1
|
Chernova LS, Vishnyakov IE, Börner J, Bogachev MI, Thormann KM, Kayumov AR. The Functionality of IbpA from Acholeplasma laidlawii Is Governed by Dynamic Rearrangement of Its Globular-Fibrillar Quaternary Structure. Int J Mol Sci 2023; 24:15445. [PMID: 37895124 PMCID: PMC10607609 DOI: 10.3390/ijms242015445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Small heat shock proteins (sHSPs) represent a first line of stress defense in many bacteria. The primary function of these molecular chaperones involves preventing irreversible protein denaturation and aggregation. In Escherichia coli, fibrillar EcIbpA binds unfolded proteins and keeps them in a folding-competent state. Further, its structural homologue EcIbpB induces the transition of EcIbpA to globules, thereby facilitating the substrate transfer to the HSP70-HSP100 system for refolding. The phytopathogenic Acholeplasma laidlawii possesses only a single sHSP, AlIbpA. Here, we demonstrate non-trivial features of the function and regulation of the chaperone-like activity of AlIbpA according to its interaction with other components of the mycoplasma multi-chaperone network. Our results show that the efficiency of the A. laidlawii multi-chaperone system is driven with the ability of AlIbpA to form both globular and fibrillar structures, thus combining functions of both IbpA and IbpB when transferring the substrate proteins to the HSP70-HSP100 system. In contrast to EcIbpA and EcIbpB, AlIbpA appears as an sHSP, in which the competition between the N- and C-terminal domains regulates the shift of the protein quaternary structure between a fibrillar and globular form, thus representing a molecular mechanism of its functional regulation. While the C-terminus of AlIbpA is responsible for fibrils formation and substrate capture, the N-terminus seems to have a similar function to EcIbpB through facilitating further substrate protein disaggregation using HSP70. Moreover, our results indicate that prior to the final disaggregation process, AlIbpA can directly transfer the substrate to HSP100, thereby representing an alternative mechanism in the HSP interaction network.
Collapse
Affiliation(s)
- Liliya S. Chernova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia;
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia;
- Institute of Microbiology and Molecular Biology, Justus Liebig University, Heinrich-Buff-Ring 26, 35392 Giessen, Germany; (J.B.); (K.M.T.)
| | - Innokentii E. Vishnyakov
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia;
| | - Janek Börner
- Institute of Microbiology and Molecular Biology, Justus Liebig University, Heinrich-Buff-Ring 26, 35392 Giessen, Germany; (J.B.); (K.M.T.)
| | - Mikhail I. Bogachev
- Centre for Digital Telecommunication Technologies, St. Petersburg Electrotechnical University, Professora Popova 5, 197376 St. Petersburg, Russia;
| | - Kai M. Thormann
- Institute of Microbiology and Molecular Biology, Justus Liebig University, Heinrich-Buff-Ring 26, 35392 Giessen, Germany; (J.B.); (K.M.T.)
| | - Airat R. Kayumov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia;
| |
Collapse
|
2
|
Shoko R, Magogo B, Pullen J, Mudziwapasi R, Ndlovu J. Construction and analysis of protein-protein interaction networks based on nuclear proteomics data of the desiccation-tolerant Xerophyta schlechteri leaves subjected to dehydration stress. Commun Integr Biol 2023; 16:2193000. [PMID: 36969388 PMCID: PMC10038031 DOI: 10.1080/19420889.2023.2193000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
In order to understand the mechanism of desiccation tolerance in Xerophyta schlechteri, we carried out an in silico study to identify hub proteins and functional modules in the nuclear proteome of the leaves. Protein-protein interaction networks were constructed and analyzed from proteome data obtained from Abdalla and Rafudeen. We constructed networks in Cytoscape using the GeneMania software and analyzed them using a Network Analyzer. Functional enrichment analysis of key proteins in the respective networks was done using GeneMania network enrichment analysis, and GO (Gene Ontology) terms were summarized using REViGO. Also, community analysis of differentially expressed proteins was conducted using the Cytoscape Apps, GeneMania and ClusterMaker. Functional modules associated with the communities were identified using an online tool, ShinyGO. We identified HSP 70-2 as the super-hub protein among the up-regulated proteins. On the other hand, 40S ribosomal protein S2-3 (a protein added by GeneMANIA) was identified as a super-hub protein associated with the down-regulated proteins. For up-regulated proteins, the enriched biological process terms were those associated with chromatin organization and negative regulation of transcription. In the down-regulated protein-set, terms associated with protein synthesis were significantly enriched. Community analysis identified three functional modules that can be categorized as chromatin organization, anti-oxidant activity and metabolic processes.
Collapse
Affiliation(s)
- Ryman Shoko
- Department of Biology, Chinhoyi University of Technology, Chinhoyi, Zimbabwe
- CONTACT Ryman Shoko Department of Biology, Chinhoyi University of Technology, Private Bag 7724, Chinhoyi, Zimbabwe
| | - Babra Magogo
- Department of Biology, Chinhoyi University of Technology, Chinhoyi, Zimbabwe
| | - Jessica Pullen
- Department of Animal Science and Rangeland Management, Lupane State University, Lupane, Zimbabwe
| | - Reagan Mudziwapasi
- Department of Research and Innovation, Midlands State University, Gweru, Zimbabwe
| | - Joice Ndlovu
- Department of Biology, Chinhoyi University of Technology, Chinhoyi, Zimbabwe
| |
Collapse
|
3
|
Wankhede NL, Kale MB, Upaganlawar AB, Taksande BG, Umekar MJ, Behl T, Abdellatif AAH, Bhaskaran PM, Dachani SR, Sehgal A, Singh S, Sharma N, Makeen HA, Albratty M, Dailah HG, Bhatia S, Al-Harrasi A, Bungau S. Involvement of molecular chaperone in protein-misfolding brain diseases. Biomed Pharmacother 2022; 147:112647. [PMID: 35149361 DOI: 10.1016/j.biopha.2022.112647] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/03/2022] [Accepted: 01/12/2022] [Indexed: 12/19/2022] Open
Abstract
Protein misfolding causes aggregation and build-up in a variety of brain diseases. There are numeral molecules that are linked with the protein homeostasis mechanism. Molecular chaperones are one of such molecules that are responsible for protection against protein misfolded and aggregation-induced neurotoxicity. Many studies have explored the participation of molecular chaperones in Parkinson's disease, Alzheimer's disease, Amyotrophic lateral sclerosis, and Huntington's diseases. In this review, we highlighted the constructive role of molecular chaperones in neurological diseases characterized by protein misfolding and aggregation and their capability to control aberrant protein interactions at an early stage thus successfully suppressing pathogenic cascades. A comprehensive understanding of the protein misfolding associated with brain diseases and the molecular basis of involvement of chaperone against aggregation-induced cellular stress might lead to the progress of new therapeutic intrusion-related to protein misfolding and aggregation.
Collapse
Affiliation(s)
- Nitu L Wankhede
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, India
| | - Mayur B Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, India
| | - Aman B Upaganlawar
- SNJB's Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad, Nasik, Maharashta, India
| | - Brijesh G Taksande
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, India
| | - Milind J Umekar
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Ahmed A H Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah, Saudi Arabia; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | | | - Sudarshan Reddy Dachani
- Department of Pharmacy Practice & Pharmacology, College of Pharmacy, Shaqra University (Al-Dawadmi Campus), Al-Dawadmi, Saudi Arabia
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Hafiz A Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan university, Jazan, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hamed Ghaleb Dailah
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan, Saudi Arabia
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman; School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Ahmed Al-Harrasi
- School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania.
| |
Collapse
|
4
|
Wyszkowski H, Janta A, Sztangierska W, Obuchowski I, Chamera T, Kłosowska A, Liberek K. Class-specific interactions between Sis1 J-domain protein and Hsp70 chaperone potentiate disaggregation of misfolded proteins. Proc Natl Acad Sci U S A 2021; 118:e2108163118. [PMID: 34873058 PMCID: PMC8670446 DOI: 10.1073/pnas.2108163118] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2021] [Indexed: 12/18/2022] Open
Abstract
Protein homeostasis is constantly being challenged with protein misfolding that leads to aggregation. Hsp70 is one of the versatile chaperones that interact with misfolded proteins and actively support their folding. Multifunctional Hsp70s are harnessed to specific roles by J-domain proteins (JDPs, also known as Hsp40s). Interaction with the J-domain of these cochaperones stimulates ATP hydrolysis in Hsp70, which stabilizes substrate binding. In eukaryotes, two classes of JDPs, Class A and Class B, engage Hsp70 in the reactivation of aggregated proteins. In most species, excluding metazoans, protein recovery also relies on an Hsp100 disaggregase. Although intensely studied, many mechanistic details of how the two JDP classes regulate protein disaggregation are still unknown. Here, we explore functional differences between the yeast Class A (Ydj1) and Class B (Sis1) JDPs at the individual stages of protein disaggregation. With real-time biochemical tools, we show that Ydj1 alone is superior to Sis1 in aggregate binding, yet it is Sis1 that recruits more Ssa1 molecules to the substrate. This advantage of Sis1 depends on its ability to bind to the EEVD motif of Hsp70, a quality specific to most of Class B JDPs. This second interaction also conditions the Hsp70-induced aggregate modification that boosts its subsequent dissolution by the Hsp104 disaggregase. Our results suggest that the Sis1-mediated chaperone assembly at the aggregate surface potentiates the entropic pulling, driven polypeptide disentanglement, while Ydj1 binding favors the refolding of the solubilized proteins. Such subspecialization of the JDPs across protein reactivation improves the robustness and efficiency of the disaggregation machinery.
Collapse
Affiliation(s)
- Hubert Wyszkowski
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk 80-307, Poland
| | - Anna Janta
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk 80-307, Poland
| | - Wiktoria Sztangierska
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk 80-307, Poland
| | - Igor Obuchowski
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk 80-307, Poland
| | - Tomasz Chamera
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk 80-307, Poland
| | - Agnieszka Kłosowska
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk 80-307, Poland
| | - Krzysztof Liberek
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk 80-307, Poland
| |
Collapse
|
5
|
Hsp100 Molecular Chaperone ClpB and Its Role in Virulence of Bacterial Pathogens. Int J Mol Sci 2021; 22:ijms22105319. [PMID: 34070174 PMCID: PMC8158500 DOI: 10.3390/ijms22105319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 01/05/2023] Open
Abstract
This review focuses on the molecular chaperone ClpB that belongs to the Hsp100/Clp subfamily of the AAA+ ATPases and its biological function in selected bacterial pathogens, causing a variety of human infectious diseases, including zoonoses. It has been established that ClpB disaggregates and reactivates aggregated cellular proteins. It has been postulated that ClpB’s protein disaggregation activity supports the survival of pathogenic bacteria under host-induced stresses (e.g., high temperature and oxidative stress), which allows them to rapidly adapt to the human host and establish infection. Interestingly, ClpB may also perform other functions in pathogenic bacteria, which are required for their virulence. Since ClpB is not found in human cells, this chaperone emerges as an attractive target for novel antimicrobial therapies in combating bacterial infections.
