1
|
Ormazábal A, Palma J, Pierdominici-Sottile G. Dynamics and Function of sRNA/mRNAs Under the Scrutiny of Computational Simulation Methods. Methods Mol Biol 2024; 2741:207-238. [PMID: 38217656 DOI: 10.1007/978-1-0716-3565-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
Molecular dynamics simulations have proved extremely useful in investigating the functioning of proteins with atomic-scale resolution. Many applications to the study of RNA also exist, and their number increases by the day. However, implementing MD simulations for RNA molecules in solution faces challenges that the MD practitioner must be aware of for the appropriate use of this tool. In this chapter, we present the fundamentals of MD simulations, in general, and the peculiarities of RNA simulations, in particular. We discuss the strengths and limitations of the technique and provide examples of its application to elucidate small RNA's performance.
Collapse
Affiliation(s)
- Agustín Ormazábal
- Departmento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Godoy Cruz, CABA, Argentina
| | - Juliana Palma
- Departmento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Godoy Cruz, CABA, Argentina
| | - Gustavo Pierdominici-Sottile
- Departmento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Godoy Cruz, CABA, Argentina.
| |
Collapse
|
2
|
Chen K, Zhou Y, Wang S, Xiong P. RNA tertiary structure modeling with BRiQ potential in CASP15. Proteins 2023; 91:1771-1778. [PMID: 37638558 DOI: 10.1002/prot.26574] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/22/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023]
Abstract
We describe the modeling method for RNA tertiary structures employed by team AIchemy_RNA2 in the 15th Critical Assessment of Structure Prediction (CASP15). The method consists of the following steps. Firstly, secondary structure information was derived from various manually-verified sources. With this information, the full length RNA was fragmented into structural modules. The structures of each module were predicted and then assembled into the full structure. To reduce the searching conformational space, an RNA structure was organized into an optimal base folding tree. And to further improve the sampling efficiency, the energy surface was smoothed at high temperatures during the Monte Carlo sampling to make it easier to move across the energy barrier. The statistical potential energy function BRiQ was employed during Monte Carlo energy optimization.
Collapse
Affiliation(s)
- Ke Chen
- University of Science and Technology of China, Hefei, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, China
| | - Yaoqi Zhou
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Sheng Wang
- Shanghai Zelixir Biotech Co. Ltd, Shanghai, China
| | - Peng Xiong
- University of Science and Technology of China, Hefei, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, China
| |
Collapse
|
3
|
Binacchi F, Elia C, Cirri D, Van de Griend C, Zhou XQ, Messori L, Bonnet S, Pratesi A, Biver T. A biophysical study of the interactions of palladium(II), platinum(II) and gold(III) complexes of aminopyridyl-2,2'-bipyridine ligands with RNAs and other nucleic acid structures. Dalton Trans 2023; 52:598-608. [PMID: 36562298 DOI: 10.1039/d2dt03483b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metal compounds form an attractive class of ligands for a variety of nucleic acids. Five metal complexes bearing aminopyridyl-2,2'-bipyridine tetradentate ligands and possessing a quasi-planar geometry were challenged toward different types of nucleic acid molecules including RNA polynucleotides in the duplex or triplex form, an RNA Holliday four-way junction, natural double helix DNA and a DNA G-quadruplex. The binding process was monitored comparatively using different spectroscopic and melting methods. The binding preferences that emerge from our analysis are discussed in relation to the structural features of the metal complexes.
Collapse
Affiliation(s)
- Francesca Binacchi
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, 56124 Pisa, Italy.
| | - Cassandra Elia
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, 56124 Pisa, Italy.
| | - Damiano Cirri
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, 56124 Pisa, Italy.
| | - Corjan Van de Griend
- Leiden Institute of Chemistry, Leiden University, 2333CC Leiden, The Netherlands
| | - Xue-Quan Zhou
- Leiden Institute of Chemistry, Leiden University, 2333CC Leiden, The Netherlands
| | - Luigi Messori
- Laboratory of Metals in Medicine (MetMed), Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - Sylvestre Bonnet
- Leiden Institute of Chemistry, Leiden University, 2333CC Leiden, The Netherlands
| | - Alessandro Pratesi
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, 56124 Pisa, Italy.
| | - Tarita Biver
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, 56124 Pisa, Italy.
| |
Collapse
|
4
|
Wiedemann J, Kaczor J, Milostan M, Zok T, Blazewicz J, Szachniuk M, Antczak M. RNAloops: a database of RNA multiloops. Bioinformatics 2022; 38:4200-4205. [PMID: 35809063 PMCID: PMC9438955 DOI: 10.1093/bioinformatics/btac484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/26/2022] [Accepted: 07/06/2022] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION Knowledge of the 3D structure of RNA supports discovering its functions and is crucial for designing drugs and modern therapeutic solutions. Thus, much attention is devoted to experimental determination and computational prediction targeting the global fold of RNA and its local substructures. The latter include multi-branched loops-functionally significant elements that highly affect the spatial shape of the entire molecule. Unfortunately, their computational modeling constitutes a weak point of structural bioinformatics. A remedy for this is in collecting these motifs and analyzing their features. RESULTS RNAloops is a self-updating database that stores multi-branched loops identified in the PDB-deposited RNA structures. A description of each loop includes angular data-planar and Euler angles computed between pairs of adjacent helices to allow studying their mutual arrangement in space. The system enables search and analysis of multiloops, presents their structure details numerically and visually, and computes data statistics. AVAILABILITY AND IMPLEMENTATION RNAloops is freely accessible at https://rnaloops.cs.put.poznan.pl. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jakub Wiedemann
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland
| | - Jacek Kaczor
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland
| | - Maciej Milostan
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland,Poznan Supercomputing and Networking Center, 61-131 Poznan, Poland
| | - Tomasz Zok
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland,Poznan Supercomputing and Networking Center, 61-131 Poznan, Poland
| | - Jacek Blazewicz
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland,Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | | | | |
Collapse
|
5
|
Vermeer B, Schmid S. Can DyeCycling break the photobleaching limit in single-molecule FRET? NANO RESEARCH 2022; 15:9818-9830. [PMID: 35582137 PMCID: PMC9101981 DOI: 10.1007/s12274-022-4420-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 05/03/2023]
Abstract
Biomolecular systems, such as proteins, crucially rely on dynamic processes at the nanoscale. Detecting biomolecular nanodynamics is therefore key to obtaining a mechanistic understanding of the energies and molecular driving forces that control biomolecular systems. Single-molecule fluorescence resonance energy transfer (smFRET) is a powerful technique to observe in real-time how a single biomolecule proceeds through its functional cycle involving a sequence of distinct structural states. Currently, this technique is fundamentally limited by irreversible photobleaching, causing the untimely end of the experiment and thus, a narrow temporal bandwidth of ≤ 3 orders of magnitude. Here, we introduce "DyeCycling", a measurement scheme with which we aim to break the photobleaching limit in smFRET. We introduce the concept of spontaneous dye replacement by simulations, and as an experimental proof-of-concept, we demonstrate the intermittent observation of a single biomolecule for one hour with a time resolution of milliseconds. Theoretically, DyeCycling can provide > 100-fold more information per single molecule than conventional smFRET. We discuss the experimental implementation of DyeCycling, its current and fundamental limitations, and specific biological use cases. Given its general simplicity and versatility, DyeCycling has the potential to revolutionize the field of time-resolved smFRET, where it may serve to unravel a wealth of biomolecular dynamics by bridging from milliseconds to the hour range. Electronic Supplementary Material Supplementary material is available for this article at 10.1007/s12274-022-4420-5 and is accessible for authorized users.
Collapse
Affiliation(s)
- Benjamin Vermeer
- NanoDynamicsLab, Laboratory of Biophysics, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Sonja Schmid
- NanoDynamicsLab, Laboratory of Biophysics, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands
| |
Collapse
|
6
|
Structure of a bacterial OapB protein with its OLE RNA target gives insights into the architecture of the OLE ribonucleoprotein complex. Proc Natl Acad Sci U S A 2021; 118:2020393118. [PMID: 33619097 PMCID: PMC7936274 DOI: 10.1073/pnas.2020393118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Bacterial noncoding RNAs (ncRNAs) play key roles in many biological processes including gene regulation, RNA processing and modification, and protein synthesis and translocation. OLE RNAs, found in many Gram-positive species, are one of the largest highly structured ncRNA classes whose biochemical functions remain unknown. In Bacillus halodurans, OLE RNAs interact with at least two proteins, OapA and OapB, which are required to assemble a functional OLE ribonucleoprotein (RNP) complex contributing to cellular responses to certain environmental stresses. We established X-ray structural models that reveal the sequence elements and tertiary structural features of OLE RNA that are critical for its specific recognition by OapB, which will aid future exploration of the biological and biochemical functions of the unusual OLE RNP complex. The OLE (ornate, large, and extremophilic) RNA class is one of the most complex and well-conserved bacterial noncoding RNAs known to exist. This RNA is known to be important for bacterial responses to stress caused by short-chain alcohols, cold, and elevated Mg2+ concentrations. These biological functions have been shown to require the formation of a ribonucleoprotein (RNP) complex including at least two protein partners: OLE-associated protein A (OapA) and OLE-associated protein B (OapB). OapB directly binds OLE RNA with high-affinity and specificity and is believed to assist in assembling the functional OLE RNP complex. To provide the atomic details of OapB–OLE RNA interaction and to potentially reveal previously uncharacterized protein–RNA interfaces, we determined the structure of OapB from Bacillus halodurans alone and in complex with an OLE RNA fragment at resolutions of 1.0 Å and 2.0 Å, respectively. The structure of OapB exhibits a K-shaped overall architecture wherein its conserved KOW motif and additional unique structural elements of OapB form a bipartite RNA-binding surface that docks to the P13 hairpin and P12.2 helix of OLE RNA. These high-resolution structures elucidate the molecular contacts used by OapB to form a stable RNP complex and explain the high conservation of sequences and structural features at the OapB–OLE RNA-binding interface. These findings provide insight into the role of OapB in the assembly and biological function of OLE RNP complex and can guide the exploration of additional possible OLE RNA-binding interactions present in OapB.
