1
|
Bhattacharya S, Varney KM, Dahmane T, Johnson BA, Weber DJ, Palmer AG. Deuterium spin relaxation of fractionally deuterated ribonuclease H using paired 475 and 950 MHz NMR spectrometers. JOURNAL OF BIOMOLECULAR NMR 2024; 78:169-177. [PMID: 38856928 DOI: 10.1007/s10858-024-00443-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/27/2024] [Indexed: 06/11/2024]
Abstract
Deuterium (2H) spin relaxation of 13CH2D methyl groups has been widely applied to investigate picosecond-to-nanosecond conformational dynamics in proteins by solution-state NMR spectroscopy. The B0 dependence of the 2H spin relaxation rates is represented by a linear relationship between the spectral density function at three discrete frequencies J(0), J(ωD) and J(2ωD). In this study, the linear relation between 2H relaxation rates at B0 fields separated by a factor of two and the interpolation of rates at intermediate frequencies are combined for a more robust approach for spectral density mapping. The general usefulness of the approach is demonstrated on a fractionally deuterated (55%) and alternate 13C-12C labeled sample of E. coli RNase H. Deuterium relaxation rate constants (R1, R1ρ, RQ, RAP) were measured for 57 well-resolved 13CH2D moieties in RNase H at 1H frequencies of 475 MHz, 500 MHz, 900 MHz, and 950 MHz. The spectral density mapping of the 475/950 MHz data combination was performed independently and jointly to validate the expected relationship between data recorded at B0 fields separated by a factor of two. The final analysis was performed by jointly analyzing 475/950 MHz rates with 700 MHz rates interpolated from 500/900 MHz data to yield six J(ωD) values for each methyl peak. The J(ω) profile for each peak was fit to the original (τM, Sf2, τf) or extended model-free function (τM, Sf2, Ss2, τf, τs) to obtain optimized dynamic parameters.
Collapse
Affiliation(s)
| | - Kristen M Varney
- University of Maryland School of Medicine, 108 North Greene Street, Baltimore, MD, 21201, USA
| | - Tassadite Dahmane
- New York Structural Biology Center, 89 Convent Ave, New York, NY, 10027, USA
| | - Bruce A Johnson
- Structural Biology Initiative, CUNY Advanced Science Research Center, 85 St. Nicholas Terrace, New York, NY, 10031, USA
| | - David J Weber
- University of Maryland School of Medicine, 108 North Greene Street, Baltimore, MD, 21201, USA
| | - Arthur G Palmer
- New York Structural Biology Center, 89 Convent Ave, New York, NY, 10027, USA.
- Department of Biochemistry and Molecular Biophysics, Columbia University, 630 West 168th Street, New York, NY, 10032, USA.
| |
Collapse
|
2
|
Banayan NE, Hsu A, Hunt JF, Palmer AG, Friesner RA. Parsing Dynamics of Protein Backbone NH and Side-Chain Methyl Groups using Molecular Dynamics Simulations. J Chem Theory Comput 2024; 20:6316-6327. [PMID: 38957960 PMCID: PMC11528701 DOI: 10.1021/acs.jctc.4c00378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Experimental NMR spectroscopy and theoretical molecular dynamics (MD) simulations provide complementary insights into protein conformational dynamics and hence into biological function. The present work describes an extensive set of backbone NH and side-chain methyl group generalized order parameters for the Escherichia coli ribonuclease HI (RNH) enzyme derived from 2-μs microsecond MD simulations using the OPLS4 and AMBER-FF19SB force fields. The simulated generalized order parameters are compared with values derived from NMR 15N and 13CH2D spin relaxation measurements. The squares of the generalized order parameters, S2 for the N-H bond vector and Saxis2 for the methyl group symmetry axis, characterize the equilibrium distribution of vector orientations in a molecular frame of reference. Optimal agreement between simulated and experimental results was obtained by averaging S2 or Saxis2 calculated by dividing the simulated trajectories into 50 ns blocks (∼five times the rotational diffusion correlation time for RNH). With this procedure, the median absolute deviations (MAD) between experimental and simulated values of S2 and Saxis2 are 0.030 (NH) and 0.061 (CH3) for OPLS4 and 0.041 (NH) and 0.078 (CH3) for AMBER-FF19SB. The MAD between OPLS4 and AMBER-FF19SB are 0.021 (NH) and 0.072 (CH3). The generalized order parameters for the methyl group symmetry axis can be decomposed into contributions from backbone fluctuations, between-rotamer dihedral angle transitions, and within-rotamer dihedral angle fluctuations. Analysis of the simulation trajectories shows that (i) backbone and side chain conformational fluctuations exhibit little correlation and that (ii) fluctuations within rotamers are limited and highly uniform with values that depend on the number of dihedral angles considered. Low values of Saxis2, indicative of enhanced side-chain flexibility, result from between-rotamer transitions that can be enhanced by increased local backbone flexibility.
Collapse
Affiliation(s)
- Nooriel E. Banayan
- Department of Biological Sciences, Columbia University, 3000 Broadway, New York, NY 10027, USA
| | - Andrew Hsu
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY 10027, USA
| | - John F. Hunt
- Department of Biological Sciences, Columbia University, 3000 Broadway, New York, NY 10027, USA
| | - Arthur G. Palmer
- Department of Biochemistry and Molecular Biophysics, Columbia University, 701 West 168th Street, New York, NY 10032, USA
| | - Richard A. Friesner
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY 10027, USA
| |
Collapse
|
3
|
Knight AL, Widjaja V, Lisi GP. Temperature as a modulator of allosteric motions and crosstalk in mesophilic and thermophilic enzymes. Front Mol Biosci 2023; 10:1281062. [PMID: 37877120 PMCID: PMC10591084 DOI: 10.3389/fmolb.2023.1281062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/27/2023] [Indexed: 10/26/2023] Open
Abstract
Mesophilic and thermophilic enzyme counterparts are often studied to understand how proteins function under harsh conditions. To function well outside of standard temperature ranges, thermophiles often tightly regulate their structural ensemble through intra-protein communication (via allostery) and altered interactions with ligands. It has also become apparent in recent years that the enhancement or diminution of allosteric crosstalk can be temperature-dependent and distinguish thermophilic enzymes from their mesophilic paralogs. Since most studies of allostery utilize chemical modifications from pH, mutations, or ligands, the impact of temperature on allosteric function is comparatively understudied. Here, we discuss the biophysical methods, as well as critical case studies, that dissect temperature-dependent function of mesophilic-thermophilic enzyme pairs and their allosteric regulation across a range of temperatures.
Collapse
Affiliation(s)
| | | | - George P. Lisi
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, United States
| |
Collapse
|
4
|
Lemay-St-Denis C, Doucet N, Pelletier JN. Integrating dynamics into enzyme engineering. Protein Eng Des Sel 2022; 35:6842866. [PMID: 36416215 DOI: 10.1093/protein/gzac015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/02/2022] [Accepted: 11/06/2022] [Indexed: 11/24/2022] Open
Abstract
Enzyme engineering has become a widely adopted practice in research labs and industry. In parallel, the past decades have seen tremendous strides in characterizing the dynamics of proteins, using a growing array of methodologies. Importantly, links have been established between the dynamics of proteins and their function. Characterizing the dynamics of an enzyme prior to, and following, its engineering is beginning to inform on the potential of 'dynamic engineering', i.e. the rational modification of protein dynamics to alter enzyme function. Here we examine the state of knowledge at the intersection of enzyme engineering and protein dynamics, describe current challenges and highlight pioneering work in the nascent area of dynamic engineering.
Collapse
Affiliation(s)
- Claudèle Lemay-St-Denis
- PROTEO, The Québec Network for Research on Protein, Function, Engineering and Applications, Quebec, QC, Canada
- CGCC, Center in Green Chemistry and Catalysis, Montreal, QC, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada
| | - Nicolas Doucet
- PROTEO, The Québec Network for Research on Protein, Function, Engineering and Applications, Quebec, QC, Canada
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université du Québec, Laval, QC, Canada
| | - Joelle N Pelletier
- PROTEO, The Québec Network for Research on Protein, Function, Engineering and Applications, Quebec, QC, Canada
- CGCC, Center in Green Chemistry and Catalysis, Montreal, QC, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada
- Chemistry Department, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
5
|
Parigi G, Ravera E, Fragai M, Luchinat C. Unveiling protein dynamics in solution with field-cycling NMR relaxometry. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2021; 124-125:85-98. [PMID: 34479712 DOI: 10.1016/j.pnmrs.2021.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/04/2021] [Accepted: 05/04/2021] [Indexed: 06/13/2023]
Abstract
Field-cycling NMR relaxometry is a well-established technique that can give information on molecular structure and dynamics of biological systems. It provides the nuclear relaxation rates as a function of the applied magnetic field, starting from fields as low as ~ 10-4 T up to about 1-3 T. The profiles so collected, called nuclear magnetic relaxation dispersion (NMRD) profiles, can be extended to include the relaxation rates at the largest fields achievable with high resolution NMR spectrometers. By exploiting this wide range of frequencies, the NMRD profiles can provide information on motions occurring on time scales from 10-6 to 10-9 s. 1H NMRD measurements have proved very useful also for the characterization of paramagnetic proteins, because they can help characterise a number of parameters including the number, distance and residence time of water molecules coordinated to the paramagnetic center, the reorientation correlation times and the electron spin relaxation time, and the electronic structure at the metal site.
