/nar/gkx634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/08/2017] [Revised: 07/08/2017] [Accepted: 07/11/2017] [Indexed: 01/11/2023] Open
Abstract
Type II restriction endonucleases (REases) form a large and highly diverse group of enzymes. Even REases specific for a common recognition site often vary in their oligomeric structure, domain organization and DNA cleavage mechanisms. Here we report biochemical and structural characterization of the monomeric restriction endonuclease UbaLAI, specific for the pseudosymmetric DNA sequence 5'-CC/WGG-3' (where W = A/T, and '/' marks the cleavage position). We present a 1.6 Å co-crystal structure of UbaLAI N-terminal domain (UbaLAI-N) and show that it resembles the B3-family domain of EcoRII specific for the 5'-CCWGG-3' sequence. We also find that UbaLAI C-terminal domain (UbaLAI-C) is closely related to the monomeric REase MvaI, another enzyme specific for the 5'-CCWGG-3' sequence. Kinetic studies of UbaLAI revealed that it requires two recognition sites for optimal activity, and, like other type IIE enzymes, uses one copy of a recognition site to stimulate cleavage of a second copy. We propose that during the reaction UbaLAI-N acts as a handle that tethers the monomeric UbaLAI-C domain to the DNA, thereby helping UbaLAI-C to perform two sequential DNA nicking reactions on the second recognition site during a single DNA-binding event. A similar reaction mechanism may be characteristic to other monomeric two-domain REases.
Collapse
Affiliation(s)
- Giedrius Sasnauskas
- Institute of Biotechnology, Vilnius University, Sauletekio av. 7, LT-10257 Vilnius, Lithuania
| | - Giedrė Tamulaitienė
- Institute of Biotechnology, Vilnius University, Sauletekio av. 7, LT-10257 Vilnius, Lithuania
| | - Gintautas Tamulaitis
- Institute of Biotechnology, Vilnius University, Sauletekio av. 7, LT-10257 Vilnius, Lithuania
| | - Jelena Čalyševa
- Institute of Biotechnology, Vilnius University, Sauletekio av. 7, LT-10257 Vilnius, Lithuania
| | - Miglė Laime
- Thermo Fisher Scientific Baltics, V. A. Graiciuno str. 8, LT-02241, Vilnius, Lithuania
| | - Renata Rimšelienė
- Thermo Fisher Scientific Baltics, V. A. Graiciuno str. 8, LT-02241, Vilnius, Lithuania
| | - Arvydas Lubys
- Thermo Fisher Scientific Baltics, V. A. Graiciuno str. 8, LT-02241, Vilnius, Lithuania
| | - Virginijus Siksnys
- Institute of Biotechnology, Vilnius University, Sauletekio av. 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
11
|
Yeon JH, Heinkel F, Sung M, Na D, Gsponer J. Systems-wide Identification of cis-Regulatory Elements in Proteins. Cell Syst 2016; 2:89-100. [PMID: 27135163 DOI: 10.1016/j.cels.2016.02.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/31/2015] [Revised: 12/15/2015] [Accepted: 02/01/2016] [Indexed: 10/22/2022]
Abstract
Protein interactions in cis that can activate or autoinhibit protein function play an important role in the fine-tuning of regulatory and signaling processes in the cell, but thus far cis-regulatory elements (CREs) in proteins have not been systematically identified and studied. Here, we introduce a computational tool that identifies intrinsically disordered protein segments that contribute to protein function regulation via interactions in cis. We apply this tool to estimate the prevalence of CREs in the human proteome and reveal that cis regulation is enriched in several signaling pathways, including the MAP kinase pathway, for which we provide a detailed map of its "cis regulome." We also show that disease-causing mutations are highly enriched in CREs, but not in motifs that classically mediate protein-protein interactions of disordered protein segments. Our approach should facilitate the discovery and characterization of CREs in proteins and the identification of disease-causing mutations that disrupt protein regulation in cis.
Collapse
Affiliation(s)
- Ju Hun Yeon
- Department of Integrative Bioscience, University of Brain Education, 284-31 Gyocheonjisan-gil, Mokcheon-eup, Dongnam-gu, Cheonan, Chungcheongnam-do 31228, Republic of Korea
| | - Florian Heinkel
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, 2125 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Minhui Sung
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Dokyun Na
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea; Centre for High-Throughput Biology, University of British Columbia, 2125 East Mall, Vancouver, BC V6T 1Z4, Canada.
| | - Jörg Gsponer
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, 2125 East Mall, Vancouver, BC V6T 1Z4, Canada; Centre for High-Throughput Biology, University of British Columbia, 2125 East Mall, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
12
|
Zaremba M, Siksnys V. An Engineered SS Bridge Blocks the Conformational Change Required for the Nuclease Activity of BfiI. Biochemistry 2015; 54:5340-7. [PMID: 26261897 DOI: 10.1021/acs.biochem.5b00437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022]
Abstract
The type IIS restriction endonuclease BfiI is a homodimer, and each monomer is composed of the N-terminal catalytic and C-terminal DNA recognition domains connected by a 28-residue linker segment. In the crystal in the absence of cognate DNA, BfiI exists in a "closed" conformation, in which an interdomain linker occludes a putative DNA binding surface at the catalytic domain and sterically hinders access to the active site. Cognate DNA binding presumably triggers a conformational change from the inactive "closed" state to the catalytically competent "open" state. Here we show that the disulfide SS bridge engineered at the domain interface locks the enzyme in the "closed" state. In the "closed" SS-linked state, BfiI binds cognate DNA with the same affinity as the wild-type enzyme but does not cut it, indicating that cross-linking introduces a restraint on the conformational transition, which couples DNA recognition and cleavage. Disruption of the interdomain SS bridge by the reducing agent restores the DNA cleavage ability of BfiI.
Collapse
Affiliation(s)
- Mindaugas Zaremba
- Institute of Biotechnology, Vilnius University , Graiciuno 8, Vilnius LT-02241, Lithuania
| | - Virginijus Siksnys
- Institute of Biotechnology, Vilnius University , Graiciuno 8, Vilnius LT-02241, Lithuania
| |
Collapse
|
13
|
Tamulaitis G, Rutkauskas M, Zaremba M, Grazulis S, Tamulaitiene G, Siksnys V. Functional significance of protein assemblies predicted by the crystal structure of the restriction endonuclease BsaWI. Nucleic Acids Res 2015; 43:8100-10. [PMID: 26240380 PMCID: PMC4652773 DOI: 10.1093/nar/gkv768] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/11/2015] [Accepted: 07/17/2015] [Indexed: 02/03/2023] Open
Abstract
Type II restriction endonuclease BsaWI recognizes a degenerated sequence 5′-W/CCGGW-3′ (W stands for A or T, ‘/’ denotes the cleavage site). It belongs to a large family of restriction enzymes that contain a conserved CCGG tetranucleotide in their target sites. These enzymes are arranged as dimers or tetramers, and require binding of one, two or three DNA targets for their optimal catalytic activity. Here, we present a crystal structure and biochemical characterization of the restriction endonuclease BsaWI. BsaWI is arranged as an ‘open’ configuration dimer and binds a single DNA copy through a minor groove contacts. In the crystal primary BsaWI dimers form an indefinite linear chain via the C-terminal domain contacts implying possible higher order aggregates. We show that in solution BsaWI protein exists in a dimer-tetramer-oligomer equilibrium, but in the presence of specific DNA forms a tetramer bound to two target sites. Site-directed mutagenesis and kinetic experiments show that BsaWI is active as a tetramer and requires two target sites for optimal activity. We propose BsaWI mechanism that shares common features both with dimeric Ecl18kI/SgrAI and bona fide tetrameric NgoMIV/SfiI enzymes.
Collapse
Affiliation(s)
- Gintautas Tamulaitis
- Department of Protein-DNA Interactions, Institute of Biotechnology, Vilnius University, Graiciuno 8, LT-02241 Vilnius, Lithuania
| | - Marius Rutkauskas
- Department of Protein-DNA Interactions, Institute of Biotechnology, Vilnius University, Graiciuno 8, LT-02241 Vilnius, Lithuania
| | - Mindaugas Zaremba
- Department of Protein-DNA Interactions, Institute of Biotechnology, Vilnius University, Graiciuno 8, LT-02241 Vilnius, Lithuania
| | - Saulius Grazulis
- Department of Protein-DNA Interactions, Institute of Biotechnology, Vilnius University, Graiciuno 8, LT-02241 Vilnius, Lithuania
| | - Giedre Tamulaitiene
- Department of Protein-DNA Interactions, Institute of Biotechnology, Vilnius University, Graiciuno 8, LT-02241 Vilnius, Lithuania
| | - Virginijus Siksnys
- Department of Protein-DNA Interactions, Institute of Biotechnology, Vilnius University, Graiciuno 8, LT-02241 Vilnius, Lithuania
| |
Collapse
|
14
|
Wakabayashi T, Oh H, Kawaguchi M, Harada K, Sato S, Ikeda H, Setoguchi H. Polymorphisms of E1 and GIGANTEA in wild populations of Lotus japonicus. JOURNAL OF PLANT RESEARCH 2014; 127:651-60. [PMID: 25117507 DOI: 10.1007/s10265-014-0649-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/05/2013] [Accepted: 05/13/2014] [Indexed: 05/21/2023]
Abstract
In plants, timing of flowering is an essential factor that controls the survival rates of descendants. The circadian clock genes E1 and GIGANTEA (GI) play a central role in transmitting signals to flowering locus T (FT) in leguminous plants. Lotus japonicus is a wild Japanese species that ranges from northern Hokkaido to the southern Ryukyus and exhibits a wide range in terms of the time between seeding and first flowering. In this study, we first identified LjGI and analyzed polymorphisms of LjE1 and LjGI among wild populations covering the entire distribution range of this species in Japan. LjGI had a coding sequence (CDS) length of 3495 bp and included 14 exons. The homologies of DNA and amino acid sequences between LjGI and GmGI were 89 and 88% (positive rate was 92%), respectively. LjE1 harbored five nucleic acid changes in a 552 bp CDS, all of which were nonsynonymous; four of the changes were located in the core function area. LjE1 alleles exhibited partial north-south differentiation and non-neutrality. In contrast, the LjGI harbored one synonymous and one nonsynonymous change. Thus, our study suggests that LjE1 may be involved in the control of flowering times, whereas LjGI may be under strong purifying selection.