Collapse
|
7
|
Sung HL, Nesbitt DJ. Sequential Folding of the Nickel/Cobalt Riboswitch Is Facilitated by a Conformational Intermediate: Insights from Single-Molecule Kinetics and Thermodynamics. J Phys Chem B 2020; 124:7348-7360. [DOI: 10.1021/acs.jpcb.0c05625] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Hsuan-Lei Sung
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309, United States,
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - David J. Nesbitt
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309, United States,
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
- Department of Physics, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
8
|
Sung HL, Nesbitt DJ. High pressure single-molecule FRET studies of the lysine riboswitch: cationic and osmolytic effects on pressure induced denaturation. Phys Chem Chem Phys 2020; 22:15853-15866. [PMID: 32706360 DOI: 10.1039/d0cp01921f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Deep sea biology is known to thrive at pressures up to ≈1 kbar, which motivates fundamental biophysical studies of biomolecules under such extreme environments. In this work, the conformational equilibrium of the lysine riboswitch has been systematically investigated by single molecule FRET (smFRET) microscopy at pressures up to 1500 bar. The lysine riboswitch preferentially unfolds with increasing pressure, which signals an increase in free volume (ΔV0 > 0) upon folding of the biopolymer. Indeed, the effective lysine binding constant increases quasi-exponentially with pressure rise, which implies a significant weakening of the riboswitch-ligand interaction in a high-pressure environment. The effects of monovalent/divalent cations and osmolytes on folding are also explored to acquire additional insights into cellular mechanisms for adapting to high pressures. For example, we find that although Mg2+ greatly stabilizes folding of the lysine riboswitch (ΔΔG0 < 0), there is negligible impact on changes in free volume (ΔΔV0 ≈ 0) and thus any pressure induced denaturation effects. Conversely, osmolytes (commonly at high concentrations in deep sea marine species) such as the trimethylamine N-oxide (TMAO) significantly reduce free volumes (ΔΔV0 < 0) and thereby diminish pressure-induced denaturation. We speculate that, besides stabilizing RNA structure, enhanced levels of TMAO in cells might increase the dynamic range for competent riboswitch folding by suppressing the pressure-induced denaturation response. This in turn could offer biological advantage for vertical migration of deep-sea species, with impacts on food searching in a resource limited environment.
Collapse
Affiliation(s)
- Hsuan-Lei Sung
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, CO 80309, USA. and Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
| | - David J Nesbitt
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, CO 80309, USA. and Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA and Department of Physics, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
9
|
Abstract
Protein kinase R (PKR) is a key antiviral component of the innate immune pathway and is activated by viral double-stranded RNAs (dsRNAs). Adenovirus-associated RNA 1 (VAI) is an abundant, noncoding viral RNA that functions as a decoy by binding PKR but not inducing activation, thereby inhibiting the antiviral response. In VAI, coaxial stacking produces an extended helix that mediates high-affinity PKR binding but is too short to result in activation. Like adenovirus, Epstein-Barr virus produces high concentrations of a noncoding RNA, EBER1. Here, we compare interactions of PKR with VAI and EBER1 and present a structural model of EBER1. Both RNAs function as inhibitors of dsRNA-mediated PKR activation. However, EBER1 weakly activates PKR whereas VAI does not. PKR binds EBER1 more weakly than VAI. Assays at physiological ion concentrations indicate that both RNAs can accommodate two PKR monomers and induce PKR dimerization. A structural model of EBER1 was obtained using constraints derived from chemical structure probing and small-angle X-ray scattering experiments. The central stem of EBER1 coaxially stacks with stem loop 4 and stem loop 1 to form an extended RNA duplex of ∼32 bp that binds PKR and promotes activation. Our observations that EBER1 binds PKR much more weakly than VAI and exhibits weak PKR activation suggest that EBER1 is less well suited to function as an RNA decoy.
Collapse
|
10
|
Cai X, Arias DS, Velazquez LR, Vexler S, Bevier AL, Fygenson DK. DNA Nunchucks: Nanoinstrumentation for Single-Molecule Measurement of Stiffness and Bending. NANO LETTERS 2020; 20:1388-1395. [PMID: 31872766 DOI: 10.1021/acs.nanolett.9b04980] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bending of double-stranded DNA (dsDNA) has important applications in biology and engineering, but measurement of DNA bend angles is notoriously difficult and rarely dynamic. Here we introduce a nanoscale instrument that makes dynamic measurement of the bend in short dsDNAs easy enough to be routine. The instrument works by embedding the ends of a dsDNA in stiff, fluorescently labeled DNA nanotubes, thereby mechanically magnifying their orientations. The DNA nanotubes are readily confined to a plane and imaged while freely diffusing. Single-molecule bend angles are rapidly and reliably extracted from the images by a neural network. We find that angular variance across a population increases with dsDNA length, as predicted by the worm-like chain model, although individual distributions can differ significantly from one another. For dsDNAs with phased A6-tracts, we measure an intrinsic bend of 17 ± 1° per A6-tract, consistent with other methods, and a length-dependent angular variance that indicates A6-tracts are (80 ± 30)% stiffer than generic dsDNA.
Collapse
Affiliation(s)
- Xinyue Cai
- Department of Physics , University of California, Santa Barbara , Santa Barbara , California , United States
| | - D Sebastian Arias
- Department of Physics , University of California, Santa Barbara , Santa Barbara , California , United States
| | - Lourdes R Velazquez
- Department of Physics , University of California, Santa Barbara , Santa Barbara , California , United States
- Biomolecular Science & Engineering Program , University of California, Santa Barbara , Santa Barbara , California , United States
| | - Shelby Vexler
- Biomolecular Science & Engineering Program , University of California, Santa Barbara , Santa Barbara , California , United States
| | - Alexander L Bevier
- Department of Physics , University of California, Santa Barbara , Santa Barbara , California , United States
| | - D Kuchnir Fygenson
- Department of Physics , University of California, Santa Barbara , Santa Barbara , California , United States
- Biomolecular Science & Engineering Program , University of California, Santa Barbara , Santa Barbara , California , United States
| |
Collapse
|
11
|
Ray S, Widom JR, Walter NG. Life under the Microscope: Single-Molecule Fluorescence Highlights the RNA World. Chem Rev 2018; 118:4120-4155. [PMID: 29363314 PMCID: PMC5918467 DOI: 10.1021/acs.chemrev.7b00519] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The emergence of single-molecule (SM) fluorescence techniques has opened up a vast new toolbox for exploring the molecular basis of life. The ability to monitor individual biomolecules in real time enables complex, dynamic folding pathways to be interrogated without the averaging effect of ensemble measurements. In parallel, modern biology has been revolutionized by our emerging understanding of the many functions of RNA. In this comprehensive review, we survey SM fluorescence approaches and discuss how the application of these tools to RNA and RNA-containing macromolecular complexes in vitro has yielded significant insights into the underlying biology. Topics covered include the three-dimensional folding landscapes of a plethora of isolated RNA molecules, their assembly and interactions in RNA-protein complexes, and the relation of these properties to their biological functions. In all of these examples, the use of SM fluorescence methods has revealed critical information beyond the reach of ensemble averages.
Collapse
Affiliation(s)
| | | | - Nils G. Walter
- Department of Chemistry, Single Molecule Analysis Group, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
12
|
Piao X, Wang H, Binzel DW, Guo P. Assessment and comparison of thermal stability of phosphorothioate-DNA, DNA, RNA, 2'-F RNA, and LNA in the context of Phi29 pRNA 3WJ. RNA (NEW YORK, N.Y.) 2018; 24:67-76. [PMID: 29051199 PMCID: PMC5733572 DOI: 10.1261/rna.063057.117] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/03/2017] [Indexed: 05/27/2023]
Abstract
The question of whether RNA is more stable or unstable compared to DNA or other nucleic acids has long been a subject of extensive scrutiny and public attention. Recently, thermodynamically stable and degradation-resistant RNA motifs have been utilized in RNA nanotechnology to build desired architectures and integrate multiple functional groups. Here we report the effects of phosphorothioate deoxyribonucleotides (PS-DNA), deoxyribonucleotides (DNA), ribonucleotides (RNA), 2'-F nucleotides (2'-F), and locked nucleic acids (LNA) on the thermal and in vivo stability of the three-way junction (3WJ) of bacteriophage phi29 motor packaging RNA. It was found that the thermal stability gradually increased following the order of PS-DNA/PS-DNA < DNA/DNA < DNA/RNA < RNA/RNA < RNA/2'-F RNA < 2'-F RNA/2'-F RNA < 2'-F RNA/LNA < LNA/LNA. This proposition is supported by studies on strand displacement and the melting of homogeneous and heterogeneous 3WJs. By simply mixing different chemically modified oligonucleotides, the thermal stability of phi29 pRNA 3WJ can be tuned to cover a wide range of melting temperatures from 21.2°C to over 95°C. The 3WJLNA was resistant to boiling temperature denaturation, urea denaturation, and 50% serum degradation. Intravenous injection of fluorescent LNA/2'-F hybrid 3WJs into mice revealed its exceptional in vivo stability and presence in urine. It is thus concluded that incorporation of LNA nucleotides, alone or in combination with 2'-F, into RNA nanoparticles derived from phi29 pRNA 3WJ can extend the half-life of the RNA nanoparticles in vivo and improve their pharmacokinetics profile.