Collapse
Affiliation(s)
- Giacomo Parigi
- Magnetic Resonance Center (CERM) University of Florence, via Sacconi 6, Sesto Fiorentino, Italy; Department of Chemistry, "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino, Italy; Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), via Sacconi 6, Sesto Fiorentino, Italy.
| | - Enrico Ravera
- Magnetic Resonance Center (CERM) University of Florence, via Sacconi 6, Sesto Fiorentino, Italy; Department of Chemistry, "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino, Italy; Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), via Sacconi 6, Sesto Fiorentino, Italy
| | - Marco Fragai
- Magnetic Resonance Center (CERM) University of Florence, via Sacconi 6, Sesto Fiorentino, Italy; Department of Chemistry, "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino, Italy; Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), via Sacconi 6, Sesto Fiorentino, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM) University of Florence, via Sacconi 6, Sesto Fiorentino, Italy; Department of Chemistry, "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino, Italy; Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), via Sacconi 6, Sesto Fiorentino, Italy
| |
Collapse
|
6
|
Fields PA. Reductionism in the study of enzyme adaptation. Comp Biochem Physiol B Biochem Mol Biol 2021; 254:110574. [PMID: 33600949 DOI: 10.1016/j.cbpb.2021.110574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 10/22/2022]
Abstract
One of the principal goals of comparative biology is the elucidation of mechanisms by which organisms adapt to different environments. The study of enzyme structure, function, and stability has contributed significantly to this effort, by revealing adaptation at a molecular level. Comparative biochemistry, including enzymology, necessarily pursues a reductionist approach in describing the function and structure of biomolecules, allowing more straightforward study of molecular systems by removing much of the complexity of their biological milieu. Although this reductionism has allowed a remarkable series of discoveries linking chemical processes to metabolism and to whole-organism function in the context of the environment, it also has the potential to mislead when careful consideration is not made of the simplifying assumptions inherent to such research. In this review, a brief history of the growth of enzymology, its reliance on a reductionist philosophy, and its contributions to our understanding of biological systems is given. Examples then are provided of research techniques, based on a reductionist approach, that have advanced our knowledge about enzyme adaptation to environmental stresses, including stability assays, enzyme kinetics, and the impact of solute composition on enzyme function. In each case, the benefits of the reductionist nature of the approach is emphasized, notable advances are described, but potential drawbacks due to inherent oversimplification of the study system are also identified.
Collapse
Affiliation(s)
- Peter A Fields
- Biology Department, Franklin & Marshall College, Lancaster, PA 17603, USA.
| |
Collapse
|
7
|
Kadeřávek P, Bolik-Coulon N, Cousin SF, Marquardsen T, Tyburn JM, Dumez JN, Ferrage F. Protein Dynamics from Accurate Low-Field Site-Specific Longitudinal and Transverse Nuclear Spin Relaxation. J Phys Chem Lett 2019; 10:5917-5922. [PMID: 31509419 DOI: 10.1021/acs.jpclett.9b02233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nuclear magnetic relaxation provides invaluable quantitative site-specific information on the dynamics of complex systems. Determining dynamics on nanosecond time scales requires relaxation measurements at low magnetic fields incompatible with high-resolution NMR. Here, we use a two-field NMR spectrometer to measure carbon-13 transverse and longitudinal relaxation rates at a field as low as 0.33 T (proton Larmor frequency 14 MHz) in specifically labeled side chains of the protein ubiquitin. The use of radiofrequency pulses enhances the accuracy of measurements as compared to high-resolution relaxometry approaches, where the sample is moved in the stray field of the superconducting magnet. Importantly, we demonstrate that accurate measurements at a single low magnetic field provide enough information to characterize complex motions on low nanosecond time scales, which opens a new window for the determination of site-specific nanosecond motions in complex systems such as proteins.
Collapse
Affiliation(s)
- Pavel Kadeřávek
- Laboratoire des Biomolécules, LBM, Département de chimie , École normale supérieure , PSL University, Sorbonne Université, CNRS, 75005 Paris , France
| | - Nicolas Bolik-Coulon
- Laboratoire des Biomolécules, LBM, Département de chimie , École normale supérieure , PSL University, Sorbonne Université, CNRS, 75005 Paris , France
| | - Samuel F Cousin
- Laboratoire des Biomolécules, LBM, Département de chimie , École normale supérieure , PSL University, Sorbonne Université, CNRS, 75005 Paris , France
| | | | - Jean-Max Tyburn
- Bruker BioSpin , 34 rue de l'Industrie BP 10002, 67166 Wissembourg Cedex, France
| | | | - Fabien Ferrage
- Laboratoire des Biomolécules, LBM, Département de chimie , École normale supérieure , PSL University, Sorbonne Université, CNRS, 75005 Paris , France
| |
Collapse
|
8
|
Gill ML, Hsu A, Palmer AG. Detection of chemical exchange in methyl groups of macromolecules. JOURNAL OF BIOMOLECULAR NMR 2019; 73:443-450. [PMID: 31407203 PMCID: PMC6862771 DOI: 10.1007/s10858-019-00240-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 03/08/2019] [Indexed: 06/10/2023]
Abstract
The zero- and double-quantum methyl TROSY Hahn-echo and the methyl 1H-1H dipole-dipole cross-correlation nuclear magnetic resonance experiments enable estimation of multiple quantum chemical exchange broadening in methyl groups in proteins. The two relaxation rate constants are established to be linearly dependent using molecular dynamics simulations and empirical analysis of experimental data. This relationship allows chemical exchange broadening to be recognized as an increase in the Hahn-echo relaxation rate constant. The approach is illustrated by analyzing relaxation data collected at three temperatures for E. coli ribonuclease HI and by analyzing relaxation data collected for different cofactor and substrate complexes of E. coli AlkB.
Collapse
Affiliation(s)
- Michelle L Gill
- Department of Biochemistry and Molecular Biophysics, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
- BenevolentAI, 81 Prospect St, Brooklyn, NY, 11201, USA
| | - Andrew Hsu
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY, 10027, USA
| | - Arthur G Palmer
- Department of Biochemistry and Molecular Biophysics, Columbia University, 630 West 168th Street, New York, NY, 10032, USA.
| |
Collapse
|
9
|
Entropic contribution to enhanced thermal stability in the thermostable P450 CYP119. Proc Natl Acad Sci U S A 2018; 115:E10049-E10058. [PMID: 30297413 PMCID: PMC6205451 DOI: 10.1073/pnas.1807473115] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The enhanced thermostability of thermophilic proteins with respect to their mesophilic counterparts is often attributed to the enthalpy effect, arising from strong interactions between protein residues. Intuitively, these strong interresidue interactions will rigidify the biomolecules. However, the present work utilizing neutron scattering and solution NMR spectroscopy measurements demonstrates a contrary example that the thermophilic cytochrome P450, CYP119, is much more flexible than its mesophilic counterpart, CYP101A1, something which is not apparent just from structural comparison of the two proteins. A mechanism to explain this apparent contradiction is that higher flexibility in the folded state of CYP119 increases its conformational entropy and thereby reduces the entropy gain during denaturation, which will increase the free energy needed for unfolding and thus stabilize the protein. This scenario is supported by thermodynamic data on the temperature dependence of unfolding free energy, which shows a significant entropic contribution to the thermostability of CYP119 and lends an added dimension to enhanced stability, previously attributed only to presence of aromatic stacking interactions and salt bridge networks. Our experimental data also support the notion that highly thermophilic P450s such as CYP119 may use a mechanism that partitions flexibility differently from mesophilic P450s between ligand binding and thermal stability.
Collapse
|
10
|
Cousin SF, Kadeřávek P, Bolik-Coulon N, Gu Y, Charlier C, Carlier L, Bruschweiler-Li L, Marquardsen T, Tyburn JM, Brüschweiler R, Ferrage F. Time-Resolved Protein Side-Chain Motions Unraveled by High-Resolution Relaxometry and Molecular Dynamics Simulations. J Am Chem Soc 2018; 140:13456-13465. [DOI: 10.1021/jacs.8b09107] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Samuel F. Cousin
- Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Pavel Kadeřávek
- Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Nicolas Bolik-Coulon
- Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Yina Gu
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Cyril Charlier
- Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Ludovic Carlier
- Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Lei Bruschweiler-Li
- Campus Chemical Instrument Center, The Ohio State University, Columbus, Ohio 43210, United States
| | | | - Jean-Max Tyburn
- Bruker BioSpin, 34 rue de l’Industrie BP 10002, 67166 Wissembourg Cedex, France
| | - Rafael Brüschweiler
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Campus Chemical Instrument Center, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Fabien Ferrage
- Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
11
|
Lisi GP, Currier AA, Loria JP. Glutamine Hydrolysis by Imidazole Glycerol Phosphate Synthase Displays Temperature Dependent Allosteric Activation. Front Mol Biosci 2018; 5:4. [PMID: 29468164 PMCID: PMC5808140 DOI: 10.3389/fmolb.2018.00004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/09/2018] [Indexed: 11/13/2022] Open
Abstract
The enzyme imidazole glycerol phosphate synthase (IGPS) is a model for studies of long-range allosteric regulation in enzymes. Binding of the allosteric effector ligand N'-[5'-phosphoribulosyl)formimino]-5-aminoimidazole-4-carboxamide-ribonucleotide (PRFAR) stimulates millisecond (ms) timescale motions in IGPS that enhance its catalytic function. We studied the effect of temperature on these critical conformational motions and the catalytic mechanism of IGPS from the hyperthermophile Thermatoga maritima in an effort to understand temperature-dependent allostery. Enzyme kinetic and NMR dynamics measurements show that apo and PRFAR-activated IGPS respond differently to changes in temperature. Multiple-quantum Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion experiments performed at 303, 323, and 343 K (30, 50, and 70°C) reveal that millisecond flexibility is enhanced to a higher degree in apo IGPS than in the PRFAR-bound enzyme as the sample temperature is raised. We find that the flexibility of the apo enzyme is nearly identical to that of its PRFAR activated state at 343 K, whereas conformational motions are considerably different between these two forms of the enzyme at room temperature. Arrhenius analyses of these flexible sites show a varied range of activation energies that loosely correlate to allosteric communities identified by computational methods and reflect local changes in dynamics that may facilitate conformational sampling of the active conformation. In addition, kinetic assays indicate that allosteric activation by PRFAR decreases to 65-fold at 343 K, compared to 4,200-fold at 303 K, which mirrors the decreased effect of PRFAR on ms motions relative to the unactivated enzyme. These studies indicate that at the growth temperature of T. maritima, PFRAR is a weaker allosteric activator than it is at room temperature and illustrate that the allosteric mechanism of IGPS is temperature dependent.