Collapse
|
6
|
Huang M, Zhao Y, Feng L, Zhu L, Zhan L, Chen X. Role of ClpB From Corynebacterium crenatum in Thermal Stress and Arginine Fermentation. Front Microbiol 2020; 11:1660. [PMID: 32765470 PMCID: PMC7380099 DOI: 10.3389/fmicb.2020.01660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 06/25/2020] [Indexed: 12/04/2022] Open
Abstract
ClpB, an ATP-dependent molecular chaperone, is involved in metabolic pathways and plays important roles in microorganisms under stress conditions. Metabolic pathways and stress resistance are important characteristics of industrially -relevant bacteria during fermentation. Nevertheless, ClpB-related observations have been rarely reported in industrially -relevant microorganisms. Herein, we found a homolog of ClpB from Corynebacterium crenatum. The amino acid sequence of ClpB was analyzed, and the recombinant ClpB protein was purified and characterized. The full function of ClpB requires DnaK as chaperone protein. For this reason, dnaK/clpB deletion mutants and the complemented strains were constructed to investigate the role of ClpB. The results showed that DnaK/ClpB is not essential for the survival of C. crenatum MT under pH and alcohol stresses. The ClpB-deficient or DnaK-deficient C. crenatum mutants showed weakened growth during thermal stress. In addition, the results demonstrated that deletion of the clpB gene affected glucose consumption and L-arginine, L-glutamate, and lactate production during fermentation.
Collapse
Affiliation(s)
- Mingzhu Huang
- Department of Life Science, Jiangxi Normal University, Nanchang, China.,Key Laboratory of Functional Small Organic Molecule of Ministry of Education, Jiangxi Normal University, Nanchang, China
| | - Yue Zhao
- Department of Life Science, Jiangxi Normal University, Nanchang, China
| | - Lin Feng
- Department of Life Science, Jiangxi Normal University, Nanchang, China
| | - Lingfeng Zhu
- Department of Life Science, Jiangxi Normal University, Nanchang, China
| | - Li Zhan
- Department of Life Science, Jiangxi Normal University, Nanchang, China
| | - Xuelan Chen
- Department of Life Science, Jiangxi Normal University, Nanchang, China.,Key Laboratory of Functional Small Organic Molecule of Ministry of Education, Jiangxi Normal University, Nanchang, China
| |
Collapse
|
7
|
Alam A, Golovliov I, Javed E, Kumar R, Ådén J, Sjöstedt A. Dissociation between the critical role of ClpB of Francisella tularensis for the heat shock response and the DnaK interaction and its important role for efficient type VI secretion and bacterial virulence. PLoS Pathog 2020; 16:e1008466. [PMID: 32275693 PMCID: PMC7182274 DOI: 10.1371/journal.ppat.1008466] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 04/24/2020] [Accepted: 03/06/2020] [Indexed: 01/20/2023] Open
Abstract
Francisella tularensis, a highly infectious, intracellular bacterium possesses an atypical type VI secretion system (T6SS), which is essential for its virulence. The chaperone ClpB, a member of the Hsp100/Clp family, is involved in Francisella T6SS disassembly and type VI secretion (T6S) is impaired in its absence. We asked if the role of ClpB for T6S was related to its prototypical role for the disaggregation activity. The latter is dependent on its interaction with the DnaK/Hsp70 chaperone system. Key residues of the ClpB-DnaK interaction were identified by molecular dynamic simulation and verified by targeted mutagenesis. Using such targeted mutants, it was found that the F. novicida ClpB-DnaK interaction was dispensable for T6S, intracellular replication, and virulence in a mouse model, although essential for handling of heat shock. Moreover, by mutagenesis of key amino acids of the Walker A, Walker B, and Arginine finger motifs of each of the two Nucleotide-Binding Domains, their critical roles for heat shock, T6S, intracellular replication, and virulence were identified. In contrast, the N-terminus was dispensable for heat shock, but required for T6S, intracellular replication, and virulence. Complementation of the ΔclpB mutant with a chimeric F. novicida ClpB expressing the N-terminal of Escherichia coli, led to reconstitution of the wild-type phenotype. Collectively, the data demonstrate that the ClpB-DnaK interaction does not contribute to T6S, whereas the N-terminal and NBD domains displayed critical roles for T6S and virulence.
Collapse
Affiliation(s)
- Athar Alam
- Department of Clinical Microbiology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Igor Golovliov
- Department of Clinical Microbiology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Eram Javed
- Department of Clinical Microbiology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Rajender Kumar
- Department of Clinical Microbiology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Jörgen Ådén
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Anders Sjöstedt
- Department of Clinical Microbiology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
8
|
Chamera T, Kłosowska A, Janta A, Wyszkowski H, Obuchowski I, Gumowski K, Liberek K. Selective Hsp70-Dependent Docking of Hsp104 to Protein Aggregates Protects the Cell from the Toxicity of the Disaggregase. J Mol Biol 2019; 431:2180-2196. [PMID: 31026451 DOI: 10.1016/j.jmb.2019.04.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/11/2019] [Accepted: 04/13/2019] [Indexed: 02/01/2023]
Abstract
Hsp104 is a yeast chaperone that rescues misfolded proteins from aggregates associated with proteotoxic stress and aging. Hsp104 consists of N-terminal domain, regulatory M-domain and two ATPase domains, assembled into a spiral-shaped hexamer. Protein disaggregation involves polypeptide extraction from an aggregate and its translocation through the central channel. This process relies on Hsp104 cooperation with the Hsp70 chaperone, which also plays important role in regulation of the disaggregase. Although Hsp104 protein-unfolding activity enables cells to survive stress, when uncontrolled, it becomes toxic to the cell. In this work, we investigated the significance of the interaction between Hsp70 and the M-domain of Hsp104 for functioning of the disaggregation system. We identified phenylalanine at position 508 in Hsp104 to be the key site of interaction with Hsp70. Disruption of this site makes Hsp104 unable to bind protein aggregates and to confer tolerance in yeast cells. The use of this Hsp104 variant demonstrates that Hsp70 allows successful initiation of disaggregation only as long as it is able to interact with the disaggregase. As reported previously, this interaction causes release of the M-domain-driven repression of Hsp104. Now we reveal that, apart from this allosteric effect, the interaction between the chaperone partners itself contributes to effective initiation of disaggregation and plays important role in cell protection against Hsp104-induced toxicity. Interaction with Hsp70 shifts Hsp104 substrate specificity from non-aggregated, disordered substrates toward protein aggregates. Accordingly, Hsp70-mediated sequestering of the Hsp104 unfoldase in aggregates makes it less toxic and more productive.
Collapse
Affiliation(s)
- Tomasz Chamera
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdańsk, Abrahama 58, 80-307 Gdańsk, Poland
| | - Agnieszka Kłosowska
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdańsk, Abrahama 58, 80-307 Gdańsk, Poland.
| | - Anna Janta
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdańsk, Abrahama 58, 80-307 Gdańsk, Poland
| | - Hubert Wyszkowski
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdańsk, Abrahama 58, 80-307 Gdańsk, Poland
| | - Igor Obuchowski
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdańsk, Abrahama 58, 80-307 Gdańsk, Poland
| | - Krzysztof Gumowski
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdańsk, Abrahama 58, 80-307 Gdańsk, Poland
| | - Krzysztof Liberek
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdańsk, Abrahama 58, 80-307 Gdańsk, Poland.
| |
Collapse
|
9
|
Tunable microsecond dynamics of an allosteric switch regulate the activity of a AAA+ disaggregation machine. Nat Commun 2019; 10:1438. [PMID: 30926805 PMCID: PMC6440998 DOI: 10.1038/s41467-019-09474-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 03/14/2019] [Indexed: 12/13/2022] Open
Abstract
Large protein machines are tightly regulated through allosteric communication channels. Here we demonstrate the involvement of ultrafast conformational dynamics in allosteric regulation of ClpB, a hexameric AAA+ machine that rescues aggregated proteins. Each subunit of ClpB contains a unique coiled-coil structure, the middle domain (M domain), proposed as a control element that binds the co-chaperone DnaK. Using single-molecule FRET spectroscopy, we probe the M domain during the chaperone cycle and find it to jump on the microsecond time scale between two states, whose structures are determined. The M-domain jumps are much faster than the overall activity of ClpB, making it an effectively continuous, tunable switch. Indeed, a series of allosteric interactions are found to modulate the dynamics, including binding of nucleotides, DnaK and protein substrates. This mode of dynamic control enables fast cellular adaptation and may be a general mechanism for the regulation of cellular machineries. Large protein machines are tightly regulated through allosteric communication channels. Here authors use single-molecule FRET and demonstrate the involvement of ultrafast conformational dynamics in the allosteric regulation of ClpB, a hexameric AAA+ machine that rescues aggregated proteins.
Collapse
|
10
|
Dahiya V, Buchner J. Functional principles and regulation of molecular chaperones. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 114:1-60. [PMID: 30635079 DOI: 10.1016/bs.apcsb.2018.10.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
To be able to perform their biological function, a protein needs to be correctly folded into its three dimensional structure. The protein folding process is spontaneous and does not require the input of energy. However, in the crowded cellular environment where there is high risk of inter-molecular interactions that may lead to protein molecules sticking to each other, hence forming aggregates, protein folding is assisted. Cells have evolved robust machinery called molecular chaperones to deal with the protein folding problem and to maintain proteins in their functional state. Molecular chaperones promote efficient folding of newly synthesized proteins, prevent their aggregation and ensure protein homeostasis in cells. There are different classes of molecular chaperones functioning in a complex interplay. In this review, we discuss the principal characteristics of different classes of molecular chaperones, their structure-function relationships, their mode of regulation and their involvement in human disorders.