Collapse
Affiliation(s)
- Tomomi Wakabayashi
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsucho, Sakyo-ku, Kyoto, 606-8501, Japan,
| | | | | | | | | | | | | |
Collapse
|
15
|
Golovenko D, Manakova E, Zakrys L, Zaremba M, Sasnauskas G, Gražulis S, Siksnys V. Structural insight into the specificity of the B3 DNA-binding domains provided by the co-crystal structure of the C-terminal fragment of BfiI restriction enzyme. Nucleic Acids Res 2014; 42:4113-22. [PMID: 24423868 PMCID: PMC3973309 DOI: 10.1093/nar/gkt1368] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/13/2022] Open
Abstract
The B3 DNA-binding domains (DBDs) of plant transcription factors (TF) and DBDs of EcoRII and BfiI restriction endonucleases (EcoRII-N and BfiI-C) share a common structural fold, classified as the DNA-binding pseudobarrel. The B3 DBDs in the plant TFs recognize a diverse set of target sequences. The only available co-crystal structure of the B3-like DBD is that of EcoRII-N (recognition sequence 5'-CCTGG-3'). In order to understand the structural and molecular mechanisms of specificity of B3 DBDs, we have solved the crystal structure of BfiI-C (recognition sequence 5'-ACTGGG-3') complexed with 12-bp cognate oligoduplex. Structural comparison of BfiI-C-DNA and EcoRII-N-DNA complexes reveals a conserved DNA-binding mode and a conserved pattern of interactions with the phosphodiester backbone. The determinants of the target specificity are located in the loops that emanate from the conserved structural core. The BfiI-C-DNA structure presented here expands a range of templates for modeling of the DNA-bound complexes of the B3 family of plant TFs.
Collapse
Affiliation(s)
- Dmitrij Golovenko
- Department of Protein-DNA Interactions, Institute of Biotechnology, Vilnius University, Graičiūno 8, LT-02241, Vilnius, Lithuania
| | | | | | | | | | | | | |
Collapse
|
16
|
Yamasaki K, Kigawa T, Seki M, Shinozaki K, Yokoyama S. DNA-binding domains of plant-specific transcription factors: structure, function, and evolution. TRENDS IN PLANT SCIENCE 2013; 18:267-76. [PMID: 23040085 DOI: 10.1016/j.tplants.2012.09.001] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/10/2012] [Revised: 08/10/2012] [Accepted: 09/04/2012] [Indexed: 05/02/2023]
Abstract
The families of the plant-specific transcription factors (TFs) are defined by their characteristic DNA-binding domains (DBDs), such as AP2/ERF, B3, NAC, SBP, and WRKY. Recently, three-dimensional structures of the DBDs, including those in complexes with DNA, were determined by NMR spectroscopy and X-ray crystallography. In this review we summarize the functional and evolutionary implications arising from structure analyses. The unexpected structural similarity between B3 and the noncatalytic DBD of the restriction endonuclease EcoRII allowed us to build structural models of the B3/DNA complex. Most of the DBDs of plant-specific TFs are likely to have originated from endonucleases associated with transposable elements. After the DBDs have been established in unicellular eukaryotes, they experienced extensive plant-specific expansion, by acquiring new functions.
Collapse
Affiliation(s)
- Kazuhiko Yamasaki
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology-AIST, 1-1-1 Higashi, Tsukuba 305-8566, Japan.
| | | | | | | | | |
Collapse
|
17
|
King GJ, Chanson AH, McCallum EJ, Ohme-Takagi M, Byriel K, Hill JM, Martin JL, Mylne JS. The Arabidopsis B3 domain protein VERNALIZATION1 (VRN1) is involved in processes essential for development, with structural and mutational studies revealing its DNA-binding surface. J Biol Chem 2013; 288:3198-207. [PMID: 23255593 PMCID: PMC3561541 DOI: 10.1074/jbc.m112.438572] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/21/2012] [Indexed: 11/06/2022] Open
Abstract
The B3 DNA-binding domain is a plant-specific domain found throughout the plant kingdom from the alga Chlamydomonas to grasses and flowering plants. Over 100 B3 domain-containing proteins are found in the model plant Arabidopsis thaliana, and one of these is critical for accelerating flowering in response to prolonged cold treatment, an epigenetic process called vernalization. Despite the specific phenotype of genetic vrn1 mutants, the VERNALIZATION1 (VRN1) protein localizes throughout the nucleus and shows sequence-nonspecific binding in vitro. In this work, we used a dominant repressor tag that overcomes genetic redundancy to show that VRN1 is involved in processes beyond vernalization that are essential for Arabidopsis development. To understand its sequence-nonspecific binding, we crystallized VRN1(208-341) and solved its crystal structure to 1.6 Å resolution using selenium/single-wavelength anomalous diffraction methods. The crystallized construct comprises the second VRN1 B3 domain and a preceding region conserved among VRN1 orthologs but absent in other B3 domains. We established the DNA-binding face using NMR and then mutated positively charged residues on this surface with a series of 16 Ala and Glu substitutions, ensuring that the protein fold was not disturbed using heteronuclear single quantum correlation NMR spectra. The triple mutant R249E/R289E/R296E was almost completely incapable of DNA binding in vitro. Thus, we have revealed that although VRN1 is sequence-nonspecific in DNA binding, it has a defined DNA-binding surface.
Collapse
Affiliation(s)
| | | | | | - Masaru Ohme-Takagi
- the Bioproduction Research Institute, AIST4, Higashi 1-1-1, Tsukuba City, Ibaraki 305–8562, Japan
| | | | - Justine M. Hill
- the School of Chemistry and Molecular Biosciences, and
- the Centre for Advanced Imaging, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia and
| | | | | |
Collapse
|
18
|
Manakova E, Grazulis S, Zaremba M, Tamulaitiene G, Golovenko D, Siksnys V. Structural mechanisms of the degenerate sequence recognition by Bse634I restriction endonuclease. Nucleic Acids Res 2012; 40:6741-51. [PMID: 22495930 PMCID: PMC3413111 DOI: 10.1093/nar/gks300] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/07/2023] Open
Abstract
Restriction endonuclease Bse634I recognizes and cleaves the degenerate DNA sequence 5′-R/CCGGY-3′ (R stands for A or G; Y for T or C, ‘/’ indicates a cleavage position). Here, we report the crystal structures of the Bse634I R226A mutant complexed with cognate oligoduplexes containing ACCGGT and GCCGGC sites, respectively. In the crystal, all potential H-bond donor and acceptor atoms on the base edges of the conserved CCGG core are engaged in the interactions with Bse634I amino acid residues located on the α6 helix. In contrast, direct contacts between the protein and outer base pairs are limited to van der Waals contact between the purine nucleobase and Pro203 residue in the major groove and a single H-bond between the O2 atom of the outer pyrimidine and the side chain of the Asn73 residue in the minor groove. Structural data coupled with biochemical experiments suggest that both van der Waals interactions and indirect readout contribute to the discrimination of the degenerate base pair by Bse634I. Structure comparison between related enzymes Bse634I (R/CCGGY), NgoMIV (G/CCGGC) and SgrAI (CR/CCGGYG) reveals how different specificities are achieved within a conserved structural core.
Collapse
Affiliation(s)
- Elena Manakova
- Department of Protein-DNA Interactions, Institute of Biotechnology Vilnius University, Graiciuno 8, LT-02241 Vilnius, Lithuania
| | | | | | | | | | | |
Collapse
|
19
|
Wyszomirski KH, Curth U, Alves J, Mackeldanz P, Möncke-Buchner E, Schutkowski M, Krüger DH, Reuter M. Type III restriction endonuclease EcoP15I is a heterotrimeric complex containing one Res subunit with several DNA-binding regions and ATPase activity. Nucleic Acids Res 2011; 40:3610-22. [PMID: 22199260 PMCID: PMC3333885 DOI: 10.1093/nar/gkr1239] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/19/2022] Open
Abstract
For efficient DNA cleavage, the Type III restriction endonuclease EcoP15I communicates with two inversely oriented recognition sites in an ATP-dependent process. EcoP15I consists of methylation (Mod) and restriction (Res) subunits forming a multifunctional enzyme complex able to methylate or to cleave DNA. In this study, we determined by different analytical methods that EcoP15I contains a single Res subunit in a Mod(2)Res stoichiometry. The Res subunit comprises a translocase (Tr) domain carrying functional motifs of superfamily 2 helicases and an endonuclease domain with a PD..D/EXK motif. We show that the isolated Tr domain retains ATP-hydrolyzing activity and binds single- and double-stranded DNA in a sequence-independent manner. To localize the regions of DNA binding, we screened peptide arrays representing the entire Res sequence for their ability to interact with DNA. We discovered four DNA-binding regions in the Tr domain and two DNA-binding regions in the endonuclease domain. Modelling of the Tr domain shows that these multiple DNA-binding regions are located on the surface, free to interact with DNA. Interestingly, the positions of the DNA-binding regions are conserved among other Type III restriction endonucleases.