Collapse
Affiliation(s)
- George P Lisi
- Department of Chemistry, Yale University, New Haven, CT, United States
| | - Allen A Currier
- Department of Chemistry, Yale University, New Haven, CT, United States
| | - J Patrick Loria
- Department of Chemistry, Yale University, New Haven, CT, United States.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| |
Collapse
|
12
|
Enhanced spectral density mapping through combined multiple-field deuterium 13CH 2D methyl spin relaxation NMR spectroscopy. Methods 2017; 138-139:76-84. [PMID: 29288801 DOI: 10.1016/j.ymeth.2017.12.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/23/2017] [Accepted: 12/24/2017] [Indexed: 11/23/2022] Open
Abstract
Quadrupolar relaxation of 2H (D) nuclear spins is a powerful probe of conformational dynamics in biological macromolecules. Deuterium relaxation rate constants are determined by the spectral density function for reorientation of the C-D bond vector at zero, single-quantum, and double-quantum 2H frequencies. In the present work, 2H relaxation rate constants were measured for an E. coli ribonuclease H [U-2H, 15N] ILV-[13CH2D] sample using 400, 500, 800, and 900 MHz NMR spectrometers and analyzed by three approaches to determine spectral density values. First, data recorded at each static magnetic field were analyzed independently. Second, data recorded at 400 and 800 MHz were analyzed jointly and data recorded at other fields were analyzed independently. Third, data recorded at 400 and 500 MHz were interpolated to 450 MHz, and the resulting two pairs of data, corresponding to 400 MHz/800 MHz and 450 MHz/900 MHz, were analyzed jointly. The second and third approaches rely on the identity between the double quantum frequency at the lower field and the single quantum frequency at the higher field. Spectral density values for 32 of the 48 resolvable ILV methyl resonances were fit by the Lipari-Szabo model-free formalism and used to validate the three methods. The three spectral density mapping methods performed equally well in cross validation with data recorded at 700 MHz. However, the third method yielded approximately 10-15% more precise estimates of model-free parameters and consequently provides a general strategy for analysis of 2H spin relaxation data in biological macromolecules.
Collapse
|
13
|
Choy MS, Li Y, Machado LESF, Kunze MBA, Connors CR, Wei X, Lindorff-Larsen K, Page R, Peti W. Conformational Rigidity and Protein Dynamics at Distinct Timescales Regulate PTP1B Activity and Allostery. Mol Cell 2017; 65:644-658.e5. [PMID: 28212750 DOI: 10.1016/j.molcel.2017.01.014] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/07/2016] [Accepted: 01/09/2017] [Indexed: 12/31/2022]
Abstract
Protein function originates from a cooperation of structural rigidity, dynamics at different timescales, and allostery. However, how these three pillars of protein function are integrated is still only poorly understood. Here we show how these pillars are connected in Protein Tyrosine Phosphatase 1B (PTP1B), a drug target for diabetes and cancer that catalyzes the dephosphorylation of numerous substrates in essential signaling pathways. By combining new experimental and computational data on WT-PTP1B and ≥10 PTP1B variants in multiple states, we discovered a fundamental and evolutionarily conserved CH/π switch that is critical for positioning the catalytically important WPD loop. Furthermore, our data show that PTP1B uses conformational and dynamic allostery to regulate its activity. This shows that both conformational rigidity and dynamics are essential for controlling protein activity. This connection between rigidity and dynamics at different timescales is likely a hallmark of all enzyme function.
Collapse
Affiliation(s)
- Meng S Choy
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI 02912, USA
| | - Yang Li
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI 02912, USA
| | - Luciana E S F Machado
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI 02912, USA
| | - Micha B A Kunze
- Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark, Brown University, Providence, RI 02912, USA
| | - Christopher R Connors
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI 02912, USA
| | - Xingyu Wei
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI 02912, USA
| | - Kresten Lindorff-Larsen
- Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark, Brown University, Providence, RI 02912, USA
| | - Rebecca Page
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Wolfgang Peti
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI 02912, USA; Department of Chemistry, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
14
|
Forcada-Nadal A, Palomino-Schätzlein M, Neira JL, Pineda-Lucena A, Rubio V. The PipX Protein, When Not Bound to Its Targets, Has Its Signaling C-Terminal Helix in a Flexed Conformation. Biochemistry 2017; 56:3211-3224. [PMID: 28581722 DOI: 10.1021/acs.biochem.7b00230] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PipX, an 89-residue protein, acts as a coactivator of the global nitrogen regulator NtcA in cyanobacteria. NtcA-PipX interactions are regulated by 2-oxoglutarate (2-OG), an inverse indicator of the ammonia abundance, and by PII, a protein that binds to PipX at low 2-OG concentrations. The structure of PipX, when bound to NtcA or PII, consists of an N-terminal, five-stranded β-sheet (conforming a Tudor-like domain), and two long α-helices. These helices adopt either a flexed conformation, where they are in close contact and in an antiparallel mutual orientation, also packing against the β-sheet, or an open conformation (observed only in the PII-PipX complex) where the last α-helix moves apart from the rest of the protein. The aim of this work was to study the structure and dynamics of isolated PipX in solution by NMR. The backbone chemical shifts, the hydrogen-exchange, and the NOE patterns indicated that the isolated, monomeric PipX structure was formed by an N-terminal five-stranded β-sheet and two C-terminal α-helices. Furthermore, the observed NOEs between the two helices, and of α-helix2 with β-strand2 suggested that PipX adopted a flexed conformation. The β-strands 1 and 5 were highly flexible, as shown by the lack of interstrand backbone-backbone NOEs; in addition, the 15N-dynamics indicated that the C terminus of β-strand4 and the following β-turn (Phe42-Thr47), and the C-cap of α-helix1 (Arg70-Asn71) were particularly mobile. These two regions could act as hinges, allowing PipX to interact with its partners, including PlmA in the newly recognized PII-PipX-PlmA ternary complex.
Collapse
Affiliation(s)
| | | | - José L Neira
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández , Elche (Alicante), Spain.,Instituto de Biocomputación y Física de Sistemas Complejos , Zaragoza, Spain
| | - Antonio Pineda-Lucena
- Centro de Investigación Príncipe Felipe , Valencia, Spain.,Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politécnico La Fe , Valencia, Spain
| | - Vicente Rubio
- Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain.,Group 739 of the CIBER de Enfermedades Raras (CIBERER-ISCIII) , Valencia, Spain
| |
Collapse
|
15
|
Hoben JP, Lubner CE, Ratzloff MW, Schut GJ, Nguyen DMN, Hempel KW, Adams MWW, King PW, Miller AF. Equilibrium and ultrafast kinetic studies manipulating electron transfer: A short-lived flavin semiquinone is not sufficient for electron bifurcation. J Biol Chem 2017; 292:14039-14049. [PMID: 28615449 DOI: 10.1074/jbc.m117.794214] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/11/2017] [Indexed: 11/06/2022] Open
Abstract
Flavin-based electron transfer bifurcation is emerging as a fundamental and powerful mechanism for conservation and deployment of electrochemical energy in enzymatic systems. In this process, a pair of electrons is acquired at intermediate reduction potential (i.e. intermediate reducing power), and each electron is passed to a different acceptor, one with lower and the other with higher reducing power, leading to "bifurcation." It is believed that a strongly reducing semiquinone species is essential for this process, and it is expected that this species should be kinetically short-lived. We now demonstrate that the presence of a short-lived anionic flavin semiquinone (ASQ) is not sufficient to infer the existence of bifurcating activity, although such a species may be necessary for the process. We have used transient absorption spectroscopy to compare the rates and mechanisms of decay of ASQ generated photochemically in bifurcating NADH-dependent ferredoxin-NADP+ oxidoreductase and the non-bifurcating flavoproteins nitroreductase, NADH oxidase, and flavodoxin. We found that different mechanisms dominate ASQ decay in the different protein environments, producing lifetimes ranging over 2 orders of magnitude. Capacity for electron transfer among redox cofactors versus charge recombination with nearby donors can explain the range of ASQ lifetimes that we observe. Our results support a model wherein efficient electron propagation can explain the short lifetime of the ASQ of bifurcating NADH-dependent ferredoxin-NADP+ oxidoreductase I and can be an indication of capacity for electron bifurcation.
Collapse
Affiliation(s)
- John P Hoben
- From the Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506
| | | | | | - Gerrit J Schut
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Diep M N Nguyen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Karl W Hempel
- From the Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Paul W King
- National Renewable Energy Laboratory, Golden, Colorado 80401
| | - Anne-Frances Miller
- From the Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506.
| |
Collapse
|
16
|
Broadhurst CL, Schmidt WF, Kim MS, Nguyen JK, Qin J, Chao K, Bauchan GL, Shelton DR. Continuous Gradient Temperature Raman Spectroscopy of Oleic and Linoleic Acids from −100 to 50 °C. Lipids 2016; 51:1289-1302. [DOI: 10.1007/s11745-016-4194-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/26/2016] [Indexed: 11/30/2022]
|
17
|
Karpowich NK, Song J, Wang DN. An Aromatic Cap Seals the Substrate Binding Site in an ECF-Type S Subunit for Riboflavin. J Mol Biol 2016; 428:3118-30. [PMID: 27312125 DOI: 10.1016/j.jmb.2016.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/07/2016] [Accepted: 06/07/2016] [Indexed: 10/21/2022]
Abstract
ECF transporters are a family of active membrane transporters for essential micronutrients, such as vitamins and trace metals. Found exclusively in archaea and bacteria, these transporters are composed of four subunits: an integral membrane substrate-binding subunit (EcfS), a transmembrane coupling subunit (EcfT), and two ATP-binding cassette ATPases (EcfA and EcfA'). We have characterized the structural basis of substrate binding by the EcfS subunit for riboflavin from Thermotoga maritima, TmRibU. TmRibU binds riboflavin with high affinity, and the protein-substrate complex is exceptionally stable in solution. The crystal structure of riboflavin-bound TmRibU reveals an electronegative binding pocket at the extracellular surface in which the substrate is completely buried. Analysis of the intermolecular contacts indicates that nearly every available substrate hydrogen bond is satisfied. A conserved aromatic residue at the extracellular end of TM5, Tyr130, caps the binding site to generate a substrate-bound, occluded state, and non-conservative mutation of Tyr130 reduces the stability of this conformation. Using a novel fluorescence binding assay, we find that an aromatic residue at this position is essential for high-affinity substrate binding. Comparison with other S subunit structures suggests that TM5 and Loop5-6 contain a dynamic, conserved motif that plays a key role in gating substrate entry and release by S subunits of ECF transporters.