Collapse
Affiliation(s)
- Vinay Dahiya
- Center for Integrated Protein Science Munich CIPSM at the Department Chemie, Technische Universität München, Garching, Germany
| | - Johannes Buchner
- Center for Integrated Protein Science Munich CIPSM at the Department Chemie, Technische Universität München, Garching, Germany.
| |
Collapse
|
11
|
Park WB, Im YB, Shim S, Yoo HS. Analysis of protein expression in Brucella abortus mutants with different growth rates by two-dimensional gel electrophoresis and LC-MS/MS peptide analysis. J Vet Sci 2018; 19:216-231. [PMID: 29032658 PMCID: PMC5879070 DOI: 10.4142/jvs.2018.19.2.216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 09/12/2017] [Accepted: 09/22/2017] [Indexed: 11/20/2022] Open
Abstract
Brucella abortus is a bacterium that causes brucellosis and is the causative agent of worldwide zoonoses. Pathogenesis of the B. abortus infection is complicated, and several researchers have attempted to elucidate the infection mechanism of B. abortus. While several proteins have been revealed as pathogenic factors by previous researchers, the underlying mechanism of B. abortus infection is unresolved. In this study, we identified proteins showing different expression levels in B. abortus mutants with different biological characteristics that were generated by random insertion of a transposon. Five mutants were selected based on biological characteristics, in particular, their growth features. Total proteins of mutant and wild-type B. abortus were purified and subjected to two-dimensional gel electrophoresis. Thirty protein spots of each mutant with expression increases or decreases were selected; those with a change of more than 2-fold were compared with the wild-type. Selected spots underwent liquid chromatography tandem mass spectrometry for peptide analysis. DnaK and ClpB, involved in protein aggregation, increased. SecA and GAPDH, associated with energy metabolism, decreased in some mutants with a growth rate slower than that of the wild-type. Mutants with slower growth showed a decrease in energy metabolism-related proteins, while mutants with faster growth showed an increase in pathogenicity-related proteins.
Collapse
Affiliation(s)
- Woo Bin Park
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Young Bin Im
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Soojin Shim
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Han Sang Yoo
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.,Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
| |
Collapse
|
12
|
Alam A, Golovliov I, Javed E, Sjöstedt A. ClpB mutants of Francisella tularensis subspecies holarctica and tularensis are defective for type VI secretion and intracellular replication. Sci Rep 2018; 8:11324. [PMID: 30054549 PMCID: PMC6063899 DOI: 10.1038/s41598-018-29745-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/17/2018] [Indexed: 12/13/2022] Open
Abstract
Francisella tularensis, a highly infectious, intracellular bacterium possesses an atypical type VI secretion system (T6SS), which is essential for the virulence of the bacterium. Recent data suggest that the HSP100 family member, ClpB, is involved in T6SS disassembly in the subspecies Francisella novicida. Here, we investigated the role of ClpB for the function of the T6SS and for phenotypic characteristics of the human pathogenic subspecies holarctica and tularensis. The ∆clpB mutants of the human live vaccine strain, LVS, belonging to subspecies holarctica, and the highly virulent SCHU S4 strain, belonging to subspecies tularensis, both showed extreme susceptibility to heat shock and low pH, severely impaired type VI secretion (T6S), and significant, but impaired intracellular replication compared to the wild-type strains. Moreover, they showed essentially intact phagosomal escape. Infection of mice demonstrated that both ΔclpB mutants were highly attenuated, but the SCHU S4 mutant showed more effective replication than the LVS strain. Collectively, our data demonstrate that ClpB performs multiple functions in the F. tularensis subspecies holarctica and tularensis and its function is important for T6S, intracellular replication, and virulence.
Collapse
Affiliation(s)
- Athar Alam
- Department of Clinical Microbiology, Umeå University, SE-901 85, Umeå, Sweden
| | - Igor Golovliov
- Department of Clinical Microbiology, Umeå University, SE-901 85, Umeå, Sweden
| | - Eram Javed
- Department of Clinical Microbiology, Umeå University, SE-901 85, Umeå, Sweden
| | - Anders Sjöstedt
- Department of Clinical Microbiology, Umeå University, SE-901 85, Umeå, Sweden.
| |
Collapse
|
13
|
Durie CL, Duran EC, Lucius AL. Escherichia coli DnaK Allosterically Modulates ClpB between High- and Low-Peptide Affinity States. Biochemistry 2018; 57:3665-3675. [PMID: 29812913 DOI: 10.1021/acs.biochem.8b00045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
ClpB and DnaKJE provide protection to Escherichia coli cells during extreme environmental stress. Together, this co-chaperone system can resolve protein aggregates, restoring misfolded proteins to their native form and function in solubilizing damaged proteins for removal by the cell's proteolytic systems. DnaK is the component of the KJE system that directly interacts with ClpB. There are many hypotheses for how DnaK affects ClpB-catalyzed disaggregation, each with some experimental support. Here, we build on our recent work characterizing the molecular mechanism of ClpB-catalyzed polypeptide translocation by developing a stopped-flow FRET assay that allows us to detect ClpB's movement on model polypeptide substrates in the absence or presence of DnaK. We find that DnaK induces ClpB to dissociate from the polypeptide substrate. We propose that DnaK acts as a peptide release factor, binding ClpB and causing the ClpB conformation to change to a low-peptide affinity state. Such a role for DnaK would allow ClpB to rebind to another portion of an aggregate and continue nonprocessive translocation to disrupt the aggregate.
Collapse
Affiliation(s)
- Clarissa L Durie
- Department of Chemistry , University of Alabama at Birmingham , Birmingham , Alabama 35294-1240 , United States
| | - Elizabeth C Duran
- Department of Chemistry , University of Alabama at Birmingham , Birmingham , Alabama 35294-1240 , United States
| | - Aaron L Lucius
- Department of Chemistry , University of Alabama at Birmingham , Birmingham , Alabama 35294-1240 , United States
| |
Collapse
|
14
|
Miller JM, Chaudhary H, Marsee JD. Phylogenetic analysis predicts structural divergence for proteobacterial ClpC proteins. J Struct Biol 2017; 201:52-62. [PMID: 29129755 DOI: 10.1016/j.jsb.2017.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/06/2017] [Accepted: 11/08/2017] [Indexed: 12/29/2022]
Abstract
Regulated proteolysis is required in all organisms for the removal of misfolded or degradation-tagged protein substrates in cellular quality control pathways. The molecular machines that catalyze this process are known as ATP-dependent proteases with examples that include ClpAP and ClpCP. Clp/Hsp100 subunits form ring-structures that couple the energy of ATP binding and hydrolysis to protein unfolding and subsequent translocation of denatured protein into the compartmentalized ClpP protease for degradation. Copies of the clpA, clpC, clpE, clpK, and clpL genes are present in all characterized bacteria and their gene products are highly conserved in structure and function. However, the evolutionary relationship between these proteins remains unclear. Here we report a comprehensive phylogenetic analysis that suggests divergent evolution yielded ClpA from an ancestral ClpC protein and that ClpE/ClpL represent intermediates between ClpA/ClpC. This analysis also identifies a group of proteobacterial ClpC proteins that are likely not functional in regulated proteolysis. Our results strongly suggest that bacterial ClpC proteins should not be assumed to all function identically due to the structural differences identified here.
Collapse
Affiliation(s)
- Justin M Miller
- Middle Tennessee State University, Department of Chemistry, 1301 East Main Street, Murfreesboro, TN 37132, United States.
| | - Hamza Chaudhary
- Middle Tennessee State University, Department of Chemistry, 1301 East Main Street, Murfreesboro, TN 37132, United States
| | - Justin D Marsee
- Middle Tennessee State University, Department of Chemistry, 1301 East Main Street, Murfreesboro, TN 37132, United States
| |
Collapse
|
15
|
Duran EC, Weaver CL, Lucius AL. Comparative Analysis of the Structure and Function of AAA+ Motors ClpA, ClpB, and Hsp104: Common Threads and Disparate Functions. Front Mol Biosci 2017; 4:54. [PMID: 28824920 PMCID: PMC5540906 DOI: 10.3389/fmolb.2017.00054] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/13/2017] [Indexed: 11/25/2022] Open
Abstract
Cellular proteostasis involves not only the expression of proteins in response to environmental needs, but also the timely repair or removal of damaged or unneeded proteins. AAA+ motor proteins are critically involved in these pathways. Here, we review the structure and function of AAA+ proteins ClpA, ClpB, and Hsp104. ClpB and Hsp104 rescue damaged proteins from toxic aggregates and do not partner with any protease. ClpA functions as the regulatory component of the ATP dependent protease complex ClpAP, and also remodels inactive RepA dimers into active monomers in the absence of the protease. Because ClpA functions both with and without a proteolytic component, it is an ideal system for developing strategies that address one of the major challenges in the study of protein remodeling machines: how do we observe a reaction in which the substrate protein does not undergo covalent modification? Here, we review experimental designs developed for the examination of polypeptide translocation catalyzed by the AAA+ motors in the absence of proteolytic degradation. We propose that transient state kinetic methods are essential for the examination of elementary kinetic mechanisms of these motor proteins. Furthermore, rigorous kinetic analysis must also account for the thermodynamic properties of these complicated systems that reside in a dynamic equilibrium of oligomeric states, including the biologically active hexamer.
Collapse
Affiliation(s)
- Elizabeth C Duran
- Department of Chemistry, University of Alabama at BirminghamBirmingham, AL, United States
| | - Clarissa L Weaver
- Department of Chemistry, University of Alabama at BirminghamBirmingham, AL, United States
| | - Aaron L Lucius
- Department of Chemistry, University of Alabama at BirminghamBirmingham, AL, United States
| |
Collapse
|
16
|
Krajewska J, Modrak-Wójcik A, Arent ZJ, Więckowski D, Zolkiewski M, Bzowska A, Kędzierska-Mieszkowska S. Characterization of the molecular chaperone ClpB from the pathogenic spirochaete Leptospira interrogans. PLoS One 2017; 12:e0181118. [PMID: 28700685 PMCID: PMC5507356 DOI: 10.1371/journal.pone.0181118] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/26/2017] [Indexed: 11/18/2022] Open
Abstract
Leptospira interrogans is a spirochaete responsible for leptospirosis in mammals. The molecular mechanisms of the Leptospira virulence remain mostly unknown. Recently, it has been demonstrated that an AAA+ chaperone ClpB (a member of the Hsp100 family) from L. interrogans (ClpBLi) is not only essential for survival of Leptospira under the thermal and oxidative stresses, but also during infection of a host. The aim of this study was to provide further insight into the role of ClpB in the pathogenic spirochaetes and explore its biochemical properties. We found that a non-hydrolysable ATP analogue, ATPγS, but not AMP-PNP induces the formation of ClpBLi hexamers and stabilizes the associated form of the chaperone. ADP also induces structural changes in ClpBLi and promotes its self-assembly, but does not produce full association into the hexamers. We also demonstrated that ClpBLi exhibits a weak ATPase activity that is stimulated by κ-casein and poly-lysine, and may mediate protein disaggregation independently from the DnaK chaperone system. Unexpectedly, the presence of E. coli DnaK/DnaJ/GrpE did not significantly affect the disaggregation activity of ClpBLi and ClpBLi did not substitute for the ClpBEc function in the clpB-null E. coli strain. This result underscores the species-specificity of the ClpB cooperation with the co-chaperones and is most likely due to a loss of interactions between the ClpBLi middle domain and the E. coli DnaK. We also found that ClpBLi interacts more efficiently with the aggregated G6PDH in the presence of ATPγS rather than ATP. Our results indicate that ClpB's importance during infection might be due to its role as a molecular chaperone involved in reactivation of protein aggregates.