Collapse
Affiliation(s)
- Karol H Wyszomirski
- Institute of Medical Virology, Helmut-Ruska-Haus, Charité-Universitätsmedizin Berlin, Charitéplatz 1, D-10117 Berlin,Germany
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Laganeckas M, Margelevicius M, Venclovas C. Identification of new homologs of PD-(D/E)XK nucleases by support vector machines trained on data derived from profile-profile alignments. Nucleic Acids Res 2010; 39:1187-96. [PMID: 20961958 PMCID: PMC3045609 DOI: 10.1093/nar/gkq958] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/09/2023] Open
Abstract
PD-(D/E)XK nucleases, initially represented by only Type II restriction enzymes, now comprise a large and extremely diverse superfamily of proteins. They participate in many different nucleic acids transactions including DNA degradation, recombination, repair and RNA processing. Different PD-(D/E)XK families, although sharing a structurally conserved core, typically display little or no detectable sequence similarity except for the active site motifs. This makes the identification of new superfamily members using standard homology search techniques challenging. To tackle this problem, we developed a method for the detection of PD-(D/E)XK families based on the binary classification of profile–profile alignments using support vector machines (SVMs). Using a number of both superfamily-specific and general features, SVMs were trained to identify true positive alignments of PD-(D/E)XK representatives. With this method we identified several PFAM families of uncharacterized proteins as putative new members of the PD-(D/E)XK superfamily. In addition, we assigned several unclassified restriction enzymes to the PD-(D/E)XK type. Results show that the new method is able to make confident assignments even for alignments that have statistically insignificant scores. We also implemented the method as a freely accessible web server at http://www.ibt.lt/bioinformatics/software/pdexk/.
Collapse
|
21
|
Gilmore JL, Suzuki Y, Tamulaitis G, Siksnys V, Takeyasu K, Lyubchenko YL. Single-molecule dynamics of the DNA-EcoRII protein complexes revealed with high-speed atomic force microscopy. Biochemistry 2009; 48:10492-8. [PMID: 19788335 DOI: 10.1021/bi9010368] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/25/2023]
Abstract
The study of interactions of protein with DNA is important for gaining a fundamental understanding of how numerous biological processes occur, including recombination, transcription, repair, etc. In this study, we use the EcoRII restriction enzyme, which employs a three-site binding mechanism to catalyze cleavage of a single recognition site. Using high-speed atomic force microscopy (HS-AFM) to image single-molecule interactions in real time, we were able to observe binding, translocation, and dissociation mechanisms of the EcoRII protein. The results show that the protein can translocate along DNA to search for the specific binding site. Also, once specifically bound at a single site, the protein is capable of translocating along the DNA to locate the second specific binding site. Furthermore, two alternative modes of dissociation of the EcoRII protein from the loop structure were observed, which result in the protein stably bound as monomers to two sites or bound to a single site as a dimer. From these observations, we propose a model in which this pathway is involved in the formation and dynamics of a catalytically active three-site complex.
Collapse
Affiliation(s)
- Jamie L Gilmore
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, Nebraska 68198-6025, USA
| | | | | | | | | | | |
Collapse
|
22
|
Golovenko D, Manakova E, Tamulaitiene G, Grazulis S, Siksnys V. Structural mechanisms for the 5'-CCWGG sequence recognition by the N- and C-terminal domains of EcoRII. Nucleic Acids Res 2009; 37:6613-24. [PMID: 19729506 PMCID: PMC2770665 DOI: 10.1093/nar/gkp699] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/07/2023] Open
Abstract
EcoRII restriction endonuclease is specific for the 5′-CCWGG sequence (W stands for A or T); however, it shows no activity on a single recognition site. To activate cleavage it requires binding of an additional target site as an allosteric effector. EcoRII dimer consists of three structural units: a central catalytic core, made from two copies of the C-terminal domain (EcoRII-C), and two N-terminal effector DNA binding domains (EcoRII-N). Here, we report DNA-bound EcoRII-N and EcoRII-C structures, which show that EcoRII combines two radically different structural mechanisms to interact with the effector and substrate DNA. The catalytic EcoRII-C dimer flips out the central T:A base pair and makes symmetric interactions with the CC:GG half-sites. The EcoRII-N effector domain monomer binds to the target site asymmetrically in a single defined orientation which is determined by specific hydrogen bonding and van der Waals interactions with the central T:A pair in the major groove. The EcoRII-N mode of the target site recognition is shared by the large class of higher plant transcription factors of the B3 superfamily.
Collapse
Affiliation(s)
- Dmitrij Golovenko
- Institute of Biotechnology, Graiciuno 8, LT-02241 Vilnius, Lithuania
| | | | | | | | | |
Collapse
|
23
|
Pingoud V, Wende W, Friedhoff P, Reuter M, Alves J, Jeltsch A, Mones L, Fuxreiter M, Pingoud A. On the divalent metal ion dependence of DNA cleavage by restriction endonucleases of the EcoRI family. J Mol Biol 2009; 393:140-60. [PMID: 19682999 DOI: 10.1016/j.jmb.2009.08.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/07/2009] [Revised: 08/05/2009] [Accepted: 08/06/2009] [Indexed: 11/18/2022]
Abstract
Restriction endonucleases of the PD...D/EXK family need Mg(2+) for DNA cleavage. Whereas Mg(2+) (or Mn(2+)) promotes catalysis, Ca(2+) (without Mg(2+)) only supports DNA binding. The role of Mg(2+) in DNA cleavage by restriction endonucleases has elicited many hypotheses, differing mainly in the number of Mg(2+) involved in catalysis. To address this problem, we measured the Mg(2+) and Mn(2+) concentration dependence of DNA cleavage by BamHI, BglII, Cfr10I, EcoRI, EcoRII (catalytic domain), MboI, NgoMIV, PspGI, and SsoII, which were reported in co-crystal structure analyses to bind one (BglII and EcoRI) or two (BamHI and NgoMIV) Me(2+) per active site. DNA cleavage experiments were carried out at various Mg(2+) and Mn(2+) concentrations at constant ionic strength. All enzymes show a qualitatively similar Mg(2+) and Mn(2+) concentration dependence. In general, the Mg(2+) concentration optimum (between approximately 1 and 10 mM) is higher than the Mn(2+) concentration optimum (between approximately 0.1 and 1 mM). At still higher Mg(2+) or Mn(2+) concentrations, the activities of all enzymes tested are reduced but can be reactivated by Ca(2+). Based on these results, we propose that one Mg(2+) or Mn(2+) is critical for restriction enzyme activation, and binding of a second Me(2+) plays a role in modulating the activity. Steady-state kinetics carried out with EcoRI and BamHI suggest that binding of a second Mg(2+) or Mn(2+) mainly leads to an increase in K(m), such that the inhibitory effect of excess Mg(2+) or Mn(2+) can be overcome by increasing the substrate concentration. Our conclusions are supported by molecular dynamics simulations and are consistent with the structural observations of both one and two Me(2+) binding to these enzymes.
Collapse
Affiliation(s)
- Vera Pingoud
- Institut für Biochemie, Justus-Liebig-Universität, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Szczepek M, Mackeldanz P, Möncke-Buchner E, Alves J, Krüger DH, Reuter M. Molecular analysis of restriction endonuclease EcoRII from Escherichia coli reveals precise regulation of its enzymatic activity by autoinhibition. Mol Microbiol 2009; 72:1011-21. [PMID: 19400796 DOI: 10.1111/j.1365-2958.2009.06702.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022]
Abstract
Bacterial restriction endonuclease EcoRII requires two recognition sites to cleave DNA. Proteolysis of EcoRII revealed the existence of two stable domains, EcoRII-N and EcoRII-C. Reduction of the enzyme to its C-terminal domain, EcoRII-C, unleashed the enzyme activity; this truncated form no longer needed two recognition sites and cleaved DNA much more efficiently than EcoRII wild-type. The crystal structure of EcoRII showed that probably the N-terminal domain sterically occludes the catalytic site, thus apparently controlling the cleavage activity. Based on these data, EcoRII was the first restriction endonuclease for which an autoinhibition mechanism as regulatory strategy was proposed. In this study, we probed this assumption and searched for the inhibitory element that mediates autoinhibition. Here we show that repression of EcoRII-C is achieved by addition of the inhibitory domain EcoRII-N or by single soluble peptides thereof in trans. Moreover, we perturbed contacts between the N- and the C-terminal domain of EcoRII by site-directed mutagenesis and proved that beta-strand B1 and alpha-helix H2 are essential for autoinhibition; deletion of either secondary structural element completely relieved EcoRII autoinhibition. This potent regulation principle that keeps EcoRII enzyme activity controlled might protect bacteria against suicidal restriction of rare unmodified recognition sites in the cellular genome.
Collapse
Affiliation(s)
- Michal Szczepek
- Institute of Medical Virology, Helmut-Ruska-Haus, Charité-Universitätsmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
25
|
Szczepanowski RH, Carpenter MA, Czapinska H, Zaremba M, Tamulaitis G, Siksnys V, Bhagwat AS, Bochtler M. Central base pair flipping and discrimination by PspGI. Nucleic Acids Res 2008; 36:6109-17. [PMID: 18829716 PMCID: PMC2577326 DOI: 10.1093/nar/gkn622] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/16/2023] Open
Abstract
PspGI is a representative of a group of restriction endonucleases that recognize a pentameric sequence related to CCNGG. Unlike the previously investigated Ecl18kI, which does not have any specificity for the central base pair, PspGI prefers A/T over G/C in its target site. Here, we present a structure of PspGI with target DNA at 1.7 Å resolution. In this structure, the bases at the center of the recognition sequence are extruded from the DNA and flipped into pockets of PspGI. The flipped thymine is in the usual anti conformation, but the flipped adenine takes the normally unfavorable syn conformation. The results of this and the accompanying manuscript attribute the preference for A/T pairs over G/C pairs in the flipping position to the intrinsically lower penalty for flipping A/T pairs and to selection of the PspGI pockets against guanine and cytosine. Our data show that flipping can contribute to the discrimination between normal bases. This adds a new role to base flipping in addition to its well-known function in base modification and DNA damage repair.