Collapse
Affiliation(s)
- Nathan K Karpowich
- The Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, and Department of Cell Biology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA.
| | - Jinmei Song
- The Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, and Department of Cell Biology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Da-Neng Wang
- The Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, and Department of Cell Biology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
18
|
Zeiske T, Stafford KA, Palmer AG. Thermostability of Enzymes from Molecular Dynamics Simulations. J Chem Theory Comput 2016; 12:2489-92. [PMID: 27123810 DOI: 10.1021/acs.jctc.6b00120] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Thermodynamic stability is a central requirement for protein function, and one goal of protein engineering is improvement of stability, particularly for applications in biotechnology. Herein, molecular dynamics simulations are used to predict in vitro thermostability of members of the bacterial ribonuclease HI (RNase H) family of endonucleases. The temperature dependence of the generalized order parameter, S, for four RNase H homologues, from psychrotrophic, mesophilic, and thermophilic organisms, is highly correlated with experimentally determined melting temperatures and with calculated free energies of folding at the midpoint temperature of the simulations. This study provides an approach for in silico mutational screens to improve thermostability of biologically and industrially relevant enzymes.
Collapse
Affiliation(s)
- Tim Zeiske
- Department of Biochemistry and Molecular Biophysics, Columbia University , New York, New York 10032, United States
| | - Kate A Stafford
- Department of Biochemistry and Molecular Biophysics, Columbia University , New York, New York 10032, United States
| | - Arthur G Palmer
- Department of Biochemistry and Molecular Biophysics, Columbia University , New York, New York 10032, United States
| |
Collapse
|
19
|
Mazola Y, Guirola O, Palomares S, Chinea G, Menéndez C, Hernández L, Musacchio A. A comparative molecular dynamics study of thermophilic and mesophilic β-fructosidase enzymes. J Mol Model 2015; 21:228. [PMID: 26267297 DOI: 10.1007/s00894-015-2772-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 07/20/2015] [Indexed: 02/02/2023]
Abstract
Arabidopsis thaliana cell wall invertase 1 (AtcwINV1) and Thermotoga maritima β-fructosidase (BfrA) are among the best structurally studied members of the glycoside hydrolase family 32. Both enzymes hydrolyze sucrose as the main substrate but differ strongly in their thermal stability. Mesophilic AtcwINV1 and thermophilic BfrA have divergent sequence similarities in the N-terminal five bladed β-propeller catalytic domain (31 %) and the C-terminal β-sandwich domain (15 %) of unknown function. The two enzymes were subjected to 200 ns molecular dynamics simulations at 300 K (27 °C) and 353 K (80 °C). Regular secondary structure regions, but not loops, in AtcwINV1 and BfrA showed no significant fluctuation differences at both temperatures. BfrA was more rigid than AtcwINV1 at 300 K. The simulation at 353 K did not alter the structural stability of BfrA, but did increase the overall flexibility of AtcwINV1 exhibiting the most fluctuating regions in the β-propeller domain. The simulated heat treatment also increased the gyration radius and hydrophobic solvent accessible surface area of the plant enzyme, consistent with the initial steps of an unfolding process. The preservation of the conformational rigidity of BfrA at 353 K is linked to the shorter size of the protein loops. Shortening of BfrA loops appears to be a key mechanism for thermostability.
Collapse
Affiliation(s)
- Yuliet Mazola
- Department of Bioinformatics, Center for Genetic Engineering and Biotechnology (CIGB), Ave. 31 e/ 158 and 190, Playa, P.O. Box 6162, Havana, 10600, Cuba,
| | | | | | | | | | | | | |
Collapse
|
20
|
Holliday MJ, Camilloni C, Armstrong GS, Isern NG, Zhang F, Vendruscolo M, Eisenmesser EZ. Structure and Dynamics of GeoCyp: A Thermophilic Cyclophilin with a Novel Substrate Binding Mechanism That Functions Efficiently at Low Temperatures. Biochemistry 2015; 54:3207-17. [PMID: 25923019 DOI: 10.1021/acs.biochem.5b00263] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Thermophilic proteins have found extensive use in research and industrial applications because of their high stability and functionality at elevated temperatures while simultaneously providing valuable insight into our understanding of protein folding, stability, dynamics, and function. Cyclophilins, constituting a ubiquitously expressed family of peptidyl-prolyl isomerases with a range of biological functions and disease associations, have been utilized both for conferring stress tolerances and in exploring the link between conformational dynamics and enzymatic function. To date, however, no active thermophilic cyclophilin has been fully biophysically characterized. Here, we determine the structure of a thermophilic cyclophilin (GeoCyp) from Geobacillus kaustophilus, characterize its dynamic motions over several time scales using an array of methodologies that include chemical shift-based methods and relaxation experiments over a range of temperatures, and measure catalytic activity over a range of temperatures to compare its structure, dynamics, and function to those of a mesophilic counterpart, human cyclophilin A (CypA). Unlike those of most thermophile/mesophile pairs, GeoCyp catalysis is not substantially impaired at low temperatures as compared to that of CypA, retaining ~70% of the activity of its mesophilic counterpart. Examination of substrate-bound ensembles reveals a mechanism by which the two cyclophilins may have adapted to their environments through altering dynamic loop motions and a critical residue that acts as a clamp to regulate substrate binding differentially in CypA and GeoCyp. Fast time scale (pico- to nanosecond) dynamics are largely conserved between the two proteins, in accordance with the high degree of structural similarity, although differences do exist in their temperature dependencies. Slower (microsecond) time scale motions are likewise localized to similar regions in the two proteins with some variability in their magnitudes yet do not exhibit significant temperature dependencies in either enzyme.
Collapse
Affiliation(s)
- Michael J Holliday
- †Department of Biochemistry and Molecular Genetics, University of Colorado Denver, 12801 East 17th Avenue, Aurora, Colorado 80045, United States
| | - Carlo Camilloni
- ‡Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Geoffrey S Armstrong
- §Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, United States
| | - Nancy G Isern
- ∥W. R. Wiley Environmental Molecular Sciences Laboratory, High Field NMR Facility, Richland, Washington 99354, United States
| | - Fengli Zhang
- ⊥National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | | | - Elan Z Eisenmesser
- †Department of Biochemistry and Molecular Genetics, University of Colorado Denver, 12801 East 17th Avenue, Aurora, Colorado 80045, United States
| |
Collapse
|
21
|
Abstract
![]()
Biological activities of enzymes, including
regulation or coordination of mechanistic stages preceding or following
the chemical step, may depend upon kinetic or equilibrium changes
in protein conformations. Exchange of more open or flexible conformational
states with more closed or constrained states can influence inhibition,
allosteric regulation, substrate recognition, formation of the Michaelis
complex, side reactions, and product release. NMR spectroscopy has
long been applied to the study of conformational dynamic processes
in enzymes because these phenomena can be characterized over multiple
time scales with atomic site resolution. Laboratory-frame spin-relaxation
measurements, sensitive to reorientational motions on picosecond–nanosecond
time scales, and rotating-frame relaxation-dispersion measurements,
sensitive to chemical exchange processes on microsecond–millisecond
time scales, provide information on both conformational distributions
and kinetics. This Account reviews NMR spin relaxation studies of
the enzymes ribonuclease HI from mesophilic (Escherichia coli) and thermophilic (Thermus thermophilus) bacteria, E. coli AlkB, and Saccharomyces cerevisiae triosephosphate isomerase to illustrate the contributions of conformational
flexibility and dynamics to diverse steps in enzyme mechanism. Spin relaxation measurements and molecular dynamics (MD) simulations
of the bacterial ribonuclease H enzymes show that the handle region,
one of three loop regions that interact with substrates, interconverts
between two conformations. Comparison of these conformations with
the structure of the complex between Homo sapiens ribonuclease H and a DNA:RNA substrate suggests that the more closed
state is inhibitory to binding. The large population of the closed
conformation in T. thermophilus ribonuclease H contributes
to the increased Michaelis constant compared with the E. coli enzyme. NMR spin relaxation and fluorescence spectroscopy have characterized
a conformational transition in AlkB between an open state, in which
the side chains of methionine residues in the active site are disordered,
and a closed state, in which these residues are ordered. The open
state is highly populated in the AlkB/Zn(II) complex, and the closed
state is highly populated in the AlkB/Zn(II)/2OG/substrate complex,
in which 2OG is the 2-oxoglutarate cosubstrate and the substrate is
a methylated DNA oligonucleotide. The equilibrium is shifted to approximately
equal populations of the two conformations in the AlkB/Zn(II)/2OG
complex. The conformational shift induced by 2OG ensures that 2OG
binds to AlkB/Zn(II) prior to the substrate. In addition, the opening
rate of the closed conformation limits premature release of substrate,
preventing generation of toxic side products by reaction with water.
Closure of active site loop 6 in triosephosphate isomerase is critical
for forming the Michaelis complex, but reopening of the loop after
the reaction is (partially) rate limiting. NMR spin relaxation and
MD simulations of triosephosphate isomerase in complex with glycerol
3-phosphate demonstrate that closure of loop 6 is a highly correlated
rigid-body motion. The MD simulations also indicate that motions of
Gly173 in the most flexible region of loop 6 contribute to opening
of the active site loop for product release. Considered together,
these three enzyme systems illustrate the power of NMR spin relaxation
investigations in providing global insights into the role of conformational
dynamic processes in the mechanisms of enzymes from initial activation
to final product release.