Collapse
Affiliation(s)
- Joanna Krajewska
- Department of General and Medical Biochemistry, University of Gdańsk, Faculty of Biology, Gdańsk, Poland
| | - Anna Modrak-Wójcik
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Zbigniew J. Arent
- University Centre of Veterinary Medicine UJ-UR, University of Agriculture in Krakow, Krakow, Poland
| | - Daniel Więckowski
- Department of General and Medical Biochemistry, University of Gdańsk, Faculty of Biology, Gdańsk, Poland
| | - Michal Zolkiewski
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, United States of America
| | - Agnieszka Bzowska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
17
|
Weaver CL, Duran EC, Mack KL, Lin J, Jackrel ME, Sweeny EA, Shorter J, Lucius AL. Avidity for Polypeptide Binding by Nucleotide-Bound Hsp104 Structures. Biochemistry 2017; 56:2071-2075. [PMID: 28379007 DOI: 10.1021/acs.biochem.7b00225] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent Hsp104 structural studies have reported both planar and helical models of the hexameric structure. The conformation of Hsp104 monomers within the hexamer is affected by nucleotide ligation. After nucleotide-driven hexamer formation, Hsp104-catalyzed disruption of protein aggregates requires binding to the peptide substrate. Here, we examine the oligomeric state of Hsp104 and its peptide binding competency in the absence of nucleotide and in the presence of ADP, ATPγS, AMPPNP, or AMPPCP. Surprisingly, we found that only ATPγS facilitates avid peptide binding by Hsp104. We propose that the modulation between high- and low-peptide affinity states observed with these ATP analogues is an important component of the disaggregation mechanism of Hsp104.
Collapse
Affiliation(s)
- Clarissa L Weaver
- Department of Chemistry, University of Alabama at Birmingham , Birmingham, Alabama 35294, United States
| | - Elizabeth C Duran
- Department of Chemistry, University of Alabama at Birmingham , Birmingham, Alabama 35294, United States
| | - Korrie L Mack
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - JiaBei Lin
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Meredith E Jackrel
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Elizabeth A Sweeny
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Aaron L Lucius
- Department of Chemistry, University of Alabama at Birmingham , Birmingham, Alabama 35294, United States
| |
Collapse
|
18
|
Reconstitution of a Mycobacterium tuberculosis proteostasis network highlights essential cofactor interactions with chaperone DnaK. Proc Natl Acad Sci U S A 2016; 113:E7947-E7956. [PMID: 27872278 DOI: 10.1073/pnas.1617644113] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During host infection, Mycobacterium tuberculosis (Mtb) encounters several types of stress that impair protein integrity, including reactive oxygen and nitrogen species and chemotherapy. The resulting protein aggregates can be resolved or degraded by molecular machinery conserved from bacteria to eukaryotes. Eukaryotic Hsp104/Hsp70 and their bacterial homologs ClpB/DnaK are ATP-powered chaperones that restore toxic protein aggregates to a native folded state. DnaK is essential in Mycobacterium smegmatis, and ClpB is involved in asymmetrically distributing damaged proteins during cell division as a mechanism of survival in Mtb, commending both proteins as potential drug targets. However, their molecular partners in protein reactivation have not been characterized in mycobacteria. Here, we reconstituted the activities of the Mtb ClpB/DnaK bichaperone system with the cofactors DnaJ1, DnaJ2, and GrpE and the small heat shock protein Hsp20. We found that DnaJ1 and DnaJ2 activate the ATPase activity of DnaK differently. A point mutation in the highly conserved HPD motif of the DnaJ proteins abrogates their ability to activate DnaK, although the DnaJ2 mutant still binds to DnaK. The purified Mtb ClpB/DnaK system reactivated a heat-denatured model substrate, but the DnaJ HPD mutants inhibited the reaction. Finally, either DnaJ1 or DnaJ2 is required for mycobacterial viability, as is the DnaK-activating activity of a DnaJ protein. These studies lay the groundwork for strategies to target essential chaperone-protein interactions in Mtb, the leading cause of death from a bacterial infection.
Collapse
|
19
|
Kłosowska A, Chamera T, Liberek K. Adenosine diphosphate restricts the protein remodeling activity of the Hsp104 chaperone to Hsp70 assisted disaggregation. eLife 2016; 5. [PMID: 27223323 PMCID: PMC4927293 DOI: 10.7554/elife.15159] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/24/2016] [Indexed: 01/12/2023] Open
Abstract
Hsp104 disaggregase provides thermotolerance in yeast by recovering proteins from aggregates in cooperation with the Hsp70 chaperone. Protein disaggregation involves polypeptide extraction from aggregates and its translocation through the central channel of the Hsp104 hexamer. This process relies on adenosine triphosphate (ATP) hydrolysis. Considering that Hsp104 is characterized by low affinity towards ATP and is strongly inhibited by adenosine diphosphate (ADP), we asked how Hsp104 functions at the physiological levels of adenine nucleotides. We demonstrate that physiological levels of ADP highly limit Hsp104 activity. This inhibition, however, is moderated by the Hsp70 chaperone, which allows efficient disaggregation by supporting Hsp104 binding to aggregates but not to non-aggregated, disordered protein substrates. Our results point to an additional level of Hsp104 regulation by Hsp70, which restricts the potentially toxic protein unfolding activity of Hsp104 to the disaggregation process, providing the yeast protein-recovery system with substrate specificity and efficiency in ATP consumption. DOI:http://dx.doi.org/10.7554/eLife.15159.001 Under stressful conditions, such as high temperatures, many proteins lose their proper structure and clump together to form large irregular aggregates. To combat this effect, living organisms exposed to stress produce specialized proteins called chaperones, which can rescue the damaged proteins from aggregates. Studies into this “disaggregation” process often use budding yeast as a model organism. The protein-recovery machinery in this yeast is composed of a ring-shaped enzyme called Hsp104, together with a chaperone called Hsp70 and its partner Hsp40. The Hsp104 enzyme converts molecules of ATP into ADP and uses the energy released from the reaction to move, or “translocate”, damaged proteins through its central channel and release them from the aggregates. Previous studies had reported that ADP negatively affects Hsp104. Now, Kłosowska et al show that Hsp104 is almost inactive in a test-tube if the concentration of ADP is as high as that found inside a cell. This raises a question: how can Hsp104 efficiently remove proteins from aggregates in cells if the conditions are so unfavorable? Using purified proteins, Kłosowska et al. go on to show that Hsp104 is able to tolerate the level of ADP found inside cells thanks to the Hsp70 chaperone. The experiments show that ADP weakens Hsp104’s ability to bind proteins while Hsp70 supports this ability and counteracts the negative effect of ADP. Further experiments demonstrate that Hsp104 is less affected by ADP, and binds more readily to ATP, when it is translocating proteins. These findings explain how the yeast disaggregating machinery can work even at relatively high concentrations of ADP, and reveal a new control mechanism in the disaggregation process. Many important proteins have poorly organized fragments that can be recognized by Hsp104, and if Hsp104 was to bind to and translocate these proteins it could harm the cell. The findings of Kłosowska et al. suggest that Hsp70 helps Hsp104 to specifically bind to and act upon proteins in aggregates, while binding to partly unstructured proteins is limited by the high ADP concentration. Further studies are now needed to understand how the protein-recovery machinery can discriminate between aggregated and non-aggregated proteins. DOI:http://dx.doi.org/10.7554/eLife.15159.002
Collapse
Affiliation(s)
- Agnieszka Kłosowska
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and the Medical University of Gdańsk, Gdańsk, Poland
| | - Tomasz Chamera
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and the Medical University of Gdańsk, Gdańsk, Poland
| | - Krzysztof Liberek
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and the Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
20
|
Mokry DZ, Abrahão J, Ramos CH. Disaggregases, molecular chaperones that resolubilize protein aggregates. ACTA ACUST UNITED AC 2015; 87:1273-92. [DOI: 10.1590/0001-3765201520140671] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The process of folding is a seminal event in the life of a protein, as it is essential for proper protein function and therefore cell physiology. Inappropriate folding, or misfolding, can not only lead to loss of function, but also to the formation of protein aggregates, an insoluble association of polypeptides that harm cell physiology, either by themselves or in the process of formation. Several biological processes have evolved to prevent and eliminate the existence of non-functional and amyloidogenic aggregates, as they are associated with several human pathologies. Molecular chaperones and heat shock proteins are specialized in controlling the quality of the proteins in the cell, specifically by aiding proper folding, and dissolution and clearance of already formed protein aggregates. The latter is a function of disaggregases, mainly represented by the ClpB/Hsp104 subfamily of molecular chaperones, that are ubiquitous in all organisms but, surprisingly, have no orthologs in the cytosol of metazoan cells. This review aims to describe the characteristics of disaggregases and to discuss the function of yeast Hsp104, a disaggregase that is also involved in prion propagation and inheritance.