Collapse
Affiliation(s)
- Xijun Piao
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, Ohio 43210, USA
- College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, Columbus, Ohio 43210, USA
- College of Medicine; Dorothy M. Davis Heart and Lung Research Institute; The Ohio State University, Columbus, Ohio 43210, USA
- James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA
| | - Hongzhi Wang
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, Ohio 43210, USA
- College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, Columbus, Ohio 43210, USA
- College of Medicine; Dorothy M. Davis Heart and Lung Research Institute; The Ohio State University, Columbus, Ohio 43210, USA
- James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA
| | - Daniel W Binzel
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, Ohio 43210, USA
- College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, Columbus, Ohio 43210, USA
- College of Medicine; Dorothy M. Davis Heart and Lung Research Institute; The Ohio State University, Columbus, Ohio 43210, USA
- James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, Ohio 43210, USA
- College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, Columbus, Ohio 43210, USA
- College of Medicine; Dorothy M. Davis Heart and Lung Research Institute; The Ohio State University, Columbus, Ohio 43210, USA
- James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
13
|
Bonilla S, Limouse C, Bisaria N, Gebala M, Mabuchi H, Herschlag D. Single-Molecule Fluorescence Reveals Commonalities and Distinctions among Natural and in Vitro-Selected RNA Tertiary Motifs in a Multistep Folding Pathway. J Am Chem Soc 2017; 139:18576-18589. [PMID: 29185740 PMCID: PMC5748328 DOI: 10.1021/jacs.7b08870] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
Decades
of study of the RNA folding problem have revealed that
diverse and complex structured RNAs are built from a common set of
recurring structural motifs, leading to the perspective that a generalizable
model of RNA folding may be developed from understanding of the folding
properties of individual structural motifs. We used single-molecule
fluorescence to dissect the kinetic and thermodynamic properties of
a set of variants of a common tertiary structural motif, the tetraloop/tetraloop-receptor
(TL/TLR). Our results revealed a multistep TL/TLR folding pathway
in which preorganization of the ubiquitous AA-platform submotif precedes
the formation of the docking transition state and tertiary A-minor
hydrogen bond interactions form after the docking transition state.
Differences in ion dependences between TL/TLR variants indicated the
occurrence of sequence-dependent conformational rearrangements prior
to and after the formation of the docking transition state. Nevertheless,
varying the junction connecting the TL/TLR produced a common kinetic
and ionic effect for all variants, suggesting that the global conformational
search and compaction electrostatics are energetically independent
from the formation of the tertiary motif contacts. We also found that in vitro-selected variants, despite their similar stability
at high Mg2+ concentrations, are considerably less stable
than natural variants under near-physiological ionic conditions, and
the occurrence of the TL/TLR sequence variants in Nature correlates
with their thermodynamic stability in isolation. Overall, our findings
are consistent with modular but complex energetic properties of RNA
structural motifs and will aid in the eventual quantitative description
of RNA folding from its secondary and tertiary structural elements.
Collapse
Affiliation(s)
- Steve Bonilla
- Department of Chemical Engineering, ‡Department of Applied Physics, §Department of Biochemistry, ∥Department of Chemistry, ⊥Stanford ChEM-H, Stanford University , Stanford, California 94305, United States
| | - Charles Limouse
- Department of Chemical Engineering, ‡Department of Applied Physics, §Department of Biochemistry, ∥Department of Chemistry, ⊥Stanford ChEM-H, Stanford University , Stanford, California 94305, United States
| | - Namita Bisaria
- Department of Chemical Engineering, ‡Department of Applied Physics, §Department of Biochemistry, ∥Department of Chemistry, ⊥Stanford ChEM-H, Stanford University , Stanford, California 94305, United States
| | - Magdalena Gebala
- Department of Chemical Engineering, ‡Department of Applied Physics, §Department of Biochemistry, ∥Department of Chemistry, ⊥Stanford ChEM-H, Stanford University , Stanford, California 94305, United States
| | - Hideo Mabuchi
- Department of Chemical Engineering, ‡Department of Applied Physics, §Department of Biochemistry, ∥Department of Chemistry, ⊥Stanford ChEM-H, Stanford University , Stanford, California 94305, United States
| | - Daniel Herschlag
- Department of Chemical Engineering, ‡Department of Applied Physics, §Department of Biochemistry, ∥Department of Chemistry, ⊥Stanford ChEM-H, Stanford University , Stanford, California 94305, United States
| |
Collapse
|
14
|
Holmstrom ED, Nesbitt DJ. Biophysical Insights from Temperature-Dependent Single-Molecule Förster Resonance Energy Transfer. Annu Rev Phys Chem 2017; 67:441-65. [PMID: 27215819 DOI: 10.1146/annurev-physchem-040215-112544] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Single-molecule fluorescence microscopy techniques can be used in combination with micrometer length-scale temperature control and Förster resonance energy transfer (FRET) in order to gain detailed information about fundamental biophysical phenomena. In particular, this combination of techniques has helped foster the development of remarkable quantitative tools for studying both time- and temperature-dependent structural kinetics of biopolymers. Over the past decade, multiple research efforts have successfully incorporated precise spatial and temporal control of temperature into single-molecule FRET (smFRET)-based experiments, which have uncovered critical thermodynamic information on a wide range of biological systems such as conformational dynamics of nucleic acids. This review provides an overview of various temperature-dependent smFRET approaches from our laboratory and others, highlighting efforts in which such methods have been successfully applied to studies of single-molecule nucleic acid folding.
Collapse
Affiliation(s)
- Erik D Holmstrom
- JILA, National Institute of Standards and Technology, University of Colorado, Boulder, Colorado 80309;
| | - David J Nesbitt
- JILA, National Institute of Standards and Technology, University of Colorado, Boulder, Colorado 80309;
| |
Collapse
|
15
|
Quantitative tests of a reconstitution model for RNA folding thermodynamics and kinetics. Proc Natl Acad Sci U S A 2017; 114:E7688-E7696. [PMID: 28839094 DOI: 10.1073/pnas.1703507114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Decades of study of the architecture and function of structured RNAs have led to the perspective that RNA tertiary structure is modular, made of locally stable domains that retain their structure across RNAs. We formalize a hypothesis inspired by this modularity-that RNA folding thermodynamics and kinetics can be quantitatively predicted from separable energetic contributions of the individual components of a complex RNA. This reconstitution hypothesis considers RNA tertiary folding in terms of ΔGalign, the probability of aligning tertiary contact partners, and ΔGtert, the favorable energetic contribution from the formation of tertiary contacts in an aligned state. This hypothesis predicts that changes in the alignment of tertiary contacts from different connecting helices and junctions (ΔGHJH) or from changes in the electrostatic environment (ΔG+/-) will not affect the energetic perturbation from a mutation in a tertiary contact (ΔΔGtert). Consistent with these predictions, single-molecule FRET measurements of folding of model RNAs revealed constant ΔΔGtert values for mutations in a tertiary contact embedded in different structural contexts and under different electrostatic conditions. The kinetic effects of these mutations provide further support for modular behavior of RNA elements and suggest that tertiary mutations may be used to identify rate-limiting steps and dissect folding and assembly pathways for complex RNAs. Overall, our model and results are foundational for a predictive understanding of RNA folding that will allow manipulation of RNA folding thermodynamics and kinetics. Conversely, the approaches herein can identify cases where an independent, additive model cannot be applied and so require additional investigation.
Collapse
|
16
|
Welty R, Hall KB. Nucleobases Undergo Dynamic Rearrangements during RNA Tertiary Folding. J Mol Biol 2016; 428:4490-4502. [PMID: 27693721 DOI: 10.1016/j.jmb.2016.09.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/31/2016] [Accepted: 09/15/2016] [Indexed: 02/07/2023]
Abstract
The tertiary structure of the GTPase center (GAC) of 23S ribosomal RNA (rRNA) as seen in cocrystals is extremely compact. It is stabilized by long-range hydrogen bonds and nucleobase stacking and by a triloop that forms within its three-way junction. Its folding pathway from secondary structure to tertiary structure has not been previously observed, but it was shown to require Mg2+ ions in equilibrium experiments. The fluorescent nucleotide 2-aminopurine was substituted at selected sites within the 60-nt GAC. Fluorescence intensity changes upon addition of MgCl2 were monitored over a time-course from 1ms to 100s as the RNA folds. The folding pathway is revealed here to be hierarchical through several intermediates. Observation of the nucleobases during folding provides a new perspective on the process and the pathway, revealing the dynamics of nucleobase conformational exchange during the folding transitions.