Collapse
Affiliation(s)
- Arthur G. Palmer
- Department of Biochemistry and
Molecular Biophysics, Columbia University, 701 West 168th Street, New York, New York 10032, United States
| |
Collapse
|
22
|
Stafford KA, Trbovic N, Butterwick JA, Abel R, Friesner RA, Palmer AG. Conformational preferences underlying reduced activity of a thermophilic ribonuclease H. J Mol Biol 2014; 427:853-866. [PMID: 25550198 DOI: 10.1016/j.jmb.2014.11.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 11/14/2014] [Indexed: 11/30/2022]
Abstract
The conformational basis for reduced activity of the thermophilic ribonuclease HI enzyme from Thermus thermophilus, compared to its mesophilic homolog from Escherichia coli, is elucidated using a combination of NMR spectroscopy and molecular dynamics (MD) simulations. Explicit-solvent all-atom MD simulations of the two wild-type proteins and an E. coli mutant in which a glycine residue is inserted after position 80 to mimic the T. thermophilus protein reproduce the differences in conformational dynamics determined from (15)N spin-relaxation NMR spectroscopy of three loop regions that surround the active site and contain functionally important residues: the glycine-rich region, the handle region, and the β5/αE loop. Examination of the MD trajectories indicates that the thermophilic protein samples conformations productive for substrate binding and activity less frequently than the mesophilic enzyme, although these differences may manifest as either increased or decreased relative flexibility of the different regions. Additional MD simulations indicate that mutations increasing activity of the T. thermophilus enzyme at mesophilic temperatures do so by reconfiguring the local environments of the mutated sites to more closely resemble active conformations. Taken together, the results show that both locally increased and decreased flexibility contribute to an overall reduction in activity of T. thermophilus ribonuclease H compared to its mesophilic E. coli homolog.
Collapse
Affiliation(s)
- Kate A Stafford
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Nikola Trbovic
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Joel A Butterwick
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Robert Abel
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | | | - Arthur G Palmer
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
23
|
Kalimeri M, Girard E, Madern D, Sterpone F. Interface matters: the stiffness route to stability of a thermophilic tetrameric malate dehydrogenase. PLoS One 2014; 9:e113895. [PMID: 25437494 PMCID: PMC4250060 DOI: 10.1371/journal.pone.0113895] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 11/01/2014] [Indexed: 11/19/2022] Open
Abstract
In this work we investigate by computational means the behavior of two orthologous bacterial proteins, a mesophilic and a thermophilic tetrameric malate dehydrogenase (MalDH), at different temperatures. Namely, we quantify how protein mechanical rigidity at different length- and time-scales correlates to protein thermophilicity as commonly believed. In particular by using a clustering analysis strategy to explore the conformational space of the folded proteins, we show that at ambient conditions and at the molecular length-scale the thermophilic variant is indeed more rigid that the mesophilic one. This rigidification is the result of more efficient inter-domain interactions, the strength of which is further quantified via ad hoc free energy calculations. When considered isolated, the thermophilic domain is indeed more flexible than the respective mesophilic one. Upon oligomerization, the induced stiffening of the thermophilic protein propagates from the interface to the active site where the loop, controlling the access to the catalytic pocket, anchors down via an extended network of ion-pairs. On the contrary in the mesophilic tetramer the loop is highly mobile. Simulations at high temperature, could not re-activate the mobility of the loop in the thermophile. This finding opens questions on the similarities of the binding processes for these two homologues at their optimal working temperature and suggests for the thermophilic variant a possible cooperative role of cofactor/substrate.
Collapse
Affiliation(s)
- Maria Kalimeri
- Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Centre National de la Recherche Scientifique, UPR9080, Univ. Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Eric Girard
- Univ. Grenoble Alpes, Institut de Biologie Structurale, Grenoble, France
- Centre National de la Recherche Scientifique, Institut de Biologie Structurale, Grenoble, France
- Commissariat à l'Energie Atomique et aux énergies alternatives, Institut de Biologie Structurale, Grenoble, France
| | - Dominique Madern
- Univ. Grenoble Alpes, Institut de Biologie Structurale, Grenoble, France
- Centre National de la Recherche Scientifique, Institut de Biologie Structurale, Grenoble, France
- Commissariat à l'Energie Atomique et aux énergies alternatives, Institut de Biologie Structurale, Grenoble, France
- * E-mail: (FS); (DM)
| | - Fabio Sterpone
- Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Centre National de la Recherche Scientifique, UPR9080, Univ. Paris Diderot, Sorbonne Paris Cité, Paris, France
- * E-mail: (FS); (DM)
| |
Collapse
|
24
|
Stafford KA, Palmer Iii AG. Evidence from molecular dynamics simulations of conformational preorganization in the ribonuclease H active site. F1000Res 2014; 3:67. [PMID: 25075292 PMCID: PMC4032109 DOI: 10.12688/f1000research.3605.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/07/2014] [Indexed: 11/26/2022] Open
Abstract
Ribonuclease H1 (RNase H) enzymes are well-conserved endonucleases that are present in all domains of life and are particularly important in the life cycle of retroviruses as domains within reverse transcriptase. Despite extensive study, especially of the E. coli homolog, the interaction of the highly negatively charged active site with catalytically required magnesium ions remains poorly understood. In this work, we describe molecular dynamics simulations of the E. coli homolog in complex with magnesium ions, as well as simulations of other homologs in their apo states. Collectively, these results suggest that the active site is highly rigid in the apo state of all homologs studied and is conformationally preorganized to favor the binding of a magnesium ion. Notably, representatives of bacterial, eukaryotic, and retroviral RNases H all exhibit similar active-site rigidity, suggesting that this dynamic feature is only subtly modulated by amino acid sequence and is primarily imposed by the distinctive RNase H protein fold.
Collapse
Affiliation(s)
- Kate A Stafford
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Arthur G Palmer Iii
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| |
Collapse
|
25
|
Kalimeri M, Rahaman O, Melchionna S, Sterpone F. How conformational flexibility stabilizes the hyperthermophilic elongation factor G-domain. J Phys Chem B 2013; 117:13775-85. [PMID: 24087838 DOI: 10.1021/jp407078z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Proteins from thermophilic organisms are stable and functional well above ambient temperature. Understanding the molecular mechanism underlying such a resistance is of crucial interest for many technological applications. For some time, thermal stability has been assumed to correlate with high mechanical rigidity of the protein matrix. In this work we address this common belief by carefully studying a pair of homologous G-domain proteins, with their melting temperatures differing by 40 K. To probe the thermal-stability content of the two proteins we use extensive simulations covering the microsecond time range and employ several different indicators to assess the salient features of the conformational landscape and the role of internal fluctuations at ambient condition. At the atomistic level, while the magnitude of fluctuations is comparable, the distribution of flexible and rigid stretches of amino-acids is more regular in the thermophilic protein causing a cage-like correlation of amplitudes along the sequence. This caging effect is suggested to favor stability at high T by confining the mechanical excitations. Moreover, it is found that the thermophilic protein, when folded, visits a higher number of conformational substates than the mesophilic homologue. The entropy associated with the occupation of the different substates and the thermal resilience of the protein intrinsic compressibility provide a qualitative insight on the thermal stability of the thermophilic protein as compared to its mesophilic homologue. Our findings potentially open the route to new strategies in the design of thermostable proteins.
Collapse
Affiliation(s)
- Maria Kalimeri
- Laboratoire de Biochimie Théorique, IBPC, CNRS, UPR9080, Université Paris Diderot , Sorbonne Paris Cité, France
| | | | | | | |
Collapse
|
26
|
Thermal adaptation of conformational dynamics in ribonuclease H. PLoS Comput Biol 2013; 9:e1003218. [PMID: 24098095 PMCID: PMC3789780 DOI: 10.1371/journal.pcbi.1003218] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 07/24/2013] [Indexed: 11/23/2022] Open
Abstract
The relationship between inherent internal conformational processes and enzymatic activity or thermodynamic stability of proteins has proven difficult to characterize. The study of homologous proteins with differing thermostabilities offers an especially useful approach for understanding the functional aspects of conformational dynamics. In particular, ribonuclease HI (RNase H), an 18 kD globular protein that hydrolyzes the RNA strand of RNA:DNA hybrid substrates, has been extensively studied by NMR spectroscopy to characterize the differences in dynamics between homologs from the mesophilic organism E. coli and the thermophilic organism T. thermophilus. Herein, molecular dynamics simulations are reported for five homologous RNase H proteins of varying thermostabilities and enzymatic activities from organisms of markedly different preferred growth temperatures. For the E. coli and T. thermophilus proteins, strong agreement is obtained between simulated and experimental values for NMR order parameters and for dynamically averaged chemical shifts, suggesting that these simulations can be a productive platform for predicting the effects of individual amino acid residues on dynamic behavior. Analyses of the simulations reveal that a single residue differentiates between two different and otherwise conserved dynamic processes in a region of the protein known to form part of the substrate-binding interface. Additional key residues within these two categories are identified through the temperature-dependence of these conformational processes. The relationship between enzymatic activity and protein stability has long been a difficult problem in the study of protein biochemistry. Enzymes may undergo structural changes in order to bind substrates, catalyze chemical reactions, and release products, but flexibility often is inversely correlated with thermodynamic stability. Proteins from organisms that are adapted to high temperature can be both more rigid and less active at ambient temperature than their homologs from organisms that grow at lower temperatures. For this reason, studying homologous pairs of proteins from organisms adapted to different thermal environments is a productive way to identify functionally important motions. In this work we perform comparative analyses of molecular dynamics simulations for five ribonuclease H proteins of varying thermal stabilities, isolated from organisms that grow in varying thermal environments. We identify two different mechanisms of motion in a region of the protein that interacts with substrate molecules, suggesting at least two forms of thermal adaptation in this protein family.