Collapse
Affiliation(s)
| | - Josielle Abrahão
- Universidade Estadual de Campinas, Brazil; Universidade Estadual de Campinas, Brazil
| | | |
Collapse
|
21
|
ClpB dynamics is driven by its ATPase cycle and regulated by the DnaK system and substrate proteins. Biochem J 2015; 466:561-70. [PMID: 25558912 DOI: 10.1042/bj20141390] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The hexameric AAA+ (ATPase associated with various cellular activities) chaperone ClpB reactivates protein aggregates in collaboration with the DnaK system. An intriguing aspect of ClpB function is that the active hexamer is unstable and therefore questions how this chaperone uses multiple rounds of ATP hydrolysis to translocate substrates through its central channel. In the present paper, we report the use of biochemical and fluorescence tools to explore ClpB dynamics under different experimental conditions. The analysis of the chaperone activity and the kinetics of subunit exchange between protein hexamers labelled at different protein domains indicates, in contrast with the current view, that (i) ATP favours assembly and ADP dissociation of the hexameric assembly, (ii) subunit exchange kinetics is at least one order of magnitude slower than the ATP hydrolysis rate, (iii) ClpB dynamics and activity are related processes, and (iv) DnaK and substrate proteins regulate the ATPase activity and dynamics of ClpB. These data suggest that ClpB hexamers remain associated during several ATP hydrolysis events required to partially or completely translocate substrates through the protein central channel, and that ClpB dynamics is tuned by DnaK and substrate proteins.
Collapse
|
22
|
Doyle SM, Genest O, Wickner S. Protein rescue from aggregates by powerful molecular chaperone machines. Nat Rev Mol Cell Biol 2013; 14:617-29. [PMID: 24061228 DOI: 10.1038/nrm3660] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein quality control within the cell requires the interplay of many molecular chaperones and proteases. When this quality control system is disrupted, polypeptides follow pathways leading to misfolding, inactivity and aggregation. Among the repertoire of molecular chaperones are remarkable proteins that forcibly untangle protein aggregates, called disaggregases. Structural and biochemical studies have led to new insights into how these proteins collaborate with co-chaperones and utilize ATP to power protein disaggregation. Understanding how energy-dependent protein disaggregating machines function is universally important and clinically relevant, as protein aggregation is linked to medical conditions such as Alzheimer's disease, Parkinson's disease, amyloidosis and prion diseases.
Collapse
Affiliation(s)
- Shannon M Doyle
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bldg. 37, Room 5144, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
23
|
Abstract
ClpL, a member of the HSP100 family, is widely distributed in Gram-positive bacteria but is absent in Gram-negative bacteria. Although ClpL is involved in various cellular processes, such as the stress tolerance response, long-term survival, virulence, and antibiotic resistance, the detailed molecular mechanisms are largely unclear. Here we report that ClpL acts as a chaperone to properly fold CtsR, a stress response repressor, and prevents it from forming protein aggregates in Streptococcus mutans. In vitro, ClpL was able to successfully refold urea-denatured CtsR but not aggregated proteins. We suggest that ClpL recognizes primarily soluble but denatured substrates and prevents the formation of large protein aggregates. We also found that in vivo, the C-terminal D2-small domain of ClpL is essential for the observed chaperone activity. Since ClpL widely contributes to various cellular functions, we speculate that ClpL chaperone activity is necessary to maintain cellular homeostasis.
Collapse
|
24
|
Winkler J, Tyedmers J, Bukau B, Mogk A. Hsp70 targets Hsp100 chaperones to substrates for protein disaggregation and prion fragmentation. ACTA ACUST UNITED AC 2012; 198:387-404. [PMID: 22869599 PMCID: PMC3413357 DOI: 10.1083/jcb.201201074] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The Hsp70 system recruits ClpB/Hsp104 to the surface of stress-induced protein aggregates and prion fibrils. Hsp100 and Hsp70 chaperones in bacteria, yeast, and plants cooperate to reactivate aggregated proteins. Disaggregation relies on Hsp70 function and on ATP-dependent threading of aggregated polypeptides through the pore of the Hsp100 AAA+ hexamer. In yeast, both chaperones also promote propagation of prions by fibril fragmentation, but their functional interplay is controversial. Here, we demonstrate that Hsp70 chaperones were essential for species-specific targeting of their Hsp100 partner chaperones ClpB and Hsp104, respectively, to heat-induced protein aggregates in vivo. Hsp70 inactivation in yeast also abrogated Hsp104 targeting to almost all prions tested and reduced fibril mobility, which indicates that fibril fragmentation by Hsp104 requires Hsp70. The Sup35 prion was unique in allowing Hsp70-independent association of Hsp104 via its N-terminal domain, which, however, was nonproductive. Hsp104 overproduction even outcompeted Hsp70 for Sup35 prion binding, which explains why this condition prevented Sup35 fragmentation and caused prion curing. Our findings indicate a conserved mechanism of Hsp70–Hsp100 cooperation at the surface of protein aggregates and prion fibrils.
Collapse
Affiliation(s)
- Juliane Winkler
- Center for Molecular Biology of the University of Heidelberg and German Cancer Research Center, DKFZ-ZMBH Alliance, Universität Heidelberg, Heidelberg D-69120, Germany
| | | | | | | |
Collapse
|
25
|
Structural basis for intersubunit signaling in a protein disaggregating machine. Proc Natl Acad Sci U S A 2012; 109:12515-20. [PMID: 22802670 DOI: 10.1073/pnas.1207040109] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
ClpB is a ring-forming, ATP-dependent protein disaggregase that cooperates with the cognate Hsp70 system to recover functional protein from aggregates. How ClpB harnesses the energy of ATP binding and hydrolysis to facilitate the mechanical unfolding of previously aggregated, stress-damaged proteins remains unclear. Here, we present crystal structures of the ClpB D2 domain in the nucleotide-bound and -free states, and the fitted cryoEM structure of the D2 hexamer ring, which provide a structural understanding of the ATP power stroke that drives protein translocation through the ClpB hexamer. We demonstrate that the conformation of the substrate-translocating pore loop is coupled to the nucleotide state of the cis subunit, which is transmitted to the neighboring subunit via a conserved but structurally distinct intersubunit-signaling pathway common to diverse AAA+ machines. Furthermore, we found that an engineered, disulfide cross-linked ClpB hexamer is fully functional biochemically, suggesting that ClpB deoligomerization is not required for protein disaggregation.
Collapse
|
26
|
Hodson S, Marshall JJT, Burston SG. Mapping the road to recovery: the ClpB/Hsp104 molecular chaperone. J Struct Biol 2012; 179:161-71. [PMID: 22659404 DOI: 10.1016/j.jsb.2012.05.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 05/09/2012] [Accepted: 05/12/2012] [Indexed: 11/26/2022]
Abstract
The AAA(+)-ATPases are a family of molecular motors which have been seconded into a plethora of cellular tasks. One subset, the Hsp100 molecular chaperones, are general protein remodellers that help to maintain the integrity of the cellular proteome by means of protein destruction or resurrection. In this review we focus on one family of Hsp100s, the homologous ClpB and Hsp104 molecular chaperones that convey thermotolerance by resolubilising and rescuing proteins from aggregates. We explore how the nucleotide binding and hydrolysis properties at the twelve nucleotide-binding domains of these hexameric rings are coupled to protein disaggregation, highlighting similarities and differences between ClpB and Hsp104.
Collapse
Affiliation(s)
- Skye Hodson
- School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | | | | |
Collapse
|
27
|
Winkler J, Tyedmers J, Bukau B, Mogk A. Chaperone networks in protein disaggregation and prion propagation. J Struct Biol 2012; 179:152-60. [PMID: 22580344 DOI: 10.1016/j.jsb.2012.05.002] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 04/27/2012] [Accepted: 05/01/2012] [Indexed: 11/30/2022]
Abstract
The oligomeric AAA+ chaperones Escherichia coli ClpB and Saccharomyces cerevisiae Hsp104 cooperate with cognate Hsp70/Hsp40 chaperone machineries in the reactivation of aggregated proteins in E. coli and S. cerevisiae. In addition, Hsp104 and Hsp70/Hsp40 are crucial for the maintenance of prion aggregates in yeast cells. While the bichaperone system efficiently solubilizes stress-generated amorphous aggregates, structurally highly ordered prion fibrils are only partially processed, resulting in the generation of fragmented prion seeds that can be transmitted to daughter cells for stable inheritance. Here, we describe and discuss the most recent mechanistic findings on yeast Hsp104 and Hsp70/Hsp40 cooperation in the remodeling of both types of aggregates, emphasizing similarities in the mechanism but also differences in the sensitivities towards chaperone activities.
Collapse
Affiliation(s)
- Juliane Winkler
- Center for Molecular Biology of the University of Heidelberg and German Cancer Research Center, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, Heidelberg D-69120, Germany
| | | | | | | |
Collapse
|
28
|
Zolkiewski M, Zhang T, Nagy M. Aggregate reactivation mediated by the Hsp100 chaperones. Arch Biochem Biophys 2012; 520:1-6. [PMID: 22306514 DOI: 10.1016/j.abb.2012.01.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 01/16/2012] [Accepted: 01/17/2012] [Indexed: 11/16/2022]
Abstract
Hsp100 family of molecular chaperones shows a unique capability to resolubilize and reactivate aggregated proteins. The Hsp100-mediated protein disaggregation is linked to the activity of other chaperones from the Hsp70 and Hsp40 families. The best-studied members of the Hsp100 family are the bacterial ClpB and Hsp104 from yeast. Hsp100 chaperones are members of a large super-family of energy-driven conformational "machines" known as AAA+ ATPases. This review describes the current mechanistic model of the chaperone-induced protein disaggregation and explains how the structural architecture of Hsp100 supports disaggregation and how the co-chaperones may participate in the Hsp100-mediated reactions.
Collapse
Affiliation(s)
- Michal Zolkiewski
- Department of Biochemistry, Kansas State University, Manhattan, 66506, USA.
| | | | | |
Collapse
|
29
|
Desantis ME, Shorter J. The elusive middle domain of Hsp104 and ClpB: location and function. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:29-39. [PMID: 21843558 DOI: 10.1016/j.bbamcr.2011.07.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 07/13/2011] [Accepted: 07/18/2011] [Indexed: 12/17/2022]
Abstract
Hsp104 in yeast and ClpB in bacteria are homologous, hexameric AAA+ proteins and Hsp100 chaperones, which function in the stress response as ring-translocases that drive protein disaggregation and reactivation. Both Hsp104 and ClpB contain a distinctive coiled-coil middle domain (MD) inserted in the first AAA+ domain, which distinguishes them from other AAA+ proteins and Hsp100 family members. Here, we focus on recent developments concerning the location and function of the MD in these hexameric molecular machines, which remains an outstanding question. While the atomic structure of the hexameric assembly of Hsp104 and ClpB remains uncertain, recent advances have illuminated that the MD is critical for the intrinsic disaggregase activity of the hexamer and mediates key functional interactions with the Hsp70 chaperone system (Hsp70 and Hsp40) that empower protein disaggregation.