Collapse
Affiliation(s)
- Robb Welty
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Kathleen B Hall
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
17
|
Caetano-Anollés G, Caetano-Anollés D. Computing the origin and evolution of the ribosome from its structure - Uncovering processes of macromolecular accretion benefiting synthetic biology. Comput Struct Biotechnol J 2015; 13:427-47. [PMID: 27096056 PMCID: PMC4823900 DOI: 10.1016/j.csbj.2015.07.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 07/16/2015] [Accepted: 07/19/2015] [Indexed: 12/11/2022] Open
Abstract
Accretion occurs pervasively in nature at widely different timeframes. The process also manifests in the evolution of macromolecules. Here we review recent computational and structural biology studies of evolutionary accretion that make use of the ideographic (historical, retrodictive) and nomothetic (universal, predictive) scientific frameworks. Computational studies uncover explicit timelines of accretion of structural parts in molecular repertoires and molecules. Phylogenetic trees of protein structural domains and proteomes and their molecular functions were built from a genomic census of millions of encoded proteins and associated terminal Gene Ontology terms. Trees reveal a ‘metabolic-first’ origin of proteins, the late development of translation, and a patchwork distribution of proteins in biological networks mediated by molecular recruitment. Similarly, the natural history of ancient RNA molecules inferred from trees of molecular substructures built from a census of molecular features shows patchwork-like accretion patterns. Ideographic analyses of ribosomal history uncover the early appearance of structures supporting mRNA decoding and tRNA translocation, the coevolution of ribosomal proteins and RNA, and a first evolutionary transition that brings ribosomal subunits together into a processive protein biosynthetic complex. Nomothetic structural biology studies of tertiary interactions and ancient insertions in rRNA complement these findings, once concentric layering assumptions are removed. Patterns of coaxial helical stacking reveal a frustrated dynamics of outward and inward ribosomal growth possibly mediated by structural grafting. The early rise of the ribosomal ‘turnstile’ suggests an evolutionary transition in natural biological computation. Results make explicit the need to understand processes of molecular growth and information transfer of macromolecules.
Collapse
Affiliation(s)
- Gustavo Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1101W. Peabody Drive, Urbana, IL 61801, USA; C.R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA
| | - Derek Caetano-Anollés
- C.R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
18
|
A unique HMG-box domain of mouse Maelstrom binds structured RNA but not double stranded DNA. PLoS One 2015; 10:e0120268. [PMID: 25807393 PMCID: PMC4373776 DOI: 10.1371/journal.pone.0120268] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 02/05/2015] [Indexed: 01/11/2023] Open
Abstract
Piwi-interacting piRNAs are a major and essential class of small RNAs in the animal germ cells with a prominent role in transposon control. Efficient piRNA biogenesis and function require a cohort of proteins conserved throughout the animal kingdom. Here we studied Maelstrom (MAEL), which is essential for piRNA biogenesis and germ cell differentiation in flies and mice. MAEL contains a high mobility group (HMG)-box domain and a Maelstrom-specific domain with a presumptive RNase H-fold. We employed a combination of sequence analyses, structural and biochemical approaches to evaluate and compare nucleic acid binding of mouse MAEL HMG-box to that of canonical HMG-box domain proteins (SRY and HMGB1a). MAEL HMG-box failed to bind double-stranded (ds)DNA but bound to structured RNA. We also identified important roles of a novel cluster of arginine residues in MAEL HMG-box in these interactions. Cumulatively, our results suggest that the MAEL HMG-box domain may contribute to MAEL function in selective processing of retrotransposon RNA into piRNAs. In this regard, a cellular role of MAEL HMG-box domain is reminiscent of that of HMGB1 as a sentinel of immunogenic nucleic acids in the innate immune response.
Collapse
|
19
|
Interconversion between parallel and antiparallel conformations of a 4H RNA junction in domain 3 of foot-and-mouth disease virus IRES captured by dynamics simulations. Biophys J 2014; 106:447-58. [PMID: 24461020 DOI: 10.1016/j.bpj.2013.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 11/23/2013] [Accepted: 12/03/2013] [Indexed: 01/31/2023] Open
Abstract
RNA junctions are common secondary structural elements present in a wide range of RNA species. They play crucial roles in directing the overall folding of RNA molecules as well as in a variety of biological functions. In particular, there has been great interest in the dynamics of RNA junctions, including conformational pathways of fully base-paired 4-way (4H) RNA junctions. In such constructs, all nucleotides participate in one of the four double-stranded stem regions, with no connecting loops. Dynamical aspects of these 4H RNAs are interesting because frequent interchanges between parallel and antiparallel conformations are thought to occur without binding of other factors. Gel electrophoresis and single-molecule fluorescence resonance energy transfer experiments have suggested two possible pathways: one involves a helical rearrangement via disruption of coaxial stacking, and the other occurs by a rotation between the helical axes of coaxially stacked conformers. Employing molecular dynamics simulations, we explore this conformational variability in a 4H junction derived from domain 3 of the foot-and-mouth disease virus internal ribosome entry site (IRES); this junction contains highly conserved motifs for RNA-RNA and RNA-protein interactions, important for IRES activity. Our simulations capture transitions of the 4H junction between parallel and antiparallel conformations. The interconversion is virtually barrier-free and occurs via a rotation between the axes of coaxially stacked helices with a transient perpendicular intermediate. We characterize this transition, with various interhelical orientations, by pseudodihedral angle and interhelical distance measures. The high flexibility of the junction, as also demonstrated experimentally, is suitable for IRES activity. Because foot-and-mouth disease virus IRES structure depends on long-range interactions involving domain 3, the perpendicular intermediate, which maintains coaxial stacking of helices and thereby consensus primary and secondary structure information, may be beneficial for guiding the overall organization of the RNA system in domain 3.
Collapse
|
20
|
Shi X, Bisaria N, Benz-Moy TL, Bonilla S, Pavlichin DS, Herschlag D. Roles of long-range tertiary interactions in limiting dynamics of the Tetrahymena group I ribozyme. J Am Chem Soc 2014; 136:6643-8. [PMID: 24738560 PMCID: PMC4021564 DOI: 10.1021/ja413033d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We determined the effects of mutating the long-range tertiary contacts of the Tetrahymena group I ribozyme on the dynamics of its substrate helix (referred to as P1) and on catalytic activity. Dynamics were assayed by fluorescence anisotropy of the fluorescent base analogue, 6-methyl isoxanthopterin, incorporated into the P1 helix, and fluorescence anisotropy and catalytic activity were measured for wild type and mutant ribozymes over a range of conditions. Remarkably, catalytic activity correlated with P1 anisotropy over 5 orders of magnitude of activity, with a correlation coefficient of 0.94. The functional and dynamic effects from simultaneous mutation of the two long-range contacts that weaken P1 docking are cumulative and, based on this RNA's topology, suggest distinct underlying origins for the mutant effects. Tests of mechanistic predictions via single molecule FRET measurements of rate constants for P1 docking and undocking suggest that ablation of the P14 tertiary interaction frees P2 and thereby enhances the conformational space explored by the undocked attached P1 helix. In contrast, mutation of the metal core tertiary interaction disrupts the conserved core into which the P1 helix docks. Thus, despite following a single correlation, the two long-range tertiary contacts facilitate P1 helix docking by distinct mechanisms. These results also demonstrate that a fluorescence anisotropy probe incorporated into a specific helix within a larger RNA can report on changes in local helical motions as well as differences in more global dynamics. This ability will help uncover the physical properties and behaviors that underlie the function of RNAs and RNA/protein complexes.
Collapse
Affiliation(s)
- Xuesong Shi
- Department of Biochemistry, ‡Department of Chemistry, §Department of Chemical Engineering, ∥Department of Physics, Stanford University , Stanford, California 94305, United States
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
RNA dynamics play a fundamental role in many cellular functions. However, there is no general framework to describe these complex processes, which typically consist of many structural maneuvers that occur over timescales ranging from picoseconds to seconds. Here, we classify RNA dynamics into distinct modes representing transitions between basins on a hierarchical free-energy landscape. These transitions include large-scale secondary-structural transitions at >0.1-s timescales, base-pair/tertiary dynamics at microsecond-to-millisecond timescales, stacking dynamics at timescales ranging from nanoseconds to microseconds, and other "jittering" motions at timescales ranging from picoseconds to nanoseconds. We review various modes within these three different tiers, the different mechanisms by which they are used to regulate function, and how they can be coupled together to achieve greater functional complexity.
Collapse
|
22
|
Mustoe AM, Al-Hashimi HM, Brooks CL. Coarse grained models reveal essential contributions of topological constraints to the conformational free energy of RNA bulges. J Phys Chem B 2014; 118:2615-27. [PMID: 24547945 PMCID: PMC3983386 DOI: 10.1021/jp411478x] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
![]()
Recent studies have shown that simple
stereochemical constraints
encoded at the RNA secondary structure level significantly restrict
the orientation of RNA helices across two-way junctions and yield
physically reasonable distributions of RNA 3D conformations. Here
we develop a new coarse-grain model, TOPRNA, that is optimized for
exploring detailed aspects of these topological constraints in complex
RNA systems. Unlike prior models, TOPRNA effectively treats RNAs as
collections of semirigid helices linked by freely rotatable single
strands, allowing us to isolate the effects of secondary structure
connectivity and sterics on 3D structure. Simulations of bulge junctions
show that TOPRNA captures new aspects of topological constraints,
including variations arising from deviations in local A-form structure,
translational displacements of the helices, and stereochemical constraints
imposed by bulge-linker nucleotides. Notably, these aspects of topological
constraints define free energy landscapes that coincide with the distribution
of bulge conformations in the PDB. Our simulations also quantitatively
reproduce NMR RDC measurements made on HIV-1 TAR at low salt concentrations,
although not for different TAR mutants or at high salt concentrations.
Our results confirm that topological constraints are an important
determinant of bulge conformation and dynamics and demonstrate the
utility of TOPRNA for studying the topological constraints of complex
RNAs.