Collapse
|
27
|
Basu S, Sen S. Do Homologous Thermophilic–Mesophilic Proteins Exhibit Similar Structures and Dynamics at Optimal Growth Temperatures? A Molecular Dynamics Simulation Study. J Chem Inf Model 2013; 53:423-34. [DOI: 10.1021/ci300474h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Sohini Basu
- Molecular modeling Section, Biolab, Chembiotek, TCG Lifesciences Ltd., Bengal Intelligent Park, Tower-B 2nd Floor, Block-EP & GP, Sector-V, Salt Lake Electronic Complex, Calcutta-700091, India
| | - Srikanta Sen
- Molecular modeling Section, Biolab, Chembiotek, TCG Lifesciences Ltd., Bengal Intelligent Park, Tower-B 2nd Floor, Block-EP & GP, Sector-V, Salt Lake Electronic Complex, Calcutta-700091, India
| |
Collapse
|
28
|
Gagné D, Charest LA, Morin S, Kovrigin EL, Doucet N. Conservation of flexible residue clusters among structural and functional enzyme homologues. J Biol Chem 2012; 287:44289-300. [PMID: 23135272 DOI: 10.1074/jbc.m112.394866] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Conformational flexibility between structural ensembles is an essential component of enzyme function. Although the broad dynamical landscape of proteins is known to promote a number of functional events on multiple time scales, it is yet unknown whether structural and functional enzyme homologues rely on the same concerted residue motions to perform their catalytic function. It is hypothesized that networks of contiguous and flexible residue motions occurring on the biologically relevant millisecond time scale evolved to promote and/or preserve optimal enzyme catalysis. In this study, we use a combination of NMR relaxation dispersion, model-free analysis, and ligand titration experiments to successfully capture and compare the role of conformational flexibility between two structural homologues of the pancreatic ribonuclease family: RNase A and eosinophil cationic protein (or RNase 3). In addition to conserving the same catalytic residues and structural fold, both homologues show similar yet functionally distinct clusters of millisecond dynamics, suggesting that conformational flexibility can be conserved among analogous protein folds displaying low sequence identity. Our work shows that the reduced conformational flexibility of eosinophil cationic protein can be dynamically and functionally reproduced in the RNase A scaffold upon creation of a chimeric hybrid between the two proteins. These results support the hypothesis that conformational flexibility is partly required for catalytic function in homologous enzyme folds, further highlighting the importance of dynamic residue sectors in the structural organization of proteins.
Collapse
Affiliation(s)
- Donald Gagné
- Institut National de la Recherche Scientifique-Institut Armand-Frappier, Université du Québec, Laval, Quebec H7V 1B7, Canada
| | | | | | | | | |
Collapse
|
29
|
Robustelli P, Stafford KA, Palmer AG. Interpreting protein structural dynamics from NMR chemical shifts. J Am Chem Soc 2012; 134:6365-74. [PMID: 22381384 DOI: 10.1021/ja300265w] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this investigation, semiempirical NMR chemical shift prediction methods are used to evaluate the dynamically averaged values of backbone chemical shifts obtained from unbiased molecular dynamics (MD) simulations of proteins. MD-averaged chemical shift predictions generally improve agreement with experimental values when compared to predictions made from static X-ray structures. Improved chemical shift predictions result from population-weighted sampling of multiple conformational states and from sampling smaller fluctuations within conformational basins. Improved chemical shift predictions also result from discrete changes to conformations observed in X-ray structures, which may result from crystal contacts, and are not always reflective of conformational dynamics in solution. Chemical shifts are sensitive reporters of fluctuations in backbone and side chain torsional angles, and averaged (1)H chemical shifts are particularly sensitive reporters of fluctuations in aromatic ring positions and geometries of hydrogen bonds. In addition, poor predictions of MD-averaged chemical shifts can identify spurious conformations and motions observed in MD simulations that may result from force field deficiencies or insufficient sampling and can also suggest subsets of conformational space that are more consistent with experimental data. These results suggest that the analysis of dynamically averaged NMR chemical shifts from MD simulations can serve as a powerful approach for characterizing protein motions in atomistic detail.
Collapse
Affiliation(s)
- Paul Robustelli
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA
| | | | | |
Collapse
|
30
|
Horváth G, Király P, Tárkányi G, Toke O. Internal Motions and Exchange Processes in Human Ileal Bile Acid Binding Protein As Studied by Backbone 15N Nuclear Magnetic Resonance Spectroscopy. Biochemistry 2012; 51:1848-61. [DOI: 10.1021/bi201588q] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Gergő Horváth
- Institute of Structural Chemistry, Chemical Research Center of the Hungarian Academy of Sciences, 59-67 Pusztaszeri út, Budapest, H-1025 Hungary
| | - Péter Király
- Institute of Structural Chemistry, Chemical Research Center of the Hungarian Academy of Sciences, 59-67 Pusztaszeri út, Budapest, H-1025 Hungary
| | - Gábor Tárkányi
- Institute of Structural Chemistry, Chemical Research Center of the Hungarian Academy of Sciences, 59-67 Pusztaszeri út, Budapest, H-1025 Hungary
| | - Orsolya Toke
- Institute of Structural Chemistry, Chemical Research Center of the Hungarian Academy of Sciences, 59-67 Pusztaszeri út, Budapest, H-1025 Hungary
| |
Collapse
|
31
|
Marcos E, Jiménez A, Crehuet R. Dynamic Fingerprints of Protein Thermostability Revealed by Long Molecular Dynamics. J Chem Theory Comput 2012; 8:1129-42. [DOI: 10.1021/ct200877z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Enrique Marcos
- Department
of Biological Chemistry and Molecular Modelling,
Institute of Advanced Chemistry of Catalonia (IQAC - CSIC), E-08034
Barcelona, Spain
| | - Aurora Jiménez
- Department
of Biological Chemistry and Molecular Modelling,
Institute of Advanced Chemistry of Catalonia (IQAC - CSIC), E-08034
Barcelona, Spain
| | - Ramon Crehuet
- Department
of Biological Chemistry and Molecular Modelling,
Institute of Advanced Chemistry of Catalonia (IQAC - CSIC), E-08034
Barcelona, Spain
| |
Collapse
|
32
|
Meirovitch E, Shapiro YE, Zerbetto M, Polimeno A. SRLS analysis of 15N spin relaxation from E. coli ribonuclease HI: the tensorial perspective. J Phys Chem B 2012; 116:886-94. [PMID: 22126306 DOI: 10.1021/jp208767s] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
15N–H relaxation parameters from ribonuclease HI (RNase H), acquired in previous work at magnetic fields of 14.1 and 18.8 T, and at 300 K, are analyzed with the mode-coupling slowly relaxing local structure (SRLS) approach. In accordance with standard theoretical treatments of restricted motions, SRLS approaches N-H bond dynamics from a tensorial perspective. As shown previously, a physically adequate description of this phenomenon has to account for the asymmetry of the local spatial restrictions. So far, we used rhombic local ordering tensors; this is straightforward but computationally demanding. Here, we propose substantiating the asymmetry of the local spatial restrictions in terms of tilted axial local ordering (S) and local diffusion (D2) tensors. Although less straightforward, this description provides physically sound structural and dynamic information and is efficient computationally. We find that the local order parameter, S(0)2, is on average 0.89 (0.84, and may be as small as 0.6) for the secondary structure elements (loops). The main local ordering axis deviates from the C(i-1)α-C(i)α axis by less than 6°. At 300 K, D(2,perpendicular) is virtually the same as the global diffusion rate, D1 = 1.8 × 10(7) s(-1). The correlation time 1/6D(2,parallel) ranges from 3-125 (208-344) ps for the secondary structure elements (loops) and is on average 125 ps for the C-terminal segment. The main local diffusion axis deviates from the N-H bond by less than 2° (10°) for the secondary structure elements (loops). An effective data-fitting protocol, which leads in most cases to unambiguous results with limited uncertainty, has been devised. A physically sound and computationally effective methodology for analyzing 15N relaxation in proteins, that provides a new picture of N–H bond structural dynamics in proteins, has been set forth.
Collapse
Affiliation(s)
- Eva Meirovitch
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.
| | | | | | | |
Collapse
|
33
|
Abstract
Nitrogen-15 relaxation is the most ubiquitous source of information about protein (backbone) dynamics used by NMR spectroscopists. It provides the general characteristics of hydrodynamics as well as internal motions on subnanosecond, micro- and millisecond timescales of a biomolecule. Here, we present a full protocol to perform and analyze a series of experiments to measure the (15)N longitudinal relaxation rate, the (15)N transverse relaxation rate under an echo train or a single echo, the (15)N-(1)H dipolar cross-relaxation rate, as well as the longitudinal and transverse cross-relaxation rates due to the cross-correlation of the nitrogen-15 chemical shift anisotropy and the dipolar coupling with the adjacent proton. These rates can be employed to carry out model-free analyses and can be used to quantify accurately the contribution of chemical exchange to transverse relaxation.
Collapse
Affiliation(s)
- Fabien Ferrage
- Département de chimie, Ecole normale supérieure et Laboratoire des Biomolécules, CNRS UMR 7203, Paris, Cedex, France.
| |
Collapse
|
34
|
Marcos E, Mestres P, Crehuet R. Crowding induces differences in the diffusion of thermophilic and mesophilic proteins: a new look at neutron scattering results. Biophys J 2011; 101:2782-9. [PMID: 22261067 PMCID: PMC3297780 DOI: 10.1016/j.bpj.2011.09.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 09/20/2011] [Accepted: 09/23/2011] [Indexed: 10/14/2022] Open
Abstract
The dynamical basis underlying the increased thermal stability of thermophilic proteins remains uncertain. Here, we challenge the new paradigm established by neutron scattering experiments in solution, in which the adaptation of thermophilic proteins to high temperatures lies in the lower sensitivity of their flexibility to temperature changes. By means of a combination of molecular dynamics and Brownian dynamics simulations, we report a reinterpretation of those experiments and show evidence that under crowding conditions, such as in vivo, thermophilic and homolog mesophilic proteins have diffusional properties with different thermal behavior.