Collapse
Affiliation(s)
- Morgan E Desantis
- Department of Biochemistry and Biophysics, Perelman School of Medicine at The University of Pennsylvania, 805b Stellar-Chance Laboratories, 422 Curie Boulevard, Philadelphia, PA 19104, USA
| | | |
Collapse
|
30
|
Species-specific collaboration of heat shock proteins (Hsp) 70 and 100 in thermotolerance and protein disaggregation. Proc Natl Acad Sci U S A 2011; 108:6915-20. [PMID: 21474779 DOI: 10.1073/pnas.1102828108] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Yeast Hsp104 and its bacterial homolog, ClpB, are Clp/Hsp100 molecular chaperones and AAA+ ATPases. Hsp104 and ClpB collaborate with the Hsp70 and DnaK chaperone systems, respectively, to retrieve and reactivate stress-denatured proteins from aggregates. The action of Hsp104 and ClpB in promoting cell survival following heat stress is species-specific: Hsp104 cannot function in bacteria and ClpB cannot act in yeast. To determine the regions of Hsp104 and ClpB necessary for this specificity, we tested chimeras of Hsp104 and ClpB in vivo and in vitro. We show that the Hsp104 and ClpB middle domains dictate the species-specificity of Hsp104 and ClpB for cell survival at high temperature. In protein reactivation assays in vitro, chimeras containing the Hsp104 middle domain collaborate with Hsp70 and those with the ClpB middle domain function with DnaK. The region responsible for the specificity is within helix 2 and helix 3 of the middle domain. Additionally, several mutants containing amino acid substitutions in helix 2 of the ClpB middle domain are defective in protein disaggregation in collaboration with DnaK. In a bacterial two-hybrid assay, DnaK interacts with ClpB and with chimeras that have the ClpB middle domain, implying that species-specificity is due to an interaction between DnaK and the middle domain of ClpB. Our results suggest that the interaction between Hsp70/DnaK and helix 2 of the middle domain of Hsp104/ClpB determines the specificity required for protein disaggregation both in vivo and in vitro, as well as for cellular thermotolerance.
Collapse
|
31
|
Mogk A, Huber D, Bukau B. Integrating protein homeostasis strategies in prokaryotes. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a004366. [PMID: 21441580 DOI: 10.1101/cshperspect.a004366] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bacterial cells are frequently exposed to dramatic fluctuations in their environment, which cause perturbation in protein homeostasis and lead to protein misfolding. Bacteria have therefore evolved powerful quality control networks consisting of chaperones and proteases that cooperate to monitor the folding states of proteins and to remove misfolded conformers through either refolding or degradation. The levels of the quality control components are adjusted to the folding state of the cellular proteome through the induction of compartment specific stress responses. In addition, the activities of several quality control components are directly controlled by these stresses, allowing for fast activation. Severe stress can, however, overcome the protective function of the proteostasis network leading to the formation of protein aggregates, which are sequestered at the cell poles. Protein aggregates are either solubilized by AAA+ chaperones or eliminated through cell division, allowing for the generation of damage-free daughter cells.
Collapse
Affiliation(s)
- Axel Mogk
- Zentrum für Molekulare Biologie Heidelberg, DKFZ-ZMBH Alliance, Universität Heidelberg, Heidelberg, Germany
| | | | | |
Collapse
|
32
|
Sielaff B, Tsai FTF. The M-domain controls Hsp104 protein remodeling activity in an Hsp70/Hsp40-dependent manner. J Mol Biol 2010; 402:30-7. [PMID: 20654624 DOI: 10.1016/j.jmb.2010.07.030] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 07/09/2010] [Accepted: 07/15/2010] [Indexed: 10/19/2022]
Abstract
Yeast Hsp104 is a ring-forming ATP-dependent protein disaggregase that, together with the cognate Hsp70 chaperone system, has the remarkable ability to rescue stress-damaged proteins from a previously aggregated state. Both upstream and downstream functions for the Hsp70 system have been reported, but it remains unclear how Hsp70/Hsp40 is coupled to Hsp104 protein remodeling activity. Hsp104 is a multidomain protein that possesses an N-terminal domain, an M-domain, and two tandem AAA(+) domains. The M-domain forms an 85-A long coiled coil and is a hallmark of the Hsp104 chaperone family. While the three-dimensional structure of Hsp104 has been determined, the function of the M-domain is unclear. Here, we demonstrate that the M-domain is essential for protein disaggregation, but dispensable for Hsp104 ATPase- and substrate-translocating activities. Remarkably, replacing the Hsp104 M-domain with that of bacterial ClpB, and vice versa, switches species specificity so that our chimeras now cooperate with the noncognate Hsp70/DnaK chaperone system. Our results demonstrate that the M-domain controls Hsp104 protein remodeling activities in an Hsp70/Hsp40-dependent manner, which is required to unleash Hsp104 protein disaggregating activity.
Collapse
Affiliation(s)
- Bernhard Sielaff
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | |
Collapse
|
33
|
Haslberger T, Bukau B, Mogk A. Towards a unifying mechanism for ClpB/Hsp104-mediated protein disaggregation and prion propagation. Biochem Cell Biol 2010; 88:63-75. [PMID: 20130680 DOI: 10.1139/o09-118] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The oligomeric AAA+ chaperones ClpB/Hsp104 mediate the reactivation of aggregated proteins, an activity that is crucial for the survival of cells during severe stress. Hsp104 is also essential for the propagation of yeast prions by severing prion fibres. Protein disaggregation depends on the cooperation of ClpB/Hsp104 with a cognate Hsp70 chaperone system. While Hsp70 chaperones are also involved in prion propagation, their precise role is much less well defined compared with its function in aggregate solubilization. Therefore, it remained unclear whether both ClpB/Hsp104 activities are based on common or different mechanisms. Novel data show that ClpB/Hsp104 uses a motor threading activity to remodel both protein aggregates and prion fibrils. Moreover, transfer of both types of substrates to the ClpB/Hsp104 processing pore site requires initial substrate interaction of Hsp70. Together these data emphasize the similarity of thermotolerance and prion propagation pathways and point to a shared mechanistic principle of Hsp70-ClpB/Hsp104-mediated solubilization of amorphous and ordered aggregates.
Collapse
Affiliation(s)
- Tobias Haslberger
- Zentrum für Molekulare Biologie Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Universität Heidelberg, Im Neuenheimer Feld 282, Heidelberg D-69120, Germany
| | | | | |
Collapse
|
34
|
Grimminger-Marquardt V, Lashuel HA. Structure and function of the molecular chaperone Hsp104 from yeast. Biopolymers 2010; 93:252-76. [PMID: 19768774 DOI: 10.1002/bip.21301] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The molecular chaperone Hsp104 plays a central role in the clearance of aggregates after heat shock and the propagation of yeast prions. Hsp104's disaggregation activity and prion propagation have been linked to its ability to resolubilize or remodel protein aggregates. However, Hsp104 has also the capacity to catalyze protein aggregation of some substrates at specific conditions. Hence, it is a molecular chaperone with two opposing activities with respect to protein aggregation. In yeast models of Huntington's disease, Hsp104 is required for the aggregation and toxicity of polyglutamine (polyQ), but the expression of Hsp104 in cellular and animal models of Huntington's and Parkinson's disease protects against polyQ and alpha-synuclein toxicity. Therefore, elucidating the molecular determinants and mechanisms underlying the ability of Hsp104 to switch between these two activities is of critical importance for understanding its function and could provide insight into novel strategies aimed at preventing or reversing the formation of toxic protein aggregation in systemic and neurodegenerative protein misfolding diseases. Here, we present an overview of the current molecular models and hypotheses that have been proposed to explain the role of Hsp104 in modulating protein aggregation and prion propagation. The experimental approaches and the evidences presented so far in relation to these models are examined. Our primary objective is to offer a critical review that will inspire the use of novel techniques and the design of new experiments to proceed towards a qualitative and quantitative understanding of the molecular mechanisms underlying the multifunctional properties of Hsp104 in vivo.
Collapse
Affiliation(s)
- Valerie Grimminger-Marquardt
- Laboratory of Molecular Neurobiology and Neuroproteomics, Swiss Federal Institute of Technology Lausanne (EPFL), FSV-BMI AI 2137.1, Station 15, CH-1015 Lausanne, Switzerland
| | | |
Collapse
|
35
|
Acebrón SP, Martín I, del Castillo U, Moro F, Muga A. DnaK-mediated association of ClpB to protein aggregates. A bichaperone network at the aggregate surface. FEBS Lett 2009; 583:2991-6. [PMID: 19698713 DOI: 10.1016/j.febslet.2009.08.020] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 08/10/2009] [Accepted: 08/10/2009] [Indexed: 10/20/2022]
Abstract
Intracellular protein aggregates formed under severe thermal stress can be reactivated by the concerted action of the Hsp70 system and Hsp100 chaperones. We analyzed here the interaction of DnaJ/DnaK and ClpB with protein aggregates. We show that aggregate properties modulate chaperone binding, which in turn determines aggregate reactivation efficiency. ClpB binding strictly depends on previous DnaK association with the aggregate. The affinity of ClpB for the aggregate-DnaK complex is low (K(d)=5-10 microM), indicating a weak interaction. Therefore, formation of the DnaK-ClpB bichaperone network is a three step process. After initial DnaJ binding, the cochaperone drives association of DnaK to aggregates, and in the third step, as shown here, DnaK mediates ClpB interaction with the aggregate surface.
Collapse
Affiliation(s)
- Sergio P Acebrón
- Unidad de Biofísica (CSIC-UPV/EHU), and Departamento de Bioquímica y Biología Molecular (UPV/EHU), Facultad de Ciencia y Tecnología, Universidad del País Vasco, PO Box 644, Bilbao, Spain
| | | | | | | | | |
Collapse
|
36
|
Popp SL, Reinstein J. Functional characterization of the DnaK chaperone system from the archaeon Methanothermobacter thermautotrophicus DeltaH. FEBS Lett 2009; 583:573-8. [PMID: 19162025 DOI: 10.1016/j.febslet.2008.12.062] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 12/19/2008] [Accepted: 12/30/2008] [Indexed: 11/15/2022]
Abstract
We characterized the biochemical and functional properties of the DnaK system from the archaeon Methanothermobacter thermautotrophicus DeltaH. In contrast to the eubacterial chaperone components the archaeal Hsp70 system shows thermal transitions only slightly above the optimal environmental temperature (65 degrees C). Nevertheless, it prevents aggregation of luciferase in the physiological temperature range of the organism, but is also fully functional at 30 degrees C in luciferase refolding. Additionally, GrpE(M.th.) and DnaJ(M.th.) substitute their eubacterial counterparts whereas DnaK(M.th.) is only functional with its native cochaperones which could be attributed to a functional specialization of the eubacterial chaperones during evolution.