Collapse
Affiliation(s)
- Anthony M Mustoe
- Departments of Biophysics and ‡Chemistry, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | | | | |
Collapse
|
23
|
Protein-guided RNA dynamics during early ribosome assembly. Nature 2014; 506:334-8. [PMID: 24522531 PMCID: PMC3968076 DOI: 10.1038/nature13039] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 01/20/2014] [Indexed: 01/30/2023]
Abstract
The assembly of 30S ribosomes requires the precise addition of 20 proteins to the 16S ribosomal RNA. How early binding proteins change the rRNA structure so that later proteins may join the complex is poorly understood. Here we use single molecule fluorescence resonance energy transfer (smFRET) to observe real-time encounters between ribosomal protein S4 and the 16S 5′ domain RNA at an early stage of 30S assembly. Dynamic initial S4-RNA complexes pass through a stable non-native intermediate before converting to the native complex, showing that non-native structures can offer a low free energy path to protein-RNA recognition. Three-color FRET and molecular dynamics (MD) simulations reveal how S4 changes the frequency and direction of RNA helix motions, guiding a conformational switch that enforces the hierarchy of protein addition. This protein-guided dynamics offers an alternative explanation for induced fit in RNA-protein complexes.
Collapse
|
24
|
Abstract
Single-molecule fluorescence studies of nucleic acids are revolutionizing our understanding of fundamental cellular processes related to DNA and RNA processing mechanisms. Detailed molecular insights into DNA repair, replication, transcription, and RNA folding and function are continuously being uncovered by using the full repertoire of single-molecule fluorescence techniques. The fundamental reason behind the stunning growth in the application of single-molecule techniques to study nucleic acid structure and dynamics is the unmatched ability of single-molecule fluorescence, and mostly single-molecule FRET, to resolve heterogeneous static and dynamic populations and identify transient and low-populated states without the need for sample synchronization. New advances in DNA and RNA synthesis, post-synthetic dye-labeling methods, immobilization and passivation strategies, improved dye photophysics, and standardized analysis methods have enabled the implementation of single-molecule techniques beyond specialized laboratories. In this chapter, we introduce the practical aspects of applying single-molecule techniques to investigate nucleic acid structure, dynamics, and function.
Collapse
Affiliation(s)
- Kaley McCluskey
- SUPA School of Physics and Astronomy, University of St. Andrews, St. Andrews, Scotland, UK
| | | | | | | |
Collapse
|
25
|
Joo C, Ha T. Single-molecule FRET with total internal reflection microscopy. Cold Spring Harb Protoc 2012; 2012:2012/12/pdb.top072058. [PMID: 23209135 DOI: 10.1101/pdb.top072058] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Single-molecule (sm) fluorescence detection is a powerful method for studying biological events without time and population averaging. Förster (fluorescence) resonance energy transfer (FRET) is a spectroscopic technique in which the efficiency of energy transfer from donor to acceptor molecules is used to determine distances between molecules in the 30-80 Å range. Structural changes in biological molecules or relative motion between two interacting molecules can be detected by a change in FRET. This article focuses primarily on smFRET based on total internal reflection (TIR) microscopy. It begins with discussions of dye choice and labeling of nucleic acids and proteins. These are followed by information on surface preparation and data acquisition. Various methods of data analysis are then presented, as is information on setting up TIR microscopy, both the objective and the prism types.
Collapse
|
26
|
Abstract
Single-molecule (sm) fluorescence detection is a powerful method for studying biological events without time and population averaging. Förster (fluorescence) resonance energy transfer (FRET) is a spectroscopic technique in which the efficiency of energy transfer from donor to acceptor molecules is used to determine distances between molecules in the 30-80 Å range. Structural changes in biological molecules or relative motion between two interacting molecules can be detected by a change in FRET. A variant of smFRET is based on total internal reflection (TIR) microscopy, which can be set up in two ways, either using an oil-immersion (objective-type) or a water-immersion (prism-type) lens. To study the conformational changes of individual molecules over extended time periods, molecules must be localized in space. This protocol describes the preparation of sample chambers with either bovine serum albumin (BSA)- or polyethylene glycol (PEG)-coated slides to which single molecules can be tethered for use in FRET studies.
Collapse
|
27
|
The role of counterion valence and size in GAAA tetraloop-receptor docking/undocking kinetics. J Mol Biol 2012; 423:198-216. [PMID: 22796627 DOI: 10.1016/j.jmb.2012.07.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 07/02/2012] [Accepted: 07/03/2012] [Indexed: 01/29/2023]
Abstract
For RNA to fold into compact, ordered structures, it must overcome electrostatic repulsion between negatively charged phosphate groups by counterion recruitment. A physical understanding of the counterion-assisted folding process requires addressing how cations kinetically and thermodynamically control the folding equilibrium for each tertiary interaction in a full-length RNA. In this work, single-molecule FRET (fluorescence resonance energy transfer) techniques are exploited to isolate and explore the cation-concentration-dependent kinetics for formation of a ubiquitous RNA tertiary interaction, that is, the docking/undocking of a GAAA tetraloop with its 11-nt receptor. Rate constants for docking (k(dock)) and undocking (k(undock)) are obtained as a function of cation concentration, size, and valence, specifically for the series Na(+), K(+), Mg(2+), Ca(2+), Co(NH(3))(6)(3+), and spermidine(3+). Increasing cation concentration acceleratesk(dock)dramatically but achieves only a slight decrease in k(undock). These results can be kinetically modeled using parallel cation-dependent and cation-independent docking pathways, which allows for isolation of the folding kinetics from the interaction energetics of the cations with the undocked and docked states, respectively. This analysis reveals a preferential interaction of the cations with the transition state and docked state as compared to the undocked RNA, with the ion-RNA interaction strength growing with cation valence. However, the corresponding number of cations that are taken up by the RNA upon folding decreases with charge density of the cation. The only exception to these behaviors is spermidine(3+), whose weaker influence on the docking equilibria with respect to Co(NH(3))(6)(3+) can be ascribed to steric effects preventing complete neutralization of the RNA phosphate groups.
Collapse
|
28
|
Chen K, Eargle J, Lai J, Kim H, Abeysirigunawardena S, Mayerle M, Woodson S, Ha T, Luthey-Schulten Z. Assembly of the five-way junction in the ribosomal small subunit using hybrid MD-Gō simulations. J Phys Chem B 2012; 116:6819-31. [PMID: 22458631 DOI: 10.1021/jp212614b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Assembly of the bacterial ribosomal small subunit (SSU) begins with the folding of the five-way junction upon interaction with the primary binding protein S4. This complex contains the largest contiguous molecular signature, which is a conserved feature in all bacterial 16S rRNAs. In a previous study, we used all-atom molecular dynamics simulations to demonstrate that the co-evolving signature in the N-terminus of S4 is intrinsically disordered and capable of accelerating the binding process through a fly casting mechanism. In this paper, comparisons between the all-atom MD simulations and FRET experiments identify multiple metastable conformations of the naked five-way junction without the presence of S4. Furthermore, we capture the simultaneous folding and binding of the five-way junction and r-protein S4 by use of a structure-based Gō potential implemented within the framework of the all-atom molecular dynamics CHARMM force field. Different folding pathways are observed for the refolding of the five-way junction upon partial binding of S4. Our simulations illustrate the complex nature of RNA folding in the presence of a protein binding partner and provide insight into the role of population shift and the induced fit mechanisms in the protein:RNA folding and binding process.
Collapse
Affiliation(s)
- Ke Chen
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Mg(2+) is essential for the proper folding and function of RNA, though the effect of Mg(2+) concentration on the free energy, enthalpy, and entropy landscapes of RNA folding is unknown. This work exploits temperature-controlled single-molecule FRET methods to address the thermodynamics of RNA folding pathways by probing the intramolecular docking/undocking kinetics of the ubiquitous GAAA tetraloop-receptor tertiary interaction as a function of [Mg(2+)]. These measurements yield the barrier and standard state enthalpies, entropies, and free energies for an RNA tertiary transition, in particular, revealing the thermodynamic origin of [Mg(2+)]-facilitated folding. Surprisingly, these studies reveal that increasing [Mg(2+)] promotes tetraloop-receptor interaction by reducing the entropic barrier (-TΔS(++)(dock)) and the overall entropic penalty (-TΔS(+) (dock)) for docking, with essentially negligible effects on both the activation enthalpy (ΔH(++)(dock)) and overall exothermicity (ΔH(+)(dock)). These observations contrast with the conventional notion that increasing [Mg(2+)] facilitates folding by minimizing electrostatic repulsion of opposing RNA helices, which would incorrectly predict a decrease in ΔH(++)(dock)) and ΔH(+)(dock)) with [Mg(2+)]. Instead we propose that higher [Mg(2+)] can aid RNA folding by decreasing the entropic penalty of counterion uptake and by reducing disorder of the unfolded conformational ensemble.
Collapse
|
30
|
Kügel W, Muschielok A, Michaelis J. Bayesian-inference-based fluorescence correlation spectroscopy and single-molecule burst analysis reveal the influence of dye selection on DNA hairpin dynamics. Chemphyschem 2012; 13:1013-22. [PMID: 22279001 DOI: 10.1002/cphc.201100720] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Indexed: 01/30/2023]
Abstract
Fluorescence correlation spectroscopy (FCS) is a powerful tool to gain information about dynamics of biomolecules. However, the key problem is to extract the rates hidden in the FCS data by fitting the data to a meaningful model. A number of different fitting approaches have been described in recent years but the extraction of relevant information to date has still been limited by numerous experimental problems and the fact that the set of starting parameter values chosen could often predefine the result. We establish a new way to globally analyze FCS data based on Bayesian inference to overcome these issues. Moreover, the influence of other remaining experimental error sources, for example, photophysics, is excluded by additional means. Using this approach in combination with the results from single-molecule burst analysis, we investigate the kinetics of DNA hairpins labeled with a variety of different fluorescent probes as a function of the salt concentration. We find that the rates of hairpin opening and closing as well as the equilibrium constant of the transition depend on the characteristics of the dye molecules used to label the hairpin. Thus, great caution has to be used when utilizing dye molecules as reporters for the kinetics of dynamic macromolecular structures.