Collapse
Affiliation(s)
- Roman H Szczepanowski
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Tamulaitis G, Zaremba M, Szczepanowski RH, Bochtler M, Siksnys V. How PspGI, catalytic domain of EcoRII and Ecl18kI acquire specificities for different DNA targets. Nucleic Acids Res 2008; 36:6101-8. [PMID: 18820295 PMCID: PMC2577355 DOI: 10.1093/nar/gkn621] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022] Open
Abstract
Restriction endonucleases Ecl18kI and PspGI/catalytic domain of EcoRII recognize CCNGG and CCWGG sequences (W stands for A or T), respectively. The enzymes are structurally similar, interact identically with the palindromic CC:GG parts of their recognition sequences and flip the nucleotides at their centers. Specificity for the central nucleotides could be influenced by the strength/stability of the base pair to be disrupted and/or by direct interactions of the enzymes with the flipped bases. Here, we address the importance of these contributions. We demonstrate that wt Ecl18kI cleaves oligoduplexes containing canonical, mismatched and abasic sites in the central position of its target sequence CCNGG with equal efficiencies. In contrast, substitutions in the binding pocket for the extrahelical base alter the Ecl18kI preference for the target site: the W61Y mutant prefers only certain mismatched substrates, and the W61A variant cuts exclusively at abasic sites, suggesting that pocket interactions play a major role in base discrimination. PspGI and catalytic domain of EcoRII probe the stability of the central base pair and the identity of the flipped bases in the pockets. This ‘double check’ mechanism explains their extraordinary specificity for an A/T pair in the flipping position.
Collapse
|
27
|
Subach F, Kirsanova O, Liquier J, Gromova ES. Resolution of the EcoRII restriction endonuclease-DNA complex structure in solution using fluorescence spectroscopy. Biophys Chem 2008; 138:107-14. [PMID: 18814946 DOI: 10.1016/j.bpc.2008.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/12/2008] [Revised: 09/06/2008] [Accepted: 09/07/2008] [Indexed: 11/27/2022]
Abstract
The X-ray structure for the type IIE EcoRII restriction endonuclease has been resolved [X.E. Zhou, Y. Wang, M. Reuter, M. Mucke, D.H. Kruger, E.J. Meehan and L. Chen. Crystal structure of type IIE restriction endonuclease EcoRII reveals an autoinhibition mechanism by a novel effector-binding fold. J. Mol. Biol. 335 (2004) 307-319.], but the structure of the R.EcoRII-DNA complex is still unknown. The aim of this article was to examine the structure of the pre-reactive R.EcoRII-DNA complex in solution by fluorescence spectroscopy. The structure for the R.EcoRII-DNA complex was resolved by determining the fluorescence resonance energy transfer (FRET) between two fluorescent dyes, covalently attached near the EcoRII recognition sites, that were located at opposite ends of a lengthy two-site DNA molecule. Analysis of the FRET data from the two-site DNA revealed a likely model for the arrangement of the two EcoRII recognition sites relative to each other in the R.EcoRII-DNA complex in the presence of Ca(2+) ions. According to this model, the R.EcoRII binds the two-site DNA and forms a DNA loop in which the EcoRII recognition sites are 20+/-10 A distant to each other and situated at an angle of 70+/-10 degrees.
Collapse
Affiliation(s)
- Fedor Subach
- Department of Chemistry, Moscow State University, Moscow, 119991, Russia
| | | | | | | |
Collapse
|
28
|
Wayengera M, Kajumbula H, Byarugaba W. Identification of restriction endonuclease with potential ability to cleave the HSV-2 genome: inherent potential for biosynthetic versus live recombinant microbicides. Theor Biol Med Model 2008; 5:18. [PMID: 18687114 PMCID: PMC2526989 DOI: 10.1186/1742-4682-5-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/19/2008] [Accepted: 08/07/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Herpes Simplex virus types 1 and 2 are enveloped viruses with a linear dsDNA genome of approximately 120-200 kb. Genital infection with HSV-2 has been denoted as a major risk factor for acquisition and transmission of HIV-1. Developing biomedical strategies for HSV-2 prevention is thus a central strategy in reducing global HIV-1 prevalence. This paper details the protocol for the isolation of restriction endunucleases (REases) with potent activity against the HSV-2 genome and models two biomedical interventions for preventing HSV-2. METHODS AND RESULTS Using the whole genome of HSV-2, 289 REases and the bioinformatics software Webcutter2; we searched for potential recognition sites by way of genome wide palindromics. REase application in HSV-2 biomedical therapy was modeled concomitantly. Of the 289 enzymes analyzed; 77(26.6%) had potential to cleave the HSV-2 genome in > 100 but < 400 sites; 69(23.9%) in > 400 but < 700 sites; and the 9(3.1%) enzymes: BmyI, Bsp1286I, Bst2UI, BstNI, BstOI, EcoRII, HgaI, MvaI, and SduI cleaved in more than 700 sites. But for the 4: PacI, PmeI, SmiI, SwaI that had no sign of activity on HSV-2 genomic DNA, all 130(45%) other enzymes cleaved < 100 times. In silico palindromics has a PPV of 99.5% for in situ REase activity (2) Two models detailing how the REase EcoRII may be applied in developing interventions against HSV-2 are presented: a nanoparticle for microbicide development and a "recombinant lactobacillus" expressing cell wall anchored receptor (truncated nectin-1) for HSV-2 plus EcoRII. CONCLUSION Viral genome slicing by way of these bacterially- derived R-M enzymatic peptides may have therapeutic potential in HSV-2 infection; a cofactor for HIV-1 acquisition and transmission.
Collapse
|
29
|
Jakubauskas A, Sasnauskas G, Giedriene J, Janulaitis A. Domain organization and functional analysis of type IIS restriction endonuclease Eco31I. Biochemistry 2008; 47:8546-56. [PMID: 18642930 DOI: 10.1021/bi800660u] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/30/2022]
Abstract
Type IIS restriction endonuclease Eco31I harbors a single HNH active site and cleaves both DNA strands close to its recognition sequence, 5'-GGTCTC(1/5). A two-domain organization of Eco31I was determined by limited proteolysis. Analysis of proteolytic fragments revealed that the N-terminal domain of Eco31I is responsible for the specific DNA binding, while the C-terminal domain contains the HNH nuclease-like active site. Gel-shift and gel-filtration experiments revealed that a monomer of the N-terminal domain of Eco31I is able to bind a single copy of cognate DNA. However, in contrast to other studied type IIS enzymes, the isolated catalytic domain of Eco31I was inactive. Steady-state and transient kinetic analysis of Eco31I reactions was inconsistent with dimerization of Eco31I on DNA. Thus, we propose that Eco31I interacts with individual copies of its recognition sequence in its monomeric form and presumably remains a monomer as it cleaves both strands of double-stranded DNA. The domain organization and reaction mechanism established for Eco31I should be common for a group of evolutionary related type IIS restriction endonucleases Alw26I, BsaI, BsmAI, BsmBI and Esp3I that recognize DNA sequences bearing the common pentanucleotide 5'-GTCTC.
Collapse
|
30
|
Subach FV, Liquier J, Gromova ES. Investigation of restriction endonuclease EcoRII complex with DNA in solution by FTIR spectroscopy. RUSS J GEN CHEM+ 2008. [DOI: 10.1134/s1070363208050435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/23/2022]
|
31
|
Lambert AR, Sussman D, Shen B, Maunus R, Nix J, Samuelson J, Xu SY, Stoddard BL. Structures of the rare-cutting restriction endonuclease NotI reveal a unique metal binding fold involved in DNA binding. Structure 2008; 16:558-69. [PMID: 18400177 DOI: 10.1016/j.str.2008.01.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/26/2007] [Revised: 01/07/2008] [Accepted: 01/12/2008] [Indexed: 11/19/2022]
Abstract
The structure of the rare-cutting restriction endonuclease NotI, which recognizes the 8 bp target 5'-GCGGCCGC-3', has been solved with and without bound DNA. Because of its specificity (recognizing a site that occurs once per 65 kb), NotI is used to generate large genomic fragments and to map DNA methylation status. NotI contains a unique metal binding fold, found in a variety of putative endonucleases, occupied by an iron atom coordinated within a tetrahedral Cys4 motif. This domain positions nearby protein elements for DNA recognition, and serves a structural role. While recognition of the central six base pairs of the target is accomplished via a saturated hydrogen bond network typical of restriction enzymes, the most peripheral base pairs are engaged in a single direct contact in the major groove, reflecting reduced pressure to recognize those positions. NotI may represent an evolutionary intermediate between mobile endonucleases (which recognize longer target sites) and canonical restriction endonucleases.