Collapse
Affiliation(s)
- Simone L Popp
- Max-Planck-Institute for Medical Research, Department of Biomolecular Mechanisms, Heidelberg, Germany
| | | |
Collapse
|
37
|
In vivo monitoring of the prion replication cycle reveals a critical role for Sis1 in delivering substrates to Hsp104. Mol Cell 2009; 32:584-91. [PMID: 19026788 DOI: 10.1016/j.molcel.2008.11.003] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2008] [Revised: 10/18/2008] [Accepted: 11/04/2008] [Indexed: 02/04/2023]
Abstract
Prions in Saccharomyces cerevisiae are inherited ordered aggregates reliant upon the disaggregase Hsp104 for stable maintenance. The function of other factors in the natural prion cycle is unclear. We constructed yeast-bacterial chimeric chaperones to resolve the roles of Hsp104 domains, and by extension chaperones that interact with these domains, in prion propagation. Our results show that, as with amorphous aggregate dissolution, the Hsp70/40 system recruits prion substrates to Hsp104 via its top ring. By adapting our chimera to couple to an inactive protease "trap," we monitored the reaction products of prion propagation in vivo. We find that prion maintenance is accompanied by translocation of prion proteins through Hsp104 hexamers and that both processes critically rely upon the Hsp40 Sis1. Our data suggest that yeast prion replication is a natural extension of chaperone activity in dissolving amorphous aggregates, distinguished from its ancestral reaction by the ordered, self-propagating structure of the substrate.
Collapse
|
38
|
Doyle SM, Wickner S. Hsp104 and ClpB: protein disaggregating machines. Trends Biochem Sci 2008; 34:40-8. [PMID: 19008106 DOI: 10.1016/j.tibs.2008.09.010] [Citation(s) in RCA: 218] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 09/24/2008] [Accepted: 09/26/2008] [Indexed: 12/11/2022]
Abstract
Heat-shock protein 104 (Hsp104) and caseinolytic peptidase B (ClpB), members of the AAA+ superfamily, are molecular machines involved in disaggregating insoluble protein aggregates, a process not long ago thought to be impossible. During extreme stress they are essential for cell survival. In addition, Hsp104 regulates prion assembly and disassembly. For most of their protein remodeling activities Hsp104 and ClpB work in collaboration with the Hsp70 or DnaK chaperone systems. Together, the two chaperones catalyze protein disaggregation and reactivation by a mechanism probably involving the extraction of polypeptides from aggregates by forced unfolding and translocation through the Hsp104/ClpB central cavity. The polypeptides are then released back into the cellular milieu for spontaneous or chaperone-mediated refolding.
Collapse
Affiliation(s)
- Shannon M Doyle
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
39
|
Needham PG, Masison DC. Prion-impairing mutations in Hsp70 chaperone Ssa1: effects on ATPase and chaperone activities. Arch Biochem Biophys 2008; 478:167-74. [PMID: 18706386 PMCID: PMC2577198 DOI: 10.1016/j.abb.2008.07.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 07/28/2008] [Accepted: 07/30/2008] [Indexed: 01/22/2023]
Abstract
We previously described many Hsp70 Ssa1p mutants that impair [PSI(+)] prion propagation in yeast without affecting cell growth. To determine how the mutations alter Hsp70 we analyzed biochemically the substrate-binding domain (SBD) mutant L483W and the nucleotide-binding domain (NBD) mutants A17V and R34K. Ssa1(L483W) ATPase activity was elevated 10-fold and was least stimulated by substrates or Hsp40 co-chaperones. Ssa1(A17V) and Ssa1(R34K) ATPase activities were nearly wild type but both showed increased stimulation by substrates. Peptide binding and reactivation of denatured luciferase were enhanced in Ssa1(A17V) and Ssa1(R34K) but compromised in Ssa1(L483W). The nucleotide exchange factor Fes1 influenced ATPase of wild type Ssa1 and each mutant differently. Partial protease digestion uncovered similar and distinct conformational changes of the substrate-binding domain among the three mutants. Our data suggest that prion-impairing mutations of Ssa1 can increase or decrease substrate interactions, alter the Hsp70 reaction cycle at different points and impair normal NBD-SBD cooperation.
Collapse
Affiliation(s)
- Patrick G Needham
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Building 8, Room 407, LBG/NIDDK, Bethesda, MD 20892-0851, USA
| | | |
Collapse
|
40
|
Common and specific mechanisms of AAA+ proteins involved in protein quality control. Biochem Soc Trans 2008; 36:120-5. [PMID: 18208398 DOI: 10.1042/bst0360120] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A protein quality control system, consisting of molecular chaperones and proteases, controls the folding status of proteins and mediates the refolding or degradation of misfolded proteins. Ring-forming AAA+ (ATPase associated with various cellular activities) proteins play crucial roles in both processes by co-operating with either peptidases or chaperone systems. Peptidase-associated AAA+ proteins bind substrates and thread them through their axial channel into the attached proteolytic chambers for degradation. In contrast, the AAA+ protein ClpB evolved independently from an interacting peptidase and co-operates with a cognate Hsp70 (heat-shock protein 70) chaperone system to solubilize and refold aggregated proteins. The activity of this bi-chaperone system is crucial for the survival of bacteria, yeast and plants during severe stress conditions. Hsp70 acts at initial stages of the disaggregation process, enabling ClpB to extract single unfolded polypeptides from the aggregate via a threading activity. Although both classes of AAA+ proteins share a common threading activity, it is apparent that their divergent evolution translates into specific mechanisms, reflecting adaptations to their respective functions. The ClpB-specific M-domain (middle domain) represents such an extra feature that verifies ClpB as the central disaggregase in vivo. M-domains act as regulatory devices to control both ClpB ATPase activity and the Hsp70-dependent binding of aggregated proteins to the ClpB pore, thereby coupling the Hsp70 chaperone activity with the ClpB threading motor to ensure efficient protein disaggregation.
Collapse
|
41
|
Doyle SM, Hoskins JR, Wickner S. Collaboration between the ClpB AAA+ remodeling protein and the DnaK chaperone system. Proc Natl Acad Sci U S A 2007; 104:11138-44. [PMID: 17545305 PMCID: PMC2040865 DOI: 10.1073/pnas.0703980104] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
ClpB and Hsp104, members of the AAA+ superfamily of proteins, protect cells from the devastating effects of protein inactivation and aggregation that arise after extreme heat stress. They exist as a hexameric ring and contain two nucleotide-binding sites per monomer. ClpB and Hsp104 are able to dissolve protein aggregates in conjunction with the DnaK/Hsp70 chaperone system, although the roles of the individual chaperones in disaggregation are not well understood. In the absence of the DnaK/Hsp70 system, ClpB and Hsp104 alone are able to perform protein remodeling when their ATPase activity is asymmetrically slowed either by providing a mixture of ATP and ATP gamma S, a nonphysiological and slowly hydrolyzed ATP analog, or by inactivating one of the two nucleotide-binding domains by mutation. To gain insight into the roles of ClpB and the DnaK system in protein remodeling, we tested whether there was a further stimulation by the DnaK chaperone system under conditions that elicited remodeling activity by ClpB alone. Our results demonstrate that ClpB and the DnaK system act synergistically to remodel proteins and dissolve aggregates. The results further show that ATP is required and that both nucleotide-binding sites of ClpB must be able to hydrolyze ATP to permit functional collaboration between ClpB and the DnaK system.
Collapse
Affiliation(s)
- Shannon M. Doyle
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Joel R. Hoskins
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Sue Wickner
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
42
|
Doyle SM, Shorter J, Zolkiewski M, Hoskins JR, Lindquist S, Wickner S. Asymmetric deceleration of ClpB or Hsp104 ATPase activity unleashes protein-remodeling activity. Nat Struct Mol Biol 2007; 14:114-22. [PMID: 17259993 PMCID: PMC1793998 DOI: 10.1038/nsmb1198] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Accepted: 01/02/2007] [Indexed: 11/09/2022]
Abstract
Two members of the AAA+ superfamily, ClpB and Hsp104, collaborate with Hsp70 and Hsp40 to rescue aggregated proteins. However, the mechanisms that elicit and underlie their protein-remodeling activities remain unclear. We report that for both Hsp104 and ClpB, mixtures of ATP and ATP-gammaS unexpectedly unleash activation, disaggregation and unfolding activities independent of cochaperones. Mutations reveal how remodeling activities are elicited by impaired hydrolysis at individual nucleotide-binding domains. However, for some substrates, mixtures of ATP and ATP-gammaS abolish remodeling, whereas for others, ATP binding without hydrolysis is sufficient. Remodeling of different substrates necessitates a diverse balance of polypeptide 'holding' (which requires ATP binding but not hydrolysis) and unfolding (which requires ATP hydrolysis). We suggest that this versatility in reaction mechanism enables ClpB and Hsp104 to reactivate the entire aggregated proteome after stress and enables Hsp104 to control prion inheritance.
Collapse
Affiliation(s)
- Shannon M. Doyle
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - James Shorter
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge MA 02142
| | - Michal Zolkiewski
- Department of Biochemistry, Kansas State University, Manhattan KS 66506, and
| | - Joel R. Hoskins
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Susan Lindquist
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge MA 02142
- Correspondence: Sue Wickner, , Susan Lindquist,
| | - Sue Wickner
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
- Correspondence: Sue Wickner, , Susan Lindquist,
| |
Collapse
|
43
|
Characterization of Interactions Between Misfolding Proteins and Molecular Chaperones by NMR Spectroscopy. Top Curr Chem (Cham) 2006. [DOI: 10.1007/128_066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
44
|
Narayanan S, Walter S, Reif B. Yeast prion-protein, sup35, fibril formation proceeds by addition and substraction of oligomers. Chembiochem 2006; 7:757-65. [PMID: 16570324 DOI: 10.1002/cbic.200500382] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In analogy to human prions, a domain of the translation-termination protein in Saccharomyces cerevisiae, Sup35, can switch its conformation from a soluble functional state, [psi-], to a conformation, [PSI+], that facilitates aggregation and impairs its native function. Overexpression of the molecular chaperone Hsp104 abolishes the [PSI+] phenotype and restores the normal function of Sup35. We have recently shown that Hsp104 interacts preferably with low oligomeric species of a Sup35 derived peptide, Sup35[5-26]; however, due to possible exchange between different oligomeric states, it was not possible to obtain information on the distribution and stability of the oligomeric state. We show here, that low-molecular-weight oligomers (Sup35[5-26])n (n approximately = 4-6) are indeed important for the fibril formation and disassembly process. We find that Hsp104 is able to disaggregate Sup35[5-26] fibrils by substraction of hexameric to decameric Sup35[5-26] oligomers. This disaggregation effect does not require assistance from other chaperones and is independent of ATP at high Hsp104 concentrations. Furthermore, we demonstrate that critical oligomers have a preference for alpha-helical conformations. The conformational reorganization into beta-sheet structures seems to occur only upon incorporation of these oligomers into fibrillar structures. The results are demonstrated by using an equilibrium dialysis experiment that employed different molecular-weight cut-off membranes. A combination of thioflavin-T (ThT) fluorescence and UV measurements allowed the quantification of fibril formation and the amount of peptide diffusing out of the dialysis bag. CD and NMR spectroscopy data were combined to obtain structural information.