Collapse
Affiliation(s)
- Wolfgang Kügel
- Department of Chemistry, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | | | | |
Collapse
|
31
|
Abstract
We develop a unique algorithm implemented in the program MOSAICS (Methodologies for Optimization and Sampling in Computational Studies) that is capable of nanoscale modeling without compromising the resolution of interest. This is achieved by modeling with customizable hierarchical degrees of freedom, thereby circumventing major limitations of conventional molecular modeling. With the emergence of RNA-based nanotechnology, large RNAs in all-atom representation are used here to benchmark our algorithm. Our method locates all favorable structural states of a model RNA of significant complexity while improving sampling accuracy and increasing speed many fold over existing all-atom RNA modeling methods. We also modeled the effects of sequence mutations on the structural building blocks of tRNA-based nanotechnology. With its flexibility in choosing arbitrary degrees of freedom as well as in allowing different all-atom energy functions, MOSAICS is an ideal tool to model and design biomolecules of the nanoscale.
Collapse
|
32
|
Lilley DMJ. Fluorescence Resonance Energy Transfer Studies of Structure and Dynamics in Nucleic Acids. NATO SCIENCE FOR PEACE AND SECURITY SERIES B: PHYSICS AND BIOPHYSICS 2012. [DOI: 10.1007/978-94-007-4923-8_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
33
|
Butcher SE, Pyle AM. The molecular interactions that stabilize RNA tertiary structure: RNA motifs, patterns, and networks. Acc Chem Res 2011; 44:1302-11. [PMID: 21899297 DOI: 10.1021/ar200098t] [Citation(s) in RCA: 239] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
RNA molecules adopt specific three-dimensional structures critical to their function. Many essential metabolic processes, including protein synthesis and RNA splicing, are carried out by RNA molecules with elaborate tertiary structures (e.g. 3QIQ, right). Indeed, the ribosome and self-splicing introns are complex RNA machines. But even the coding regions in messenger RNAs and viral RNAs are flanked by highly structured untranslated regions, which provide regulatory information necessary for gene expression. RNA tertiary structure is defined as the three-dimensional arrangement of RNA building blocks, which include helical duplexes, triple-stranded structures, and other components that are held together through connections collectively termed RNA tertiary interactions. The structural diversity of these interactions is now a subject of intense investigation, involving the techniques of NMR, X-ray crystallography, chemical genetics, and phylogenetic analysis. At the same time, many investigators are using biophysical techniques to elucidate the driving forces for tertiary structure formation and the mechanisms for its stabilization. RNA tertiary folding is promoted by maximization of base stacking, much like the hydrophobic effect that drives protein folding. RNA folding also requires electrostatic stabilization, both through charge screening and site binding of metals, and it is enhanced by desolvation of the phosphate backbone. In this Account, we provide an overview of the features that specify and stabilize RNA tertiary structure. A major determinant for overall tertiary RNA architecture is local conformation in secondary-structure junctions, which are regions from which two or more duplexes project. At junctions and other structures, such as pseudoknots and kissing loops, adjacent helices stack on one another, and these coaxial stacks play a major role in dictating the overall architectural form of an RNA molecule. In addition to RNA junction topology, a second determinant for RNA tertiary structure is the formation of sequence-specific interactions. Networks of triple helices, tetraloop-receptor interactions, and other sequence-specific contacts establish the framework for the overall tertiary fold. The third determinant of tertiary structure is the formation of stabilizing stacking and backbone interactions, and many are not sequence specific. For example, ribose zippers allow 2'-hydroxyl groups on different RNA strands to form networks of interdigitated hydrogen bonds, serving to seal strands together and thereby stabilize adjacent substructures. These motifs often require monovalent and divalent cations, which can interact diffusely or through chelation to specific RNA functional groups. As we learn more about the components of RNA tertiary structure, we will be able to predict the structures of RNA molecules from their sequences, thereby obtaining key information about biological function. Understanding and predicting RNA structure is particularly important given the recent discovery that although most of our genome is transcribed into RNA molecules, few of them have a known function. The prevalence of RNA viruses and pathogens with RNA genomes makes RNA drug discovery an active area of research. Finally, knowledge of RNA structure will facilitate the engineering of supramolecular RNA structures, which can be used as nanomechanical components for new materials. But all of this promise depends on a better understanding of the RNA parts list, and how the pieces fit together.
Collapse
Affiliation(s)
- Samuel E. Butcher
- Department of Biochemistry, University of Wisconsin—Madison, 433 Babcock
Drive, Madison, Wisconsin 53706-1544, United States
| | - Anna Marie Pyle
- Department of Molecular, Cellular
and Developmental Biology and Department of Chemistry, Yale University, New Haven, Connecticut, United States
- Howard Hughes Medical Institute
| |
Collapse
|
34
|
Laing C, Wen D, Wang JTL, Schlick T. Predicting coaxial helical stacking in RNA junctions. Nucleic Acids Res 2011; 40:487-98. [PMID: 21917853 PMCID: PMC3258123 DOI: 10.1093/nar/gkr629] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
RNA junctions are important structural elements that form when three or more helices come together in space in the tertiary structures of RNA molecules. Determining their structural configuration is important for predicting RNA 3D structure. We introduce a computational method to predict, at the secondary structure level, the coaxial helical stacking arrangement in junctions, as well as classify the junction topology. Our approach uses a data mining approach known as random forests, which relies on a set of decision trees trained using length, sequence and other variables specified for any given junction. The resulting protocol predicts coaxial stacking within three- and four-way junctions with an accuracy of 81% and 77%, respectively; the accuracy increases to 83% and 87%, respectively, when knowledge from the junction family type is included. Coaxial stacking predictions for the five to ten-way junctions are less accurate (60%) due to sparse data available for training. Additionally, our application predicts the junction family with an accuracy of 85% for three-way junctions and 74% for four-way junctions. Comparisons with other methods, as well applications to unsolved RNAs, are also presented. The web server Junction-Explorer to predict junction topologies is freely available at: http://bioinformatics.njit.edu/junction.
Collapse
Affiliation(s)
- Christian Laing
- Department of Chemistry, Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA
| | | | | | | |
Collapse
|
35
|
Westhof E, Masquida B, Jossinet F. Predicting and modeling RNA architecture. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a003632. [PMID: 20504963 DOI: 10.1101/cshperspect.a003632] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A general approach for modeling the architecture of large and structured RNA molecules is described. The method exploits the modularity and the hierarchical folding of RNA architecture that is viewed as the assembly of preformed double-stranded helices defined by Watson-Crick base pairs and RNA modules maintained by non-Watson-Crick base pairs. Despite the extensive molecular neutrality observed in RNA structures, specificity in RNA folding is achieved through global constraints like lengths of helices, coaxiality of helical stacks, and structures adopted at the junctions of helices. The Assemble integrated suite of computer tools allows for sequence and structure analysis as well as interactive modeling by homology or ab initio assembly with possibilities for fitting within electronic density maps. The local key role of non-Watson-Crick pairs guides RNA architecture formation and offers metrics for assessing the accuracy of three-dimensional models in a more useful way than usual root mean square deviation (RMSD) values.
Collapse
Affiliation(s)
- Eric Westhof
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, 67084 Strasbourg, France.
| | | | | |
Collapse
|
36
|
Novikova IV, Hassan BH, Mirzoyan MG, Leontis NB. Engineering cooperative tecto-RNA complexes having programmable stoichiometries. Nucleic Acids Res 2010; 39:2903-17. [PMID: 21138969 PMCID: PMC3074147 DOI: 10.1093/nar/gkq1231] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
High affinity and specificity RNA-RNA binding interfaces can be constructed by combining pairs of GNRA loop/loop-receptor interaction motifs. These interactions can be fused using flexible four-way junction motifs to create divalent, self-assembling scaffolding units ('tecto-RNA') that have favorable properties for nanomedicine and other applications. We describe the design and directed assembly of tecto-RNA units ranging from closed, cooperatively assembling ring-shaped complexes of programmable stoichiometries (dimers, trimers and tetramers) to open multimeric structures. The novelty of this work is that tuning of the stoichiometries of self-assembled complexes is achieved by precise positioning of the interaction motifs in the monomer units rather than changing their binding specificities. Structure-probing and transmission electron microscopy studies as well as thermodynamic analysis support formation of closed cooperative complexes that are highly resistant to nuclease digestion. The present designs provide two helical arms per RNA monomer for further functionalization aims.