Collapse
Affiliation(s)
- Abigail R Lambert
- Graduate Program in Biomolecular Structure and Design, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Takahashi S, Matsuno H, Furusawa H, Okahata Y. Direct monitoring of allosteric recognition of type IIE restriction endonuclease EcoRII. J Biol Chem 2008; 283:15023-30. [PMID: 18367450 PMCID: PMC3258892 DOI: 10.1074/jbc.m800334200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/14/2008] [Revised: 03/13/2008] [Indexed: 11/06/2022] Open
Abstract
EcoRII is a homodimer with two domains consisting of a DNA-binding N terminus and a catalytic C terminus and recognizes two specific sequences on DNA. It shows a relatively complicated cleavage reaction in bulk solution. After binding to either recognition site, EcoRII cleaves the other recognition site of the same DNA (cis-binding) strand and/or the recognition site of the other DNA (trans-binding) strand. Although it is difficult to separate these two reactions in bulk solution, we could simply obtain the binding and cleavage kinetics of only the cis-binding by following the frequency (mass) changes of a DNA-immobilized quartz-crystal microbalance (QCM) responding to the addition of EcoRII in aqueous solution. We obtained the maximum binding amounts (Deltam(max)), the dissociation constants (K(d)), the binding and dissociation rate constants (k(on) and k(off)), and the catalytic cleavage reaction rate constants (k(cat)) for wild-type EcoRII, the N-terminal-truncated form (EcoRII N-domain), and the mutant derivatives in its C-terminal domain (K263A and R330A). It was determined from the kinetic analyses that the N-domain, which covers the catalytic C-domain in the absence of DNA, preferentially binds to the one DNA recognition site while transforming EcoRII into an active form allosterically, and then the secondary C-domain binds to and cleaves the other recognition site of the DNA strand.
Collapse
Affiliation(s)
| | | | | | - Yoshio Okahata
- Frontier Research Center, Department of Biomolecular Engineering, Tokyo Institute of Technology, B-53 4259 Nagatsuda, Midori-ku, Yokohama, Japan
| |
Collapse
|
33
|
Orlowski J, Bujnicki JM. Structural and evolutionary classification of Type II restriction enzymes based on theoretical and experimental analyses. Nucleic Acids Res 2008; 36:3552-69. [PMID: 18456708 PMCID: PMC2441816 DOI: 10.1093/nar/gkn175] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/05/2023] Open
Abstract
For a very long time, Type II restriction enzymes (REases) have been a paradigm of ORFans: proteins with no detectable similarity to each other and to any other protein in the database, despite common cellular and biochemical function. Crystallographic analyses published until January 2008 provided high-resolution structures for only 28 of 1637 Type II REase sequences available in the Restriction Enzyme database (REBASE). Among these structures, all but two possess catalytic domains with the common PD-(D/E)XK nuclease fold. Two structures are unrelated to the others: R.BfiI exhibits the phospholipase D (PLD) fold, while R.PabI has a new fold termed 'half-pipe'. Thus far, bioinformatic studies supported by site-directed mutagenesis have extended the number of tentatively assigned REase folds to five (now including also GIY-YIG and HNH folds identified earlier in homing endonucleases) and provided structural predictions for dozens of REase sequences without experimentally solved structures. Here, we present a comprehensive study of all Type II REase sequences available in REBASE together with their homologs detectable in the nonredundant and environmental samples databases at the NCBI. We present the summary and critical evaluation of structural assignments and predictions reported earlier, new classification of all REase sequences into families, domain architecture analysis and new predictions of three-dimensional folds. Among 289 experimentally characterized (not putative) Type II REases, whose apparently full-length sequences are available in REBASE, we assign 199 (69%) to contain the PD-(D/E)XK domain. The HNH domain is the second most common, with 24 (8%) members. When putative REases are taken into account, the fraction of PD-(D/E)XK and HNH folds changes to 48% and 30%, respectively. Fifty-six characterized (and 521 predicted) REases remain unassigned to any of the five REase folds identified so far, and may exhibit new architectures. These enzymes are proposed as the most interesting targets for structure determination by high-resolution experimental methods. Our analysis provides the first comprehensive map of sequence-structure relationships among Type II REases and will help to focus the efforts of structural and functional genomics of this large and biotechnologically important class of enzymes.
Collapse
Affiliation(s)
- Jerzy Orlowski
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| | | |
Collapse
|
34
|
Yamasaki K, Kigawa T, Inoue M, Watanabe S, Tateno M, Seki M, Shinozaki K, Yokoyama S. Structures and evolutionary origins of plant-specific transcription factor DNA-binding domains. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2008; 46:394-401. [PMID: 18272381 DOI: 10.1016/j.plaphy.2007.12.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/26/2007] [Indexed: 05/05/2023]
Abstract
Plant-specific transcription factors are classified according to DNA-binding domains (DBDs) that were believed to be distinct from those of prokaryotes or other lineages of eukaryotes. Recently, structures of the DBDs including WRKY, NAC, B3, and SBP, which comprise major families of transcription factors, were determined by NMR spectroscopy or X-ray crystallography. In this review, we summarize the recent progress of structural biology in this field, especially on their DNA-binding mechanism and structural similarity to DBDs from other kingdoms. Unexpected structural relationships, together with recent identifications of homologous sequences in a variety of genomes, indicated that majority of the "plant-specific" DBDs originated from non-plant species, and that they largely expanded along with the evolution of higher plants.
Collapse
Affiliation(s)
- Kazuhiko Yamasaki
- Age Dimension Research Center, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba 305-8566, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Tamulaitis G, Zaremba M, Szczepanowski RH, Bochtler M, Siksnys V. Nucleotide flipping by restriction enzymes analyzed by 2-aminopurine steady-state fluorescence. Nucleic Acids Res 2007; 35:4792-9. [PMID: 17617640 PMCID: PMC1950555 DOI: 10.1093/nar/gkm513] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/06/2023] Open
Abstract
Many DNA modification and repair enzymes require access to DNA bases and therefore flip nucleotides. Restriction endonucleases (REases) hydrolyze the phosphodiester backbone within or in the vicinity of the target recognition site and do not require base extrusion for the sequence readout and catalysis. Therefore, the observation of extrahelical nucleotides in a co-crystal of REase Ecl18kI with the cognate sequence, CCNGG, was unexpected. It turned out that Ecl18kI reads directly only the CCGG sequence and skips the unspecified N nucleotides, flipping them out from the helix. Sequence and structure conservation predict nucleotide flipping also for the complexes of PspGI and EcoRII with their target DNAs (/CCWGG), but data in solution are limited and indirect. Here, we demonstrate that Ecl18kI, the C-terminal domain of EcoRII (EcoRII-C) and PspGI enhance the fluorescence of 2-aminopurines (2-AP) placed at the centers of their recognition sequences. The fluorescence increase is largest for PspGI, intermediate for EcoRII-C and smallest for Ecl18kI, probably reflecting the differences in the hydrophobicity of the binding pockets within the protein. Omitting divalent metal cations and mutation of the binding pocket tryptophan to alanine strongly increase the 2-AP signal in the Ecl18kI–DNA complex. Together, our data provide the first direct evidence that Ecl18kI, EcoRII-C and PspGI flip nucleotides in solution.
Collapse
Affiliation(s)
- Gintautas Tamulaitis
- Institute of Biotechnology, Graiciuno 8, LT-02241, Vilnius, Lithuania, International Institute of Molecular and Cell Biology, ul. Trojdena 4, 02-109 Warsaw, Poland and Max-Planck-Institute for Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01309 Dresden, Germany
| | - Mindaugas Zaremba
- Institute of Biotechnology, Graiciuno 8, LT-02241, Vilnius, Lithuania, International Institute of Molecular and Cell Biology, ul. Trojdena 4, 02-109 Warsaw, Poland and Max-Planck-Institute for Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01309 Dresden, Germany
| | - Roman H. Szczepanowski
- Institute of Biotechnology, Graiciuno 8, LT-02241, Vilnius, Lithuania, International Institute of Molecular and Cell Biology, ul. Trojdena 4, 02-109 Warsaw, Poland and Max-Planck-Institute for Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01309 Dresden, Germany
| | - Matthias Bochtler
- Institute of Biotechnology, Graiciuno 8, LT-02241, Vilnius, Lithuania, International Institute of Molecular and Cell Biology, ul. Trojdena 4, 02-109 Warsaw, Poland and Max-Planck-Institute for Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01309 Dresden, Germany
| | - Virginijus Siksnys
- Institute of Biotechnology, Graiciuno 8, LT-02241, Vilnius, Lithuania, International Institute of Molecular and Cell Biology, ul. Trojdena 4, 02-109 Warsaw, Poland and Max-Planck-Institute for Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01309 Dresden, Germany
- *To whom correspondence should be addressed.+370 5 2602108+370 5 2602116
| |
Collapse
|
36
|
Realm of PD-(D/E)XK nuclease superfamily revisited: detection of novel families with modified transitive meta profile searches. BMC STRUCTURAL BIOLOGY 2007; 7:40. [PMID: 17584917 PMCID: PMC1913061 DOI: 10.1186/1472-6807-7-40] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 03/13/2007] [Accepted: 06/20/2007] [Indexed: 11/30/2022]
Abstract
Background PD-(D/E)XK nucleases constitute a large and highly diverse superfamily of enzymes that display little sequence similarity despite retaining a common core fold and a few critical active site residues. This makes identification of new PD-(D/E)XK nuclease families a challenging task as they usually escape detection with standard sequence-based methods. We developed a modified transitive meta profile search approach and to consider the structural diversity of PD-(D/E)XK nuclease fold more thoroughly we analyzed also lower than threshold Meta-BASIC hits to select potentially correct predictions placed among unreliable or incorrect ones. Results Application of a modified transitive Meta-BASIC searches on updated PFAM families and PDB structures resulted in detection of five new PD-(D/E)XK nuclease families encompassing hundreds of so far uncharacterized and poorly annotated proteins. These include four families catalogued in PFAM database as domains of unknown function (DUF506, DUF524, DUF1626 and DUF1703) and YhgA-like family of putative transposases. Three of these families represent extremely distant homologs (DUF506, DUF524, and YhgA-like), while two are newly defined in updated database (DUF1626 and DUF1703). In addition, we also confidently identified an extended AAA-ATPase domain in the N-terminal region of DUF1703 family proteins. Conclusion Obtained results suggest that detailed analysis of below threshold Meta-BASIC hits may push limits further for distant homology detection in the 'midnight zone' of homology. All identified families conserve the core evolutionary fold, secondary structure and hydrophobic patterns common to existing PD-(D/E)XK nucleases and maintain critical active site motifs that contribute to nucleic acid cleavage. Further experimental investigations should address the predicted activity and clarify potential substrates providing further insight into detailed biological role of these newly detected nucleases.