Collapse
Affiliation(s)
| | | | - Ramon Crehuet
- Department of Biological Chemistry and Molecular Modeling, Institute of Advanced Chemistry of Catalonia (IQAC – CSIC), Barcelona, Spain
| |
Collapse
|
35
|
Du Z, Liu J, Albracht CD, Hsu A, Chen W, Marieni MD, Colelli KM, Williams JE, Reitter JN, Mills KV, Wang C. Structural and mutational studies of a hyperthermophilic intein from DNA polymerase II of Pyrococcus abyssi. J Biol Chem 2011; 286:38638-38648. [PMID: 21914805 PMCID: PMC3207444 DOI: 10.1074/jbc.m111.290569] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 09/09/2011] [Indexed: 11/06/2022] Open
Abstract
Protein splicing is a precise self-catalyzed process in which an intein excises itself from a precursor with the concomitant ligation of the flanking polypeptides (exteins). Protein splicing proceeds through a four-step reaction but the catalytic mechanism is not fully understood at the atomic level. We report the solution NMR structures of the hyperthermophilic Pyrococcus abyssi PolII intein, which has a noncanonical C-terminal glutamine instead of an asparagine. The NMR structures were determined to a backbone root mean square deviation of 0.46 Å and a heavy atom root mean square deviation of 0.93 Å. The Pab PolII intein has a common HINT (hedgehog intein) fold but contains an extra β-hairpin that is unique in the structures of thermophilic inteins. The NMR structures also show that the Pab PolII intein has a long and disordered loop in place of an endonuclease domain. The N-terminal Cys-1 amide is hydrogen bonded to the Thr-90 hydroxyl in the conserved block-B TXXH motif and the Cys-1 thiol forms a hydrogen bond with the block F Ser-166. Mutating Thr-90 to Ala dramatically slows N-terminal cleavage, supporting its pivotal role in promoting the N-S acyl shift. Mutagenesis also showed that Thr-90 and His-93 are synergistic in catalyzing the N-S acyl shift. The block F Ser-166 plays an important role in coordinating the steps of protein splicing. NMR spin relaxation indicates that the Pab PolII intein is significantly more rigid than mesophilic inteins, which may contribute to the higher optimal temperature for protein splicing.
Collapse
Affiliation(s)
- Zhenming Du
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Jiajing Liu
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Clayton D Albracht
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Alice Hsu
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Wen Chen
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Michelle D Marieni
- Department of Chemistry, College of the Holy Cross, Worcester, Massachusetts 01610
| | - Kathryn M Colelli
- Department of Chemistry, College of the Holy Cross, Worcester, Massachusetts 01610
| | - Jennie E Williams
- Department of Chemistry, College of the Holy Cross, Worcester, Massachusetts 01610
| | - Julie N Reitter
- Department of Chemistry, College of the Holy Cross, Worcester, Massachusetts 01610
| | - Kenneth V Mills
- Department of Chemistry, College of the Holy Cross, Worcester, Massachusetts 01610.
| | - Chunyu Wang
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180.
| |
Collapse
|
36
|
Gill ML, Palmer AG. Multiplet-filtered and gradient-selected zero-quantum TROSY experiments for 13C1H3 methyl groups in proteins. JOURNAL OF BIOMOLECULAR NMR 2011; 51:245-51. [PMID: 21918814 PMCID: PMC3280329 DOI: 10.1007/s10858-011-9533-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 07/11/2011] [Indexed: 05/03/2023]
Abstract
Multiplet-filtered and gradient-selected heteronuclear zero-quantum coherence (gsHZQC) TROSY experiments are described for measuring (1)H-(13)C correlations for (13)CH(3) methyl groups in proteins. These experiments provide improved suppression of undesirable, broad outer components of the heteronuclear zero-quantum multiplet in medium-sized proteins, or in flexible sites of larger proteins, compared to previously described HZQC sequences (Tugarinov et al. in J Am Chem Soc 126:4921-4925, 2004; Ollerenshaw et al. in J Biomol NMR 33:25-41, 2005). Hahn-echo versions of the gsHZQC experiment also are described for measuring zero- and double-quantum transverse relaxation rate constants for identification of chemical exchange broadening. Application of the proposed pulse sequences to Escherichia coli ribonuclease HI, with a molecular mass of 18 kD, indicates that improved multiplet suppression is obtained without substantial loss of sensitivity.
Collapse
Affiliation(s)
- Michelle L. Gill
- Department of Biochemistry and Molecular Biophysics, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | - Arthur G. Palmer
- Department of Biochemistry and Molecular Biophysics, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| |
Collapse
|
37
|
Xue Y, Skrynnikov NR. Motion of a disordered polypeptide chain as studied by paramagnetic relaxation enhancements, 15N relaxation, and molecular dynamics simulations: how fast is segmental diffusion in denatured ubiquitin? J Am Chem Soc 2011; 133:14614-28. [PMID: 21819149 DOI: 10.1021/ja201605c] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Molecular dynamics (MD) simulations have been widely used to analyze dynamic conformational equilibria of folded proteins, especially in relation to NMR observables. However, this approach found little use in the studies of disordered proteins, where the sampling of vast conformational space presents a serious problem. In this paper, we demonstrate that the latest advances in computation technology make it possible to overcome this limitation. The experimentally validated (calibrated) MD models allow for new insights into structure/dynamics of disordered proteins. As a test system, we have chosen denatured ubiquitin in solution with 8 M urea at pH 2. High-temperature MD simulations in implicit solvent have been carried out for the wild-type ubiquitin as well as MTSL-tagged Q2C, D32C, and R74C mutants. To recalibrate the MD data (500 K) in relation to the experimental conditions (278 K, 8 M urea), the time axes of the MD trajectories were rescaled. The scaling factor was adjusted such as to maximize the agreement between the simulated and experimental (15)N relaxation rates. The resulting effective length of the trajectories, 311 μs, ensures good convergence properties of the MD model. The constructed MD model was validated against the array of experimental data, including additional (15)N relaxation parameters, multiple sets of paramagnetic relaxation enhancements (PREs), and the radius of gyration. In each case, a near-quantitative agreement has been obtained, suggesting that the model is successful. Of note, the MD-based approach rigorously predicts the quantities that are inherently dynamic, i.e., dependent on the motional correlation times. This cannot be accomplished, other than in empirical fashion, on the basis of static structural models (conformational ensembles). The MD model was further used to investigate the relative translational motion of the MTSL label and the individual H(N) atoms. The derived segmental diffusion coefficients proved to be nearly uniform along the peptide chain, averaging to D = 0.49-0.55 × 10(-6) cm(2)/s. This result was verified by direct analysis of the experimental PRE data using the recently proposed Ullman-Podkorytov model. In this model, MTSL and H(N) moieties are treated as two tethered spheres undergoing mutual diffusion in a harmonic potential. The fitting of the experimental data involving D as a single adjustable parameter leads to D = 0.45 × 10(-6) cm(2)/s, in good agreement with the MD-based analyses. This result can be compared with the range of estimates obtained from the resonance energy transfer experiments, D = 0.2-6.0 × 10(-6) cm(2)/s.
Collapse
Affiliation(s)
- Yi Xue
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, USA
| | | |
Collapse
|
38
|
Mukherjee S, Pondaven SP, Jaroniec CP. Conformational Flexibility of a Human Immunoglobulin Light Chain Variable Domain by Relaxation Dispersion Nuclear Magnetic Resonance Spectroscopy: Implications for Protein Misfolding and Amyloid Assembly. Biochemistry 2011; 50:5845-57. [DOI: 10.1021/bi200410c] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sujoy Mukherjee
- Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Simon P. Pondaven
- Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | | |
Collapse
|
39
|
Mittag T, Kay LE, Forman-Kay JD. Protein dynamics and conformational disorder in molecular recognition. J Mol Recognit 2010; 23:105-16. [PMID: 19585546 DOI: 10.1002/jmr.961] [Citation(s) in RCA: 196] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Recognition requires protein flexibility because it facilitates conformational rearrangements and induced-fit mechanisms upon target binding. Intrinsic disorder is an extreme on the continuous spectrum of possible protein dynamics and its role in recognition may seem counterintuitive. However, conformational disorder is widely found in many eukaryotic regulatory proteins involved in processes such as signal transduction and transcription. Disordered protein regions may in fact confer advantages over folded proteins in binding. Rapidly interconverting and diverse conformers may create mean electrostatic fields instead of presenting discrete charges. The resultant "polyelectrostatic" interactions allow for the utilization of post-translational modifications as a means to change the net charge and thereby modify the electrostatic interaction of a disordered region. Plasticity of disordered protein states enables steric advantages over folded proteins and allows for unique binding configurations. Disorder may also have evolutionary advantages, as it facilitates alternative splicing, domain shuffling and protein modularity. As proteins exist in a continuous spectrum of disorder, so do their complexes. Indeed, disordered regions in complexes may control the degree of motion between domains, mask binding sites, be targets of post-translational modifications, permit overlapping binding motifs, and enable transient binding of different binding partners, making them excellent candidates for signal integrators and explaining their prevalence in eukaryotic signaling pathways. "Dynamic" complexes arise if more than two transient protein interfaces are involved in complex formation of two binding partners in a dynamic equilibrium. "Disordered" complexes, in contrast, do not involve significant ordering of interacting protein segments but rely exclusively on transient contacts. The nature of these interactions is not well understood yet but advancements in the structural characterization of disordered states will help us gain insights into their function and their implications for health and disease.
Collapse
Affiliation(s)
- Tanja Mittag
- Program in Molecular Structure and Function, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
| | | | | |
Collapse
|
40
|
Relationship between Protein Stabilization and Protein Rigidification Induced by Mannosylglycerate. J Mol Biol 2009; 394:237-50. [DOI: 10.1016/j.jmb.2009.09.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 07/20/2009] [Accepted: 09/06/2009] [Indexed: 11/19/2022]
|
41
|
Krishnamurthy H, Munro K, Yan H, Vieille C. Dynamics in Thermotoga neapolitana adenylate kinase: 15N relaxation and hydrogen-deuterium exchange studies of a hyperthermophilic enzyme highly active at 30 degrees C. Biochemistry 2009; 48:2723-39. [PMID: 19220019 DOI: 10.1021/bi802001w] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Backbone conformational dynamics of Thermotoga neapolitana adenylate kinase in the free form (TNAK) and inhibitor-bound form (TNAK*Ap5A) were investigated at 30 degrees C using (15)N NMR relaxation measurements and NMR monitored hydrogen-deuterium exchange. With kinetic parameters identical to those of Escherichia coli AK (ECAK) at 30 degrees C, TNAK is a unique hyperthermophilic enzyme. These catalytic properties make TNAK an interesting and novel model to study the interplay between protein rigidity, stability, and activity. Comparison of fast time scale dynamics (picosecond to nanosecond) in the open and closed states of TNAK and ECAK at 30 degrees C reveals a uniformly higher rigidity across all domains of TNAK. Within this framework of a rigid TNAK structure, several residues located in the AMP-binding domain and in the core-lid hinge regions display high picosecond to nanosecond time scale flexibility. Together with the recent comparison of ECAK dynamics with those of hyperthermophilic Aquifex aeolicus AK (AAAK), our results provide strong evidence for the role of picosecond to nanosecond time scale fluctuations in both stability and activity. In the slow time scales, TNAK's increased rigidity is not uniform but localized in the AMP-binding and lid domains. The core domain amides of ECAK and TNAK in the open and closed states show comparable protection against exchange. Significantly, the hinges framing the lid domain show similar exchange data in ECAK and TNAK open and closed forms. Our NMR relaxation and hydrogen-deuterium exchange studies therefore suggest that TNAK maintains high activity at 30 degrees C by localizing flexibility to the hinge regions that are key to facilitating conformational changes.