Collapse
Affiliation(s)
- Saravanakumar Narayanan
- Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | | | | |
Collapse
|
45
|
Gao J, Lee K, Zhao M, Qiu J, Zhan X, Saxena A, Moore CJ, Cohen SN, Georgiou G. Differential modulation of E. coli mRNA abundance by inhibitory proteins that alter the composition of the degradosome. Mol Microbiol 2006; 61:394-406. [PMID: 16771842 DOI: 10.1111/j.1365-2958.2006.05246.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In Escherichia coli the initial step in the processing or decay of many messenger and structural RNAs is mediated by the endonuclease RNase E, which forms the core of a large RNA-catalysis machine termed the degradosome. Previous experiments have identified a protein that globally modulates RNA abundance by binding to RNase E and regulating its endonucleolytic activity. Here we report the discovery of RraB, which interacts with a different site on RNase E and interferes with cleavage of a different set of transcripts. We show that expression of RraA or RraB in vivo is accompanied by dramatic, distinct, and inhibitor-specific changes in degradosome composition--and that these are in turn associated with alterations in RNA decay and global transcript abundance profiles that are dissimilar to the profile observed during simple RNase E deficiency. Our results reveal the existence of endonuclease binding proteins that modulate the remodelling of degradosome composition in bacteria and argue that such degradosome remodelling is a mechanism for the differential regulation of RNA cleavages in E. coli.
Collapse
Affiliation(s)
- Junjun Gao
- Institute for Cell and Molecular Biology, University of Texas, TX 78712, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Bösl B, Grimminger V, Walter S. The molecular chaperone Hsp104--a molecular machine for protein disaggregation. J Struct Biol 2006; 156:139-48. [PMID: 16563798 DOI: 10.1016/j.jsb.2006.02.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Revised: 02/06/2006] [Accepted: 02/09/2006] [Indexed: 11/25/2022]
Abstract
At the Cold Spring Harbor Meeting on 'Molecular Chaperones and the Heat Shock Response' in May 1996, Susan Lindquist presented evidence that a chaperone of yeast termed Hsp104, which her group had been investigating for several years, is able to dissolve protein aggregates (Glover, J.R., Lindquist, S., 1998. Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 94, 73-82). Among many of the participants this news stimulated reactions reaching from decided skepticism to utter disbelief because protein aggregation was widely considered to be an irreversible process. Several years and publications later, it is undeniable that Susan had been right. Hsp104 is an ATP dependent molecular machine that-in cooperation with Hsp70 and Hsp40-extracts polypeptide chains from protein aggregates and facilitates their refolding, although the molecular details of this process are still poorly understood. Meanwhile, close homologues of Hsp104 have been identified in bacteria (ClpB), in mitochondria (Hsp78), and in the cytosol of plants (Hsp101), but intriguingly not in the cytosol of animal cells (Mosser, D.D., Ho, S., Glover, J.R., 2004. Saccharomyces cerevisiae Hsp104 enhances the chaperone capacity of human cells and inhibits heat stress-induced proapoptotic signaling. Biochemistry 43, 8107-8115). Observations that Hsp104 plays an essential role in the maintenance of yeast prions (see review by James Shorter in this issue) have attracted even more attention to the molecular mechanism of this ATP dependent chaperone (Chernoff, Y.O., Lindquist, S.L., Ono, B., Inge-Vechtomov, S.G., Liebman, S.W., 1995. Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [PSI+]. Science 268, 880-884).
Collapse
Affiliation(s)
- Benjamin Bösl
- Department für Chemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | | | | |
Collapse
|
47
|
Zietkiewicz S, Lewandowska A, Stocki P, Liberek K. Hsp70 chaperone machine remodels protein aggregates at the initial step of Hsp70-Hsp100-dependent disaggregation. J Biol Chem 2006; 281:7022-9. [PMID: 16415353 DOI: 10.1074/jbc.m507893200] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Exposure to temperatures over a certain limit leads to massive protein aggregation in the cell. Disaggregation of such aggregates is largely dependent on the Hsp100 and Hsp70 chaperones. The exact role of the Hsp70 chaperone machine (composed of DnaK, DnaJ, and GrpE) in the Hsp100-dependent process remains unknown. In this study we focused on the Hsp70 role at the initial step of the disaggregation process. Two different aggregated model substrates, green fluorescent protein (GFP) and firefly luciferase, were incubated with the Hsp70 machine resulting in efficient fragmentation of large aggregates into smaller ones. Our data suggest that the observed fragmentation is achieved first by extraction of polypeptides from aggregates in Hsp70 chaperone machine-dependent manner and not by direct fragmentation of large aggregates. In the absence of Hsp100 (ClpB) these "extracted" polypeptides were not able to fold properly and promptly reassociated into new aggregates. The extracted GFP molecules were efficiently recognized and sequestered by a molecular trap, the mutant GroEL D87K, which binds stably to unfolded but not to native polypeptides. The binding of extracted GFP molecules to the GroEL trap prevented their reaggregation. We propose that the Hsp70 machine disentangles polypeptides from protein aggregates prior to Hsp100 action.
Collapse
Affiliation(s)
- Szymon Zietkiewicz
- Department of Molecular and Cellular Biology, Faculty of Biotechnology, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland
| | | | | | | |
Collapse
|
48
|
Strocchi M, Ferrer M, Timmis KN, Golyshin PN. Low temperature-induced systems failure inEscherichia coli: Insights from rescue by cold-adapted chaperones. Proteomics 2006; 6:193-206. [PMID: 16302275 DOI: 10.1002/pmic.200500031] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The growth of Escherichia coli cells is impaired at temperatures below 21 degrees C and stops at 7.5 degrees C; however, growth of a transgenic strain producing the cold-adapted chaperones Cpn60 and Cpn10 from the psychrophilic bacterium Oleispira antarctica is good at low temperatures. The E. coli cpn(+) transgene offers a novel opportunity for examining the essential protein for cell viability at low temperatures. By screening a large-scale protein map (proteome) of cells of K-12 and its Cpn(+) transgene incubated at 4 degrees C, we identified 22 housekeeping proteins involved in systems failure of E. coli when confronted with low temperature. Through co-immunoprecipitation of Cpn60, Northern blot, and in vitro refolding, we systematically identified that protein-chaperone interactions are key determinants of their protein functions at low temperatures. Furthermore, chromosomal gene deletion experiments suggest that the mechanism of cold-induced systems failure in E. coli is cold-induced inactivation of the GroELS chaperonins and the resulting failure to refold cold-inactivated Dps, ClpB, DnaK and RpsB proteins. These findings: (1) indicate the potential importance of chaperones in cold sensitivity, cold adaptation and cold tolerance in cellular systems, and (2) suggest the identity of a few key cold-sensitive chaperone-interacting proteins that get inactivated and ultimately cause systems failure in E. coli cells at low temperatures.
Collapse
Affiliation(s)
- Massimo Strocchi
- Division of Microbiology, GBF-German Research Centre for Biotechnology, Braunschweig, Germany
| | | | | | | |
Collapse
|
49
|
Weibezahn J, Schlieker C, Tessarz P, Mogk A, Bukau B. Novel insights into the mechanism of chaperone-assisted protein disaggregation. Biol Chem 2005; 386:739-44. [PMID: 16201868 DOI: 10.1515/bc.2005.086] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cell survival under severe thermal stress requires the activity of a bi-chaperone system, consisting of the ring-forming AAA+ chaperone ClpB (Hsp104) and the DnaK (Hsp70) chaperone system, which acts to solubilize and reactivate aggregated proteins. Recent studies have provided novel insight into the mechanism of protein disaggregation, demonstrating that ClpB/Hsp104 extracts unfolded polypeptides from an aggregate by threading them through its central pore. This translocation activity is necessary but not sufficient for aggregate solubilization. In addition, the middle (M) domain of ClpB and the DnaK system have essential roles, possibly by providing an unfolding force, which facilitates the extraction of misfolded proteins from aggregates.
Collapse
Affiliation(s)
- Jimena Weibezahn
- Zentrum für Molekulare Biologie Heidelberg, Universität Heidelberg, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
50
|
Kedzierska S, Chesnokova LS, Witt SN, Zolkiewski M. Interactions within the ClpB/DnaK bi-chaperone system from Escherichia coli. Arch Biochem Biophys 2005; 444:61-5. [PMID: 16289019 DOI: 10.1016/j.abb.2005.10.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Revised: 09/30/2005] [Accepted: 10/04/2005] [Indexed: 10/25/2022]
Abstract
ClpB and DnaK form a bi-chaperone system that reactivates strongly aggregated proteins in vivo and in vitro. Previously observed interaction between purified ClpB and DnaK suggested that one of the chaperones might recruit its partner during substrate reactivation. We show that ClpB from Escherichia coli binds at the substrate binding site of DnaK and the interaction is supported by the N-terminal domain and the middle domain of ClpB. Moreover, the interaction between ClpB and DnaK depends on the nucleotide-state of DnaK: it is stimulated by ADP and inhibited by ATP. These observations indicate that DnaK recognizes selected structural motifs in ClpB as "pseudo-substrates" and that ClpB may compete with bona fide substrates of DnaK. We conclude that direct interaction between ClpB and DnaK does not mediate a substrate transfer between the chaperones, it may, however, play a role in the recruitment of the bi-chaperone system to specific recognition sites in aggregated particles.
Collapse
|