Collapse
|
37
|
Kaus-Drobek M, Czapinska H, Sokołowska M, Tamulaitis G, Szczepanowski RH, Urbanke C, Siksnys V, Bochtler M. Restriction endonuclease MvaI is a monomer that recognizes its target sequence asymmetrically. Nucleic Acids Res 2007; 35:2035-46. [PMID: 17344322 PMCID: PMC1874612 DOI: 10.1093/nar/gkm064] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/12/2022] Open
Abstract
Restriction endonuclease MvaI recognizes the sequence CC/WGG (W stands for A or T, '/' designates the cleavage site) and generates products with single nucleotide 5'-overhangs. The enzyme has been noted for its tolerance towards DNA modifications. Here, we report a biochemical characterization and crystal structures of MvaI in an apo-form and in a complex with target DNA at 1.5 A resolution. Our results show that MvaI is a monomer and recognizes its pseudosymmetric target sequence asymmetrically. The enzyme consists of two lobes. The catalytic lobe anchors the active site residues Glu36, Asp50, Glu55 and Lys57 and contacts the bases from the minor grove side. The recognition lobe mediates all major grove interactions with the bases. The enzyme in the crystal is bound to the strand with T at the center of the recognition sequence. The crystal structure with calcium ions and DNA mimics the prereactive state. MvaI shows structural similarities to BcnI, which cleaves the related sequence CC/SGG and to MutH enzyme, which is a component of the DNA repair machinery, and nicks one DNA strand instead of making a double-strand break.
Collapse
Affiliation(s)
- Magdalena Kaus-Drobek
- International Institute of Molecular and Cell Biology, ul. Trojdena 4, 02-109 Warsaw, Poland, Max-Planck-Institute for Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01309 Dresden, Germany, Institute of Biotechnology, Graiciuno 8, LT-02241, Vilnius, Lithuania and Medizinische Hochschule, Abteilung Strukturanalyse OE 8830, Carl Neuberg Str. 1, 30625 Hannover, Germany
| | - Honorata Czapinska
- International Institute of Molecular and Cell Biology, ul. Trojdena 4, 02-109 Warsaw, Poland, Max-Planck-Institute for Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01309 Dresden, Germany, Institute of Biotechnology, Graiciuno 8, LT-02241, Vilnius, Lithuania and Medizinische Hochschule, Abteilung Strukturanalyse OE 8830, Carl Neuberg Str. 1, 30625 Hannover, Germany
| | - Monika Sokołowska
- International Institute of Molecular and Cell Biology, ul. Trojdena 4, 02-109 Warsaw, Poland, Max-Planck-Institute for Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01309 Dresden, Germany, Institute of Biotechnology, Graiciuno 8, LT-02241, Vilnius, Lithuania and Medizinische Hochschule, Abteilung Strukturanalyse OE 8830, Carl Neuberg Str. 1, 30625 Hannover, Germany
| | - Gintautas Tamulaitis
- International Institute of Molecular and Cell Biology, ul. Trojdena 4, 02-109 Warsaw, Poland, Max-Planck-Institute for Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01309 Dresden, Germany, Institute of Biotechnology, Graiciuno 8, LT-02241, Vilnius, Lithuania and Medizinische Hochschule, Abteilung Strukturanalyse OE 8830, Carl Neuberg Str. 1, 30625 Hannover, Germany
| | - Roman H. Szczepanowski
- International Institute of Molecular and Cell Biology, ul. Trojdena 4, 02-109 Warsaw, Poland, Max-Planck-Institute for Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01309 Dresden, Germany, Institute of Biotechnology, Graiciuno 8, LT-02241, Vilnius, Lithuania and Medizinische Hochschule, Abteilung Strukturanalyse OE 8830, Carl Neuberg Str. 1, 30625 Hannover, Germany
| | - Claus Urbanke
- International Institute of Molecular and Cell Biology, ul. Trojdena 4, 02-109 Warsaw, Poland, Max-Planck-Institute for Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01309 Dresden, Germany, Institute of Biotechnology, Graiciuno 8, LT-02241, Vilnius, Lithuania and Medizinische Hochschule, Abteilung Strukturanalyse OE 8830, Carl Neuberg Str. 1, 30625 Hannover, Germany
| | - Virginijus Siksnys
- International Institute of Molecular and Cell Biology, ul. Trojdena 4, 02-109 Warsaw, Poland, Max-Planck-Institute for Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01309 Dresden, Germany, Institute of Biotechnology, Graiciuno 8, LT-02241, Vilnius, Lithuania and Medizinische Hochschule, Abteilung Strukturanalyse OE 8830, Carl Neuberg Str. 1, 30625 Hannover, Germany
| | - Matthias Bochtler
- International Institute of Molecular and Cell Biology, ul. Trojdena 4, 02-109 Warsaw, Poland, Max-Planck-Institute for Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01309 Dresden, Germany, Institute of Biotechnology, Graiciuno 8, LT-02241, Vilnius, Lithuania and Medizinische Hochschule, Abteilung Strukturanalyse OE 8830, Carl Neuberg Str. 1, 30625 Hannover, Germany
- *To whom correspondence should be addressed. 0048 22 59707320048 22 5970715
| |
Collapse
|
38
|
Tamulaitiene G, Jakubauskas A, Urbanke C, Huber R, Grazulis S, Siksnys V. The crystal structure of the rare-cutting restriction enzyme SdaI reveals unexpected domain architecture. Structure 2006; 14:1389-400. [PMID: 16962970 DOI: 10.1016/j.str.2006.07.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/24/2006] [Revised: 07/04/2006] [Accepted: 07/05/2006] [Indexed: 01/31/2023]
Abstract
Rare-cutting restriction enzymes are important tools in genome analysis. We report here the crystal structure of SdaI restriction endonuclease, which is specific for the 8 bp sequence CCTGCA/GG ("/" designates the cleavage site). Unlike orthodox Type IIP enzymes, which are single domain proteins, the SdaI monomer is composed of two structural domains. The N domain contains a classical winged helix-turn-helix (wHTH) DNA binding motif, while the C domain shows a typical restriction endonuclease fold. The active site of SdaI is located within the C domain and represents a variant of the canonical PD-(D/E)XK motif. SdaI determinants of sequence specificity are clustered on the recognition helix of the wHTH motif at the N domain. The modular architecture of SdaI, wherein one domain mediates DNA binding while the other domain is predicted to catalyze hydrolysis, distinguishes SdaI from previously characterized restriction enzymes interacting with symmetric recognition sequences.
Collapse
|
39
|
Carpenter M, Divvela P, Pingoud V, Bujnicki J, Bhagwat AS. Sequence-dependent enhancement of hydrolytic deamination of cytosines in DNA by the restriction enzyme PspGI. Nucleic Acids Res 2006; 34:3762-70. [PMID: 16893959 PMCID: PMC1557792 DOI: 10.1093/nar/gkl545] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/13/2022] Open
Abstract
Hydrolytic deamination of cytosines in DNA creates uracil and, if unrepaired, these lesions result in C to T mutations. We have suggested previously that a possible way in which cells may prevent or reduce this chemical reaction is through the binding of proteins to DNA. We use a genetic reversion assay to show that a restriction enzyme, PspGI, protects cytosines within its cognate site, 5'-CCWGG (W is A or T), against deamination under conditions where no DNA cleavage can occur. It decreases the rate of cytosine deamination to uracil by 7-fold. However, the same protein dramatically increases the rate of deaminations within the site 5'-CCSGG (S is C or G) by approximately 15-fold. Furthermore, a similar increase in cytosine deaminations is also seen with a catalytically inactive mutant of the enzyme showing that endonucleolytic ability of the protein is dispensable for its mutagenic action. The sequences of the mutants generated in the presence of PspGI show that only one of the cytosines in CCSGG is predominantly converted to thymine. Our results are consistent with PspGI 'sensitizing' the cytosine in the central base pair in CCSGG for deamination. Remarkably, PspGI sensitizes this base for damage despite its inability to form stable complexes at CCSGG sites. These results can be explained if the enzyme has a transient interaction with this sequence during which it flips the central cytosine out of the helix. This prediction was validated by modeling the structure of PspGI-DNA complex based on the structure of the related enzyme Ecl18kI which is known to cause base-flipping.