Collapse
Affiliation(s)
- Irina V Novikova
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
| | | | | | | |
Collapse
|
37
|
Cyanine dyes in biophysical research: the photophysics of polymethine fluorescent dyes in biomolecular environments. Q Rev Biophys 2010; 44:123-51. [DOI: 10.1017/s0033583510000247] [Citation(s) in RCA: 294] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AbstractThe breakthroughs in single molecule spectroscopy of the last decade and the recent advances in super resolution microscopy have boosted the popularity of cyanine dyes in biophysical research. These applications have motivated the investigation of the reactions and relaxation processes that cyanines undergo in their electronically excited states. Studies show that the triplet state is a key intermediate in the photochemical reactions that limit the photostability of cyanine dyes. The removal of oxygen greatly reduces photobleaching, but induces rapid intensity fluctuations (blinking). The existence of non-fluorescent states lasting from milliseconds to seconds was early identified as a limitation in single-molecule spectroscopy and a potential source of artifacts. Recent studies demonstrate that a combination of oxidizing and reducing agents is the most efficient way of guaranteeing that the ground state is recovered rapidly and efficiently. Thiol-containing reducing agents have been identified as the source of long-lived dark states in some cyanines that can be photochemically switched back to the emissive state. The mechanism of this process is the reversible addition of the thiol-containing compound to a double bond in the polymethine chain resulting in a non-fluorescent molecule. This process can be reverted by irradiation at shorter wavelengths. Another mechanism that leads to non-fluorescent states in cyanine dyes is cis–trans isomerization from the singlet-excited state. This process, which competes with fluorescence, involves the rotation of one-half of the molecule with respect to the other with an efficiency that depends strongly on steric effects. The efficiency of fluorescence of most cyanine dyes has been shown to depend dramatically on their molecular environment within the biomolecule. For example, the fluorescence quantum yield of Cy3 linked covalently to DNA depends on the type of linkage used for attachment, DNA sequence and secondary structure. Cyanines linked to the DNA termini have been shown to be mostly stacked at the end of the helix, while cyanines linked to the DNA internally are believed to partially bind to the minor or major grooves. These interactions not only affect the photophysical properties of the probes but also create a large uncertainty in their orientation.
Collapse
|
38
|
Abstract
RNA molecules take advantage of prevalent structural motifs to fold and assemble into well-defined 3D architectures. The A-minor junction is a class of RNA motifs that specifically controls coaxial stacking of helices in natural RNAs. A sensitive self-assembling supra-molecular system was used as an assay to compare several natural and previously unidentified A-minor junctions by native polyacrylamide gel electrophoresis and atomic force microscopy. This class of modular motifs follows a topological rule that can accommodate a variety of interchangeable A-minor interactions with distinct local structural motifs. Overall, two different types of A-minor junctions can be distinguished based on their functional self-assembling behavior: one group makes use of triloops or GNRA and GNRA-like loops assembling with helices, while the other takes advantage of more complex tertiary receptors specific for the loop to gain higher stability. This study demonstrates how different structural motifs of RNA can contribute to the formation of topologically equivalent helical stacks. It also exemplifies the need of classifying RNA motifs based on their tertiary structural features rather than secondary structural features. The A-minor junction rule can be used to facilitate tertiary structure prediction of RNAs and rational design of RNA parts for nanobiotechnology and synthetic biology.
Collapse
Affiliation(s)
- Cody Geary
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106-9510, USA
| | | | | |
Collapse
|
39
|
Hohlbein J, Gryte K, Heilemann M, Kapanidis AN. Surfing on a new wave of single-molecule fluorescence methods. Phys Biol 2010; 7:031001. [DOI: 10.1088/1478-3975/7/3/031001] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
40
|
Laing C, Schlick T. Computational approaches to 3D modeling of RNA. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2010; 22:283101. [PMID: 21399271 PMCID: PMC6286080 DOI: 10.1088/0953-8984/22/28/283101] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Many exciting discoveries have recently revealed the versatility of RNA and its importance in a variety of functions within the cell. Since the structural features of RNA are of major importance to their biological function, there is much interest in predicting RNA structure, either in free form or in interaction with various ligands, including proteins, metabolites and other molecules. In recent years, an increasing number of researchers have developed novel RNA algorithms for predicting RNA secondary and tertiary structures. In this review, we describe current experimental and computational advances and discuss recent ideas that are transforming the traditional view of RNA folding. To evaluate the performance of the most recent RNA 3D folding algorithms, we provide a comparative study in order to test the performance of available 3D structure prediction algorithms for an RNA data set of 43 structures of various lengths and motifs. We find that the algorithms vary widely in terms of prediction quality across different RNA lengths and topologies; most predictions have very large root mean square deviations from the experimental structure. We conclude by outlining some suggestions for future RNA folding research.
Collapse
Affiliation(s)
- Christian Laing
- Department of Chemistry and Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA
| | | |
Collapse
|
41
|
Fiore JL, Kraemer B, Koberling F, Edmann R, Nesbitt DJ. Enthalpy-driven RNA folding: single-molecule thermodynamics of tetraloop-receptor tertiary interaction. Biochemistry 2010; 48:2550-8. [PMID: 19186984 DOI: 10.1021/bi8019788] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
RNA folding thermodynamics are crucial for structure prediction, which requires characterization of both enthalpic and entropic contributions of tertiary motifs to conformational stability. We explore the temperature dependence of RNA folding due to the ubiquitous GAAA tetraloop-receptor docking interaction, exploiting immobilized and freely diffusing single-molecule fluorescence resonance energy transfer (smFRET) methods. The equilibrium constant for intramolecular docking is obtained as a function of temperature (T = 21-47 degrees C), from which a van't Hoff analysis yields the enthalpy (DeltaH degrees) and entropy (DeltaS degrees) of docking. Tetraloop-receptor docking is significantly exothermic and entropically unfavorable in 1 mM MgCl(2) and 100 mM NaCl, with excellent agreement between immobilized (DeltaH degrees = -17.4 +/- 1.6 kcal/mol, and DeltaS degrees = -56.2 +/- 5.4 cal mol(-1) K(-1)) and freely diffusing (DeltaH degrees = -17.2 +/- 1.6 kcal/mol, and DeltaS degrees = -55.9 +/- 5.2 cal mol(-1) K(-1)) species. Kinetic heterogeneity in the tetraloop-receptor construct is unaffected over the temperature range investigated, indicating a large energy barrier for interconversion between the actively docking and nondocking subpopulations. Formation of the tetraloop-receptor interaction can account for approximately 60% of the DeltaH degrees and DeltaS degrees of P4-P6 domain folding in the Tetrahymena ribozyme, suggesting that it may act as a thermodynamic clamp for the domain. Comparison of the isolated tetraloop-receptor and other tertiary folding thermodynamics supports a theme that enthalpy- versus entropy-driven folding is determined by the number of hydrogen bonding and base stacking interactions.
Collapse
Affiliation(s)
- Julie L Fiore
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309-0440, USA
| | | | | | | | | |
Collapse
|
42
|
Okumus B, Arslan S, Fengler SM, Myong S, Ha T. Single molecule nanocontainers made porous using a bacterial toxin. J Am Chem Soc 2010; 131:14844-9. [PMID: 19788247 PMCID: PMC2761729 DOI: 10.1021/ja9042356] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Encapsulation of a biological molecule or a molecular complex in a vesicle provides a means of biofriendly immobilization for single molecule studies and further enables new types of analysis if the vesicles are permeable. We previously reported on using DMPC (dimyristoylphosphatidylcholine) vesicles for realizing porous bioreactors. Here, we describe a different strategy for making porous vesicles using a bacterial pore-forming toxin, α-hemolysin. Using RNA folding as a test case, we demonstrate that protein-based pores can allow exchange of magnesium ions through the vesicle wall while keeping the RNA molecule inside. Flow measurements indicate that the encapsulated RNA molecules rapidly respond to the change in the outside buffer condition. The approach was further tested by coencapsulating a helicase protein and its single-stranded DNA track. The DNA translocation activity of E. coli Rep helicase inside vesicles was fueled by ATP provided outside the vesicle, and a dramatically higher number of translocation cycles could be observed due to the minuscule vesicle volume that facilitates rapid rebinding after dissociation. These pores are known to be stable over a wide range of experimental conditions, especially at various temperatures, which is not possible with the previous method using DMPC vesicles. Moreover, engineered mutants of the utilized toxin can potentially be exploited in the future applications.
Collapse
Affiliation(s)
- Burak Okumus
- Center for Biophysics and Computational Biology, University of Illinois, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
43
|
Holmstrom ED, Nesbitt DJ. Real-Time Infrared Overtone Laser Control of Temperature in Picoliter H(2)O Samples: "Nanobathtubs" for Single Molecule Microscopy. J Phys Chem Lett 2010; 1:2264-2268. [PMID: 21814589 PMCID: PMC3148086 DOI: 10.1021/jz100663e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
An approach for high spatiotemporal control of aqueous sample temperatures in confocal microscopy is reported. This technique exploits near-IR diode-laser illumination to locally heat picoliter volumes of water via first-overtone excitation in the OH-stretch manifold. A thin water cell after the objective resonantly removes any residual IR light from the detection system, allowing for continuous observation of single-molecule fluorescence throughout the heating event. This technique is tested quantitatively by reproducing single-molecule RNA folding results obtained from "bulk" stage heating measurements. Calibration of sample temperatures is obtained from time-correlated single-photon counting studies of Rhodamine B fluorescence decay. We obtain an upper limit to the heating response time (τ(heat) < 20 ms) consistent with even faster estimates (τ(heat) ≈ 0.25 ms) based on laser spot size, H(2)O heat capacit,y and absorption cross section. This combination of fast, noncontact heating of picoliter volumes provides new opportunities for real-time thermodynamic/kinetic studies at the single-molecule level.