Collapse
Affiliation(s)
- Harini Krishnamurthy
- Program in Cell and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | |
Collapse
|
42
|
Bae SH, Dyson HJ, Wright PE. Prediction of the rotational tumbling time for proteins with disordered segments. J Am Chem Soc 2009; 131:6814-21. [PMID: 19391622 DOI: 10.1021/ja809687r] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
For well-structured, rigid proteins, the prediction of rotational tumbling time (tau(c)) using atomic coordinates is reasonably accurate, but is inaccurate for proteins with long unstructured sequences. Under physiological conditions, many proteins contain long disordered segments that play important regulatory roles in fundamental biological events including signal transduction and molecular recognition. Here we describe an ensemble approach to the boundary element method that accurately predicts tau(c) for such proteins by introducing two layers of molecular surfaces whose correlated velocities decay exponentially with distance. Reliable prediction of tau(c) will help to detect intra- and intermolecular interactions and conformational switches between more ordered and less ordered states of the disordered segments. The method has been extensively validated using 12 reference proteins with 14 to 103 disordered residues at the N- and/or C-terminus and has been successfully employed to explain a set of published results on a system that incorporates a conformational switch.
Collapse
Affiliation(s)
- Sung-Hun Bae
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
43
|
Lu T. Seeking new mutation clues from Bacillus licheniformis amylase by molecular dynamics simulations. Chem Phys Lett 2009. [DOI: 10.1016/j.cplett.2009.06.066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
44
|
Ferrage F, Cowburn D, Ghose R. Accurate sampling of high-frequency motions in proteins by steady-state (15)N-{(1)H} nuclear Overhauser effect measurements in the presence of cross-correlated relaxation. J Am Chem Soc 2009; 131:6048-9. [PMID: 19358609 DOI: 10.1021/ja809526q] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The steady-state {(1)H}-(15)N NOE experiment is used in most common NMR analyses of backbone dynamics to accurately ascertain the effects of the fast dynamic modes. We demonstrate here that, in its most common implementation, this experiment generates an incorrect steady state in the presence of CSA/dipole cross-correlated relaxation leading to large errors in the characterization of these high-frequency modes. This affects both the quantitative and qualitative interpretation of (15)N backbone relaxation in dynamic terms. We demonstrate further that minor changes in the experimental implementation effectively remove these errors and allow a more accurate interpretation of protein backbone dynamics.
Collapse
Affiliation(s)
- Fabien Ferrage
- New York Structural Biology Center, New York, New York 10027, USA.
| | | | | |
Collapse
|
45
|
Wang Y, Berlow RB, Loria JP. Role of loop-loop interactions in coordinating motions and enzymatic function in triosephosphate isomerase. Biochemistry 2009; 48:4548-56. [PMID: 19348462 PMCID: PMC2713366 DOI: 10.1021/bi9002887] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The enzyme triosephosphate isomerase (TIM) has been used as a model system for understanding the relationship between protein sequence, structure, and biological function. The sequence of the active site loop (loop 6) in TIM is directly correlated with a conserved motif in loop 7. Replacement of loop 7 of chicken TIM with the corresponding loop 7 sequence from an archaeal homologue caused a 10(2)-fold loss in enzymatic activity, a decrease in substrate binding affinity, and a decrease in thermal stability. Isotope exchange studies performed by one-dimensional (1)H NMR showed that the substrate-derived proton in the enzyme is more susceptible to solvent exchange for DHAP formation in the loop 7 mutant than for WT TIM. TROSY-Hahn Echo and TROSY-selected R(1rho) experiments indicate that upon mutation of loop 7, the chemical exchange rate for active site loop motion is nearly doubled and that the coordinated motion of loop 6 is reduced relative to that of the WT. Temperature dependent NMR experiments show differing activation energies for the N- and C-terminal hinges in this mutant enzyme. Together, these data suggest that interactions between loop 6 and loop 7 are necessary to provide the proper chemical context for the enzymatic reaction to occur and that the interactions play a significant role in modulating the chemical dynamics near the active site.
Collapse
Affiliation(s)
- Yan Wang
- Department of Chemistry, Yale University, New Haven, Connecticut 06520
| | - Rebecca B. Berlow
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| | - J. Patrick Loria
- Department of Chemistry, Yale University, New Haven, Connecticut 06520
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| |
Collapse
|
46
|
Trbovic N, Cho JH, Abel R, Friesner RA, Rance M, Palmer AG. Protein side-chain dynamics and residual conformational entropy. J Am Chem Soc 2009; 131:615-22. [PMID: 19105660 DOI: 10.1021/ja806475k] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Changes in residual conformational entropy of proteins can be significant components of the thermodynamics of folding and binding. Nuclear magnetic resonance (NMR) spin relaxation is the only experimental technique capable of probing local protein entropy, by inference from local internal conformational dynamics. To assess the validity of this approach, the picosecond-to-nanosecond dynamics of the arginine side-chain N(epsilon)-H(epsilon) bond vectors of Escherichia coli ribonuclease H (RNase H) were determined by NMR spin relaxation and compared to the mechanistic detail provided by molecular dynamics (MD) simulations. The results indicate that arginine N(epsilon) spin relaxation primarily reflects persistence of guanidinium salt bridges and correlates well with simulated side-chain conformational entropy. In particular cases, the simulations show that the aliphatic part of the arginine side chain can retain substantial disorder while the guanidinium group maintains its salt bridges; thus, the N(epsilon)-H(epsilon) bond-vector orientation is conserved and side-chain flexibility is concealed from N(epsilon) spin relaxation. The MD simulations and an analysis of a rotamer library suggest that dynamic decoupling of the terminal moiety from the remainder of the side chain occurs for all five amino acids with more than two side-chain dihedral angles (R, K, E, Q, and M). Dynamic decoupling thus may represent a general biophysical strategy for minimizing the entropic penalties of folding and binding.
Collapse
Affiliation(s)
- Nikola Trbovic
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | |
Collapse
|
47
|
d'Auvergne EJ, Gooley PR. Optimisation of NMR dynamic models II. A new methodology for the dual optimisation of the model-free parameters and the Brownian rotational diffusion tensor. JOURNAL OF BIOMOLECULAR NMR 2008; 40:121-33. [PMID: 18085411 PMCID: PMC2758375 DOI: 10.1007/s10858-007-9213-3] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Accepted: 11/06/2007] [Indexed: 05/03/2023]
Abstract
Finding the dynamics of an entire macromolecule is a complex problem as the model-free parameter values are intricately linked to the Brownian rotational diffusion of the molecule, mathematically through the autocorrelation function of the motion and statistically through model selection. The solution to this problem was formulated using set theory as an element of the universal set [formula: see text]-the union of all model-free spaces (d'Auvergne EJ and Gooley PR (2007) Mol BioSyst 3(7), 483-494). The current procedure commonly used to find the universal solution is to initially estimate the diffusion tensor parameters, to optimise the model-free parameters of numerous models, and then to choose the best model via model selection. The global model is then optimised and the procedure repeated until convergence. In this paper a new methodology is presented which takes a different approach to this diffusion seeded model-free paradigm. Rather than starting with the diffusion tensor this iterative protocol begins by optimising the model-free parameters in the absence of any global model parameters, selecting between all the model-free models, and finally optimising the diffusion tensor. The new model-free optimisation protocol will be validated using synthetic data from Schurr JM et al. (1994) J Magn Reson B 105(3), 211-224 and the relaxation data of the bacteriorhodopsin (1-36)BR fragment from Orekhov VY (1999) J Biomol NMR 14(4), 345-356. To demonstrate the importance of this new procedure the NMR relaxation data of the Olfactory Marker Protein (OMP) of Gitti R et al. (2005) Biochem 44(28), 9673-9679 is reanalysed. The result is that the dynamics for certain secondary structural elements is very different from those originally reported.
Collapse
Affiliation(s)
- Edward J d'Auvergne
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Goettingen, D-37077, Germany.
| | | |
Collapse
|
48
|
Henzler-Wildman KA, Lei M, Thai V, Kerns SJ, Karplus M, Kern D. A hierarchy of timescales in protein dynamics is linked to enzyme catalysis. Nature 2007; 450:913-6. [DOI: 10.1038/nature06407] [Citation(s) in RCA: 847] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2007] [Accepted: 10/29/2007] [Indexed: 11/09/2022]
|
49
|
Jarymowycz VA, Stone MJ. Fast time scale dynamics of protein backbones: NMR relaxation methods, applications, and functional consequences. Chem Rev 2007; 106:1624-71. [PMID: 16683748 DOI: 10.1021/cr040421p] [Citation(s) in RCA: 317] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Virginia A Jarymowycz
- Department of Chemistry and Interdisciplinary Biochemistry Program, Indiana University, Bloomington, Indiana 47405-0001, USA
| | | |
Collapse
|
50
|
Palmer AG, Massi F. Characterization of the dynamics of biomacromolecules using rotating-frame spin relaxation NMR spectroscopy. Chem Rev 2007; 106:1700-19. [PMID: 16683750 DOI: 10.1021/cr0404287] [Citation(s) in RCA: 257] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Arthur G Palmer
- Department of Biochemistry and Molecular Biophysics, Columbia University, 630 West 168th Street, New York, New York 10032, USA.
| | | |
Collapse
|