Collapse
Affiliation(s)
| | | | - Vera Pingoud
- Institute of Biochemistry, Justus-Liebig-UniversityHeinrich-Buff-Ring 58, D-35392, Giessen, Germany
| | - Janusz Bujnicki
- International Institute of Molecular and Cell BiologyTrojdena 4, PL-02-109 Warsaw, Poland
- Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz UniversityUmultowska 89, PL-61-614 Poznan, Poland
| | - Ashok S. Bhagwat
- To whom correspondence should be addressed. Tel: +1 313 577 2547; Fax: +1 313 577 8822;
| |
Collapse
|
40
|
Gemmen GJ, Millin R, Smith DE. DNA looping by two-site restriction endonucleases: heterogeneous probability distributions for loop size and unbinding force. Nucleic Acids Res 2006; 34:2864-77. [PMID: 16723432 PMCID: PMC1474071 DOI: 10.1093/nar/gkl382] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/12/2022] Open
Abstract
Proteins interacting at multiple sites on DNA via looping play an important role in many fundamental biochemical processes. Restriction endonucleases that must bind at two recognition sites for efficient activity are a useful model system for studying such interactions. Here we used single DNA manipulation to study sixteen known or suspected two-site endonucleases. In eleven cases (BpmI, BsgI, BspMI, Cfr10I, Eco57I, EcoRII, FokI, HpaII, NarI, Sau3AI and SgrAI) we found that substitution of Ca2+ for Mg2+ blocked cleavage and enabled us to observe stable DNA looping. Forced disruption of these loops allowed us to measure the frequency of looping and probability distributions for loop size and unbinding force for each enzyme. In four cases we observed bimodal unbinding force distributions, indicating conformational heterogeneity and/or complex binding energy landscapes. Measured unlooping events ranged in size from 7 to 7500 bp and the most probable size ranged from less than 75 bp to nearly 500 bp, depending on the enzyme. In most cases the size distributions were in much closer agreement with theoretical models that postulate sharp DNA kinking than with classical models of DNA elasticity. Our findings indicate that DNA looping is highly variable depending on the specific protein and does not depend solely on the mechanical properties of DNA.
Collapse
Affiliation(s)
| | | | - Douglas E. Smith
- To whom correspondence should be addressed. Tel: +1 858 534 5241;
| |
Collapse
|
41
|
Bochtler M, Szczepanowski RH, Tamulaitis G, Grazulis S, Czapinska H, Manakova E, Siksnys V. Nucleotide flips determine the specificity of the Ecl18kI restriction endonuclease. EMBO J 2006; 25:2219-29. [PMID: 16628220 PMCID: PMC1462983 DOI: 10.1038/sj.emboj.7601096] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/26/2006] [Accepted: 03/24/2006] [Indexed: 01/08/2023] Open
Abstract
Restricion endonuclease Ecl18kI is specific for the sequence /CCNGG and cleaves it before the outer C to generate 5 nt 5'-overhangs. It has been suggested that Ecl18kI is evolutionarily related to NgoMIV, a 6-bp cutter that cleaves the sequence G/CCGGC and leaves 4 nt 5'-overhangs. Here, we report the crystal structure of the Ecl18kI-DNA complex at 1.7 A resolution and compare it with the known structure of the NgoMIV-DNA complex. We find that Ecl18kI flips both central nucleotides within the CCNGG sequence and buries the extruded bases in pockets within the protein. Nucleotide flipping disrupts Watson-Crick base pairing, induces a kink in the DNA and shifts the DNA register by 1 bp, making the distances between scissile phosphates in the Ecl18kI and NgoMIV cocrystal structures nearly identical. Therefore, the two enzymes can use a conserved DNA recognition module, yet recognize different sequences, and form superimposable dimers, yet generate different cleavage patterns. Hence, Ecl18kI is the first example of a restriction endonuclease that flips nucleotides to achieve specificity for its recognition site.
Collapse
Affiliation(s)
- Matthias Bochtler
- International Institute of Molecular and Cell Biology, Warsaw, Poland
- Max-Planck-Institute for Molecular Cell Biology and Genetics, Dresden, Germany
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland. Tel.: +48 22 5970732; Fax: +48 22 5970715; E-mail:
| | - Roman H Szczepanowski
- International Institute of Molecular and Cell Biology, Warsaw, Poland
- Max-Planck-Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | | | | | - Honorata Czapinska
- International Institute of Molecular and Cell Biology, Warsaw, Poland
- Max-Planck-Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Virginijus Siksnys
- Institute of Biotechnology, Vilnius, Lithuania
- Institute of Biotechnology, Graiciuno 8, Vilnius LT-02241, Lithuania. Tel.: +370 5 2602108; Fax: +370 5 2602116; E-mail:
| |
Collapse
|
42
|
Tamulaitis G, Sasnauskas G, Mucke M, Siksnys V. Simultaneous binding of three recognition sites is necessary for a concerted plasmid DNA cleavage by EcoRII restriction endonuclease. J Mol Biol 2006; 358:406-19. [PMID: 16529772 DOI: 10.1016/j.jmb.2006.02.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/29/2005] [Revised: 02/08/2006] [Accepted: 02/09/2006] [Indexed: 11/28/2022]
Abstract
According to the current paradigm type IIE restriction endonucleases are homodimeric proteins that simultaneously bind to two recognition sites but cleave DNA at only one site per turnover: the other site acts as an allosteric locus, activating the enzyme to cleave DNA at the first. Structural and biochemical analysis of the archetypal type IIE restriction enzyme EcoRII suggests that it has three possible DNA binding interfaces enabling simultaneous binding of three recognition sites. To test if putative synapsis of three binding sites has any functional significance, we have studied EcoRII cleavage of plasmids containing a single, two and three recognition sites under both single turnover and steady state conditions. EcoRII displays distinct reaction patterns on different substrates: (i) it shows virtually no activity on a single site plasmid; (ii) it yields open-circular DNA form nicked at one strand as an obligatory intermediate acting on a two-site plasmid; (iii) it cleaves concertedly both DNA strands at a single site during a single turnover on a three site plasmid to yield linear DNA. Cognate oligonucleotide added in trans increases the reaction velocity and changes the reaction pattern for the EcoRII cleavage of one and two-site plasmids but has little effect on the three-site plasmid. Taken together the data indicate that EcoRII requires simultaneous binding of three rather than two recognition sites in cis to achieve concerted DNA cleavage at a single site. We show that the orthodox type IIP enzyme PspGI which is an isoschisomer of EcoRII, cleaves different plasmid substrates with equal rates. Data provided here indicate that type IIE restriction enzymes EcoRII and NaeI follow different mechanisms. We propose that other type IIE restriction enzymes may employ the mechanism suggested here for EcoRII.
Collapse
|
43
|
Tamulaitis G, Mucke M, Siksnys V. Biochemical and mutational analysis ofEcoRII functional domains reveals evolutionary links between restriction enzymes. FEBS Lett 2006; 580:1665-71. [PMID: 16497303 DOI: 10.1016/j.febslet.2006.02.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/12/2005] [Revised: 01/16/2006] [Accepted: 02/07/2006] [Indexed: 11/23/2022]
Abstract
The archetypal Type IIE restriction endonuclease EcoRII is a dimer that has a modular structure. DNA binding studies indicate that the isolated C-terminal domain dimer has an interface that binds a single cognate DNA molecule whereas the N-terminal domain is a monomer that also binds a single copy of cognate DNA. Hence, the full-length EcoRII contains three putative DNA binding interfaces: one at the C-terminal domain dimer and two at each of the N-terminal domains. Mutational analysis indicates that the C-terminal domain shares conserved active site architecture and DNA binding elements with the tetrameric restriction enzyme NgoMIV. Data provided here suggest possible evolutionary relationships between different subfamilies of restriction enzymes.
Collapse
|
44
|
Xu QS, Roberts RJ, Guo HC. Two crystal forms of the restriction enzyme MspI-DNA complex show the same novel structure. Protein Sci 2005; 14:2590-600. [PMID: 16195548 PMCID: PMC2253285 DOI: 10.1110/ps.051565105] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/25/2022]
Abstract
The crystal structure of the Type IIP restriction endonuclease MspI bound to DNA containing its cognate recognition sequence has been determined in both monoclinic and orthorhombic space groups. Significantly, these two independent crystal forms present an identical structure of a novel monomer-DNA complex, suggesting a functional role for this novel enzyme-DNA complex. In both crystals, MspI interacts with the CCGG DNA recognition sequence as a monomer, using an asymmetric mode of recognition by two different structural motifs in a single polypeptide. In the crystallographic asymmetric unit, the two DNA molecules in the two MspI-DNA complexes appear to stack with each other forming an end-to-end pseudo-continuous 19-mer duplex. They are primarily B-form and no major bends or kinks are observed. For DNA recognition, most of the specific contacts between the enzyme and the DNA are preserved in the orthorhombic structure compared with the monoclinic structure. A cation is observed near the catalytic center in the monoclinic structure at a position homologous to the 74/45 metal site of EcoRV, and the orthorhombic structure also shows signs of this same cation. However, the coordination ligands of the metal are somewhat different from those of the 74/45 metal site of EcoRV. Combined with structural information from other solved structures of Type II restriction enzymes, the possible relationship between the structures of the enzymes and their cleavage behaviors is discussed.
Collapse
Affiliation(s)
- Qian Steven Xu
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118, USA.
| | | | | |
Collapse
|
45
|
Hiller DA, Rodriguez AM, Perona JJ. Non-cognate Enzyme–DNA Complex: Structural and Kinetic Analysis of EcoRV Endonuclease Bound to the EcoRI Recognition Site GAATTC. J Mol Biol 2005; 354:121-36. [PMID: 16236314 DOI: 10.1016/j.jmb.2005.09.046] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/27/2005] [Revised: 09/14/2005] [Accepted: 09/15/2005] [Indexed: 11/25/2022]
Abstract
The crystal structure of EcoRV endonuclease bound to non-cognate DNA at 2.0 angstroms resolution shows that very small structural adaptations are sufficient to ensure the extreme sequence specificity characteristic of restriction enzymes. EcoRV bends its specific GATATC site sharply by 50 degrees into the major groove at the center TA step, generating unusual base-base interactions along each individual DNA strand. In the symmetric non-cognate complex bound to GAATTC, the center step bend is relaxed to avoid steric hindrance caused by the different placement of the exocyclic thymine methyl groups. The decreased base-pair unstacking in turn leads to small conformational rearrangements in the sugar-phosphate backbone, sufficient to destabilize binding of crucial divalent metal ions in the active site. A second crystal structure of EcoRV bound to the base-analog GAAUTC site shows that the 50 degrees center-step bend of the DNA is restored. However, while divalent metals bind at high occupancy in this structure, one metal ion shifts away from binding at the scissile DNA phosphate to a position near the 3'-adjacent phosphate group. This may explain why the 10(4)-fold attenuated cleavage efficiency toward GAATTC is reconstituted by less than tenfold toward GAAUTC. Examination of DNA binding and bending by equilibrium and stopped-flow florescence quenching and fluorescence resonance energy transfer (FRET) methods demonstrates that the capacity of EcoRV to bend the GAATTC non-cognate site is severely limited, but that full bending of GAAUTC is achieved at only a threefold reduced rate compared with the cognate complex. Together, the structural and biochemical data demonstrate the existence of distinct mechanisms for ensuring specificity at the bending and catalytic steps, respectively. The limited conformational rearrangements observed in the EcoRV non-cognate complex provide a sharp contrast to the extensive structural changes found in a non-cognate BamHI-DNA crystal structure, thus demonstrating a diversity of mechanisms by which restriction enzymes are able to achieve specificity.