Collapse
Affiliation(s)
| | - David J. Nesbitt
- Corresponding Author: To whom correspondence should be addressed. . Phone: (303) 492- 8857. Fax: (303) 493- 5235
| |
Collapse
|
44
|
Helm M, Kobitski AY, Nienhaus GU. Single-molecule Förster resonance energy transfer studies of RNA structure, dynamics and function. Biophys Rev 2009; 1:161. [PMID: 28510027 PMCID: PMC5418384 DOI: 10.1007/s12551-009-0018-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 10/09/2009] [Indexed: 11/24/2022] Open
Abstract
Single-molecule fluorescence microscopy experiments on RNA molecules brought to light the highly complex dynamics of key biological processes, including RNA folding, catalysis of ribozymes, ligand sensing of riboswitches and aptamers, and protein synthesis in the ribosome. By using highly advanced biophysical spectroscopy techniques in combination with sophisticated biochemical synthesis approaches, molecular dynamics of individual RNA molecules can be observed in real time and under physiological conditions in unprecedented detail that cannot be achieved with bulk experiments. Here, we review recent advances in RNA folding and functional studies of RNA and RNA-protein complexes addressed by using single-molecule Förster (fluorescence) resonance energy transfer (smFRET) technique.
Collapse
Affiliation(s)
- Mark Helm
- Institute of Pharmacy, University of Mainz, Staudinger Weg 5, 55128, Mainz, Germany.
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany.
| | - Andrei Yu Kobitski
- Institute of Applied Physics and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), 76128, Karlsruhe, Germany
| | - G Ulrich Nienhaus
- Institute of Applied Physics and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), 76128, Karlsruhe, Germany
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
45
|
Chu VB, Lipfert J, Bai Y, Pande VS, Doniach S, Herschlag D. Do conformational biases of simple helical junctions influence RNA folding stability and specificity? RNA (NEW YORK, N.Y.) 2009; 15:2195-205. [PMID: 19850914 PMCID: PMC2779674 DOI: 10.1261/rna.1747509] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Accepted: 09/03/2009] [Indexed: 05/20/2023]
Abstract
Structured RNAs must fold into their native structures and discriminate against a large number of alternative ones, an especially difficult task given the limited information content of RNA's nucleotide alphabet. The simplest motifs within structured RNAs are two helices joined by nonhelical junctions. To uncover the fundamental behavior of these motifs and to elucidate the underlying physical forces and challenges faced by structured RNAs, we computationally and experimentally studied a tethered duplex model system composed of two helices joined by flexible single- or double-stranded polyethylene glycol tethers, whose lengths correspond to those typically observed in junctions from structured RNAs. To dissect the thermodynamic properties of these simple motifs, we computationally probed how junction topology, electrostatics, and tertiary contact location influenced folding stability. Small-angle X-ray scattering was used to assess our predictions. Single- or double-stranded junctions, independent of sequence, greatly reduce the space of allowed helical conformations and influencing the preferred location and orientation of their adjoining helices. A double-stranded junction guides the helices along a hinge-like pathway. In contrast, a single-stranded junction samples a broader set of conformations and has different preferences than the double-stranded junction. In turn, these preferences determine the stability and distinct specificities of tertiary structure formation. These sequence-independent effects suggest that properties as simple as a junction's topology can generally define the accessible conformational space, thereby stabilizing desired structures and assisting in discriminating against misfolded structures. Thus, junction topology provides a fundamental strategy for transcending the limitations imposed by the low information content of RNA primary sequence.
Collapse
Affiliation(s)
- Vincent B Chu
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
| | | | | | | | | | | |
Collapse
|
46
|
Mitra S. Using analytical ultracentrifugation (AUC) to measure global conformational changes accompanying equilibrium tertiary folding of RNA molecules. Methods Enzymol 2009; 469:209-36. [PMID: 20946791 DOI: 10.1016/s0076-6879(09)69010-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Analytical ultracentrifugation (AUC) is a powerful technique to determine the global conformational changes in RNA molecules mediated by cations or small molecule ligands. Although most of the developments in the field of AUC have been centered on studies involving protein molecules, the experimental methods as well as the analytical approaches have been successfully adapted and applied to the study of a variety of RNA molecules ranging from small riboswitches to large ribozymes. Most often AUC studies are performed in conjunction with other structural probing techniques that provide complementary information on local changes in the solvent accessibilities at specific regions within RNA molecules. This chapter provides a brief theoretical background, working knowledge of instrumentation, practical considerations for experimental setup, and guidelines for data analysis procedures to enable the design, execution, and interpretation of sedimentation velocity experiments that detect changes in the global dimensions of an RNA molecule during its equilibrium folding.
Collapse
Affiliation(s)
- Somdeb Mitra
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
47
|
Abstract
Comparative gel electrophoresis provides information on the relative angles subtended between helical arms at a branchpoint in RNA. It is based upon the comparison of electrophoretic mobility in polyacrylamide gels of species containing two long arms, with the remaining one(s) being significantly shorter. Although the method currently lacks a really well-established basis of physical theory, it is very powerful, yet simple to apply. It has had a number of significant successes in RNA, DNA and DNA-protein complexes, and in all cases to date the results have stood the test of time and eventual comparison with crystallographic analysis.
Collapse
|
48
|
Spitale RC, Wedekind JE. Exploring ribozyme conformational changes with X-ray crystallography. Methods 2009; 49:87-100. [PMID: 19559088 PMCID: PMC2782588 DOI: 10.1016/j.ymeth.2009.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 05/28/2009] [Accepted: 06/05/2009] [Indexed: 11/18/2022] Open
Abstract
Relating three-dimensional fold to function is a central challenge in RNA structural biology. Toward this goal, X-ray crystallography has long been considered the "gold standard" for structure determinations at atomic resolution, although NMR spectroscopy has become a powerhouse in this arena as well. In the area of dynamics, NMR remains the dominant technique to probe the magnitude and timescales of molecular motion. Although the latter area remains largely unassailable by conventional crystallographic methods, inroads have been made on proteins using Laue radiation on timescales of ms to ns. Proposed 'fourth generation' radiation sources, such as free-electron X-ray lasers, promise ps- to fs-timescale resolution, and credible evidence is emerging that supports the feasibility of single molecule imaging. At present however, the preponderance of RNA structural information has been derived from timescale and motion insensitive crystallographic techniques. Importantly, developments in computing, automation and high-flux synchrotron sources have propelled the rapidity of 'conventional' RNA crystal structure determinations to timeframes of hours once a suitable set of phases is obtained. With a sufficient number of crystal structures, it is possible to create a structural ensemble that can provide insight into global and local molecular motion characteristics that are relevant to biological function. Here we describe techniques to explore conformational changes in the hairpin ribozyme, a representative non-protein-coding RNA catalyst. The approaches discussed include: (i) construct choice and design using prior knowledge to improve X-ray diffraction; (ii) recognition of long-range conformational changes and (iii) use of single-base or single-atom changes to create ensembles. The methods are broadly applicable to other RNA systems.
Collapse
Affiliation(s)
- Robert C. Spitale
- Department of Chemistry, Biological Chemistry Cluster, RC Box 270216, Rochester, NY 14627-0216
| | - Joseph E. Wedekind
- Department of Biochemistry & Biophysics, 601 Elmwood Avenue Box 712, Rochester New York 14642
- Department of Chemistry, Biological Chemistry Cluster, RC Box 270216, Rochester, NY 14627-0216
| |
Collapse
|
49
|
Laing C, Jung S, Iqbal A, Schlick T. Tertiary motifs revealed in analyses of higher-order RNA junctions. J Mol Biol 2009; 393:67-82. [PMID: 19660472 DOI: 10.1016/j.jmb.2009.07.089] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 07/29/2009] [Accepted: 07/29/2009] [Indexed: 12/22/2022]
Abstract
RNA junctions are secondary-structure elements formed when three or more helices come together. They are present in diverse RNA molecules with various fundamental functions in the cell. To better understand the intricate architecture of three-dimensional (3D) RNAs, we analyze currently solved 3D RNA junctions in terms of base-pair interactions and 3D configurations. First, we study base-pair interaction diagrams for solved RNA junctions with 5 to 10 helices and discuss common features. Second, we compare these higher-order junctions to those containing 3 or 4 helices and identify global motif patterns such as coaxial stacking and parallel and perpendicular helical configurations. These analyses show that higher-order junctions organize their helical components in parallel and helical configurations similar to lower-order junctions. Their sub-junctions also resemble local helical configurations found in three- and four-way junctions and are stabilized by similar long-range interaction preferences such as A-minor interactions. Furthermore, loop regions within junctions are high in adenine but low in cytosine, and in agreement with previous studies, we suggest that coaxial stacking between helices likely forms when the common single-stranded loop is small in size; however, other factors such as stacking interactions involving noncanonical base pairs and proteins can greatly determine or disrupt coaxial stacking. Finally, we introduce the ribo-base interactions: when combined with the along-groove packing motif, these ribo-base interactions form novel motifs involved in perpendicular helix-helix interactions. Overall, these analyses suggest recurrent tertiary motifs that stabilize junction architecture, pack helices, and help form helical configurations that occur as sub-elements of larger junction networks. The frequent occurrence of similar helical motifs suggest nature's finite and perhaps limited repertoire of RNA helical conformation preferences. More generally, studies of RNA junctions and tertiary building blocks can ultimately help in the difficult task of RNA 3D structure prediction.
Collapse
Affiliation(s)
- Christian Laing
- Department of Chemistry, New York University, 251 Mercer Street, New York, NY 10012, USA
| | | | | | | |
Collapse
|
50
|
Person B, Stein IH, Steinhauer C, Vogelsang J, Tinnefeld P. Correlated Movement and Bending of Nucleic Acid Structures Visualized by Multicolor Single-Molecule Spectroscopy. Chemphyschem 2009; 10:1455-60. [DOI: 10.1002/cphc.200900109] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|