Collapse
Affiliation(s)
- David A Hiller
- Department of Chemistry and Biochemistry, and Interdepartmental Program in Biomolecular Science and Engineering, University of California at Santa Barbara, Santa Barbara, CA 93106-9510, USA
| | | | | |
Collapse
|
46
|
Grazulis S, Manakova E, Roessle M, Bochtler M, Tamulaitiene G, Huber R, Siksnys V. Structure of the metal-independent restriction enzyme BfiI reveals fusion of a specific DNA-binding domain with a nonspecific nuclease. Proc Natl Acad Sci U S A 2005; 102:15797-802. [PMID: 16247004 PMCID: PMC1266039 DOI: 10.1073/pnas.0507949102] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/18/2022] Open
Abstract
Among all restriction endonucleases known to date, BfiI is unique in cleaving DNA in the absence of metal ions. BfiI represents a different evolutionary lineage of restriction enzymes, as shown by its crystal structure at 1.9-A resolution. The protein consists of two structural domains. The N-terminal catalytic domain is similar to Nuc, an EDTA-resistant nuclease from the phospholipase D superfamily. The C-terminal DNA-binding domain of BfiI exhibits a beta-barrel-like structure very similar to the effector DNA-binding domain of the Mg(2+)-dependent restriction enzyme EcoRII and to the B3-like DNA-binding domain of plant transcription factors. BfiI presumably evolved through domain fusion of a DNA-recognition element to a nonspecific nuclease akin to Nuc and elaborated a mechanism to limit DNA cleavage to a single double-strand break near the specific recognition sequence. The crystal structure suggests that the interdomain linker may act as an autoinhibitor controlling BfiI catalytic activity in the absence of a specific DNA sequence. A psi-blast search identified a BfiI homologue in a Mesorhizobium sp. BNC1 bacteria strain, a plant symbiont isolated from an EDTA-rich environment.
Collapse
Affiliation(s)
- Saulius Grazulis
- Laboratory of Protein-DNA Interaction, Institute of Biotechnology, Graiciuno 8, LT-02241 Vilnius, Lithuania.
| | | | | | | | | | | | | |
Collapse
|
47
|
Kriukiene E, Lubiene J, Lagunavicius A, Lubys A. MnlI—The member of H-N-H subtype of Type IIS restriction endonucleases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1751:194-204. [PMID: 16024301 DOI: 10.1016/j.bbapap.2005.06.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/24/2005] [Revised: 06/09/2005] [Accepted: 06/10/2005] [Indexed: 10/25/2022]
Abstract
The Type IIS restriction endonuclease MnlI recognizes the non-palindromic nucleotide sequence 5'-CCTC(N)7/6 downward arrow and cleaves DNA strands as indicated by the arrow. The genes encoding MnlI restriction-modification system were cloned and sequenced. It comprises N6-methyladenine and C5-methylcytosine methyltransferases and the restriction endonuclease. Biochemical studies revealed that MnlI restriction endonuclease cleaves double- and single-stranded DNA, and that it prefers different metal ions for hydrolysis of these substrates. Mg2+ ions were shown to be required for the specific cleavage of double-stranded DNA, whereas Ni2+ and some other transition metal ions were preferred for nonspecific cleavage of single-stranded DNA. The C-terminal part of MnlI restriction endonuclease revealed an intriguing similarity with the H-N-H type nucleolytic domain of bacterial toxins, Colicin E7 and Colicin E9. Alanine replacements in the conserved sequence motif 306Rx3ExHHx14Nx8H greatly reduced specific activity of MnlI, and some mutations even completely inactivated the enzyme. However, none of these mutations had effect on MnlI binding to the specific DNA, and on its oligomerisation state as well. We interpret the presented experimental evidence as a suggestion that the motif 306Rx3ExHHx14Nx8H represents the active site of MnlI. Consequentially, MnlI seems to be the member of Type IIS with the active site of the H-N-H type.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acid Substitution/genetics
- Bacteriophage lambda/genetics
- Catalysis
- Cations, Divalent/chemistry
- Chromatography, Gel
- Cloning, Molecular
- DNA Restriction-Modification Enzymes/genetics
- DNA Restriction-Modification Enzymes/metabolism
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- DNA, Single-Stranded/chemistry
- DNA, Single-Stranded/metabolism
- Deoxyribonucleases, Type II Site-Specific/chemistry
- Deoxyribonucleases, Type II Site-Specific/genetics
- Deoxyribonucleases, Type II Site-Specific/metabolism
- Kinetics
- Molecular Sequence Data
- Molecular Weight
- Moraxella/enzymology
- Moraxella/genetics
- Mutagenesis, Site-Directed
- Mutation
- Open Reading Frames/genetics
- Protein Binding
- Recombinant Proteins/biosynthesis
- Recombinant Proteins/chemistry
- Recombinant Proteins/metabolism
- Sequence Analysis, Protein
- Sequence Homology, Amino Acid
- Substrate Specificity/genetics
Collapse
Affiliation(s)
- Edita Kriukiene
- Institute of Biotechnology, Graiciuno 8, Vilnius LT-02241, Lithuania
| | | | | | | |
Collapse
|
48
|
Kinch LN, Ginalski K, Rychlewski L, Grishin NV. Identification of novel restriction endonuclease-like fold families among hypothetical proteins. Nucleic Acids Res 2005; 33:3598-605. [PMID: 15972856 PMCID: PMC1157100 DOI: 10.1093/nar/gki676] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
Restriction endonucleases and other nucleic acid cleaving enzymes form a large and extremely diverse superfamily that display little sequence similarity despite retaining a common core fold responsible for cleavage. The lack of significant sequence similarity between protein families makes homology inference a challenging task and hinders new family identification with traditional sequence-based approaches. Using the consensus fold recognition method Meta-BASIC that combines sequence profiles with predicted protein secondary structure, we identify nine new restriction endonuclease-like fold families among previously uncharacterized proteins and predict these proteins to cleave nucleic acid substrates. Application of transitive searches combined with gene neighborhood analysis allow us to confidently link these unknown families to a number of known restriction endonuclease-like structures and thus assign folds to the uncharacterized proteins. Finally, our method identifies a novel restriction endonuclease-like domain in the C-terminus of RecC that is not detected with structure-based searches of the existing PDB database.
Collapse
Affiliation(s)
- Lisa N Kinch
- Department of Biochemistry, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9050, USA.
| | | | | | | |
Collapse
|
49
|
Krüger DH, Reuter M. Reliable detection of DNA cytosine methylation at CpNpG sites using the engineered restriction enzyme EcoRII-C. Biotechniques 2005; 38:855-6. [PMID: 16018543 DOI: 10.2144/05386bm01] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Detlev H Krüger
- Institute of Virology, Humboldt University, Charité Medical School, Berlin, Germany.
| | | |
Collapse
|
50
|
Zaremba M, Sasnauskas G, Urbanke C, Siksnys V. Conversion of the Tetrameric Restriction Endonuclease Bse634I into a Dimer: Oligomeric Structure–Stability–Function Correlations. J Mol Biol 2005; 348:459-78. [PMID: 15811381 DOI: 10.1016/j.jmb.2005.02.037] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/15/2004] [Revised: 02/02/2005] [Accepted: 02/20/2005] [Indexed: 11/30/2022]
Abstract
The Bse634I restriction endonuclease is a tetramer and belongs to the type IIF subtype of restriction enzymes. It requires two recognition sites for its optimal activity and cleaves plasmid DNA with two sites much faster than a single-site DNA. We show that disruption of the tetramerisation interface of Bse634I by site-directed mutagenesis converts the tetrameric enzyme into a dimer. Dimeric W228A mutant cleaves plasmid DNA containing one or two sites with the same efficiency as the tetramer cleaves the two-site plasmid. Hence, the catalytic activity of the Bse634I tetramer on a single-site DNA is down-regulated due to the cross-talking interactions between the individual dimers. The autoinhibition within the Bse634I tetramer is relieved by bridging two DNA copies into the synaptic complex that promotes fast and concerted cleavage at both sites. Cleavage analysis of the oligonucleotide attached to the solid support revealed that Bse634I is able to form catalytically competent synaptic complexes by bridging two molecules of the cognate DNA, cognate DNA-miscognate DNA and cognate DNA-product DNA. Taken together, our data demonstrate that a single W228A mutation converts a tetrameric type IIF restriction enzyme Bse634I into the orthodox dimeric type IIP restriction endonuclease. However, the stability of the dimer towards chemical denaturants, thermal inactivation and proteolytic degradation are compromised.
Collapse
Affiliation(s)
- M Zaremba
- Institute of Biotechnology, Graiciuno 8, Vilnius LT-02241, Lithuania
| | | | | | | |
Collapse
|