1
|
Panstruga R, Spanu P. Transfer RNA and ribosomal RNA fragments - emerging players in plant-microbe interactions. THE NEW PHYTOLOGIST 2024; 241:567-577. [PMID: 37985402 DOI: 10.1111/nph.19409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023]
Abstract
According to current textbooks, the principal task of transfer and ribosomal RNAs (tRNAs and rRNAs, respectively) is synthesizing proteins. During the last decade, additional cellular roles for precisely processed tRNA and rRNAs fragments have become evident in all kingdoms of life. These RNA fragments were originally overlooked in transcriptome datasets or regarded as unspecific degradation products. Upon closer inspection, they were found to engage in a variety of cellular processes, in particular the modulation of translation and the regulation of gene expression by sequence complementarity- and Argonaute protein-dependent gene silencing. More recently, the presence of tRNA and rRNA fragments has also been recognized in the context of plant-microbe interactions, both on the plant and the microbial side. While most of these fragments are likely to affect endogenous processes, there is increasing evidence for their transfer across kingdoms in the course of such interactions; these processes may involve mutual exchange in association with extracellular vesicles. Here, we summarize the state-of-the-art understanding of tRNA and rRNA fragment's roles in the context of plant-microbe interactions, their potential biogenesis, presumed delivery routes, and presumptive modes of action.
Collapse
Affiliation(s)
- Ralph Panstruga
- RWTH Aachen University, Worringerweg 1, Aachen, 52056, Germany
| | - Pietro Spanu
- Department of Life Sciences, Imperial College London, Imperial College Road, London, SW7 2AZ, UK
| |
Collapse
|
2
|
Post-Transcriptional Modifications of Conserved Nucleotides in the T-Loop of tRNA: A Tale of Functional Convergent Evolution. Genes (Basel) 2021; 12:genes12020140. [PMID: 33499018 PMCID: PMC7912444 DOI: 10.3390/genes12020140] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/30/2022] Open
Abstract
The high conservation of nucleotides of the T-loop, including their chemical identity, are hallmarks of tRNAs from organisms belonging to the three Domains of Life. These structural characteristics allow the T-loop to adopt a peculiar intraloop conformation able to interact specifically with other conserved residues of the D-loop, which ultimately folds the mature tRNA in a unique functional canonical L-shaped architecture. Paradoxically, despite the high conservation of modified nucleotides in the T-loop, enzymes catalyzing their formation depend mostly on the considered organism, attesting for an independent but convergent evolution of the post-transcriptional modification processes. The driving force behind this is the preservation of a native conformation of the tRNA elbow that underlies the various interactions of tRNA molecules with different cellular components.
Collapse
|
3
|
Fan Z, Song J, Guan T, Lv X, Wei J. Efficient Expression of Glutathione Peroxidase with Chimeric tRNA in Amber-less Escherichia coli. ACS Synth Biol 2018; 7:249-257. [PMID: 28866886 DOI: 10.1021/acssynbio.7b00290] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The active center of selenium-containing glutathione peroxidase (GPx) is selenocysteine (Sec), which is is biosynthesized on its tRNA in organisms. The decoding of Sec depends on a specific elongation factor and a Sec Insertion Sequence (SECIS) to suppress the UGA codon. The expression of mammalian GPx is extremely difficult with traditional recombinant DNA technology. Recently, a chimeric tRNA (tRNAUTu) that is compatible with elongation factor Tu (EF-Tu) has made selenoprotein expression easier. In this study, human glutathione peroxidase (hGPx) was expressed in amber-less Escherichia coli C321.ΔA.exp using tRNAUTu and seven chimeric tRNAs that were constructed on the basis of tRNAUTu. We found that chimeric tRNAUTu2, which substitutes the acceptor stem and T-stem of tRNAUTu with those from tRNASec, enabled the expression of reactive hGPx with high yields. We also found that chimeric tRNAUTuT6, which has a single base change (A59C) compared to tRNAUTu, mediated the highest reactive expression of hGPx1. The hGPx1 expressed exists as a tetramer and reacts with positive cooperativity. The SDS-PAGE analysis of hGPx2 produced by tRNAUTuT6 with or without sodium selenite supplementation showed that the incorporation of Sec is nearly 90%. Our approach enables efficient selenoprotein expression in amber-less Escherichia coli and should enable further characterization of selenoproteins in vitro.
Collapse
Affiliation(s)
- Zhenlin Fan
- College of Pharmaceutical Science, Jilin University, Changchun 130021, PR China
| | - Jian Song
- College of Electronic Science and Engineering, Jilin University, Changchun 130000, PR China
| | - Tuchen Guan
- College of Pharmaceutical Science, Jilin University, Changchun 130021, PR China
| | - Xiuxiu Lv
- College of Pharmaceutical Science, Jilin University, Changchun 130021, PR China
| | - Jingyan Wei
- College of Pharmaceutical Science, Jilin University, Changchun 130021, PR China
| |
Collapse
|
4
|
Zhang X, Li X, Liu F, Yuan H, Huang Y. The complete mitochondrial genome of Tonkinacris sinensis(Orthoptera: Acrididae): A tRNA-like sequence and its implications for phylogeny. BIOCHEM SYST ECOL 2017. [DOI: 10.1016/j.bse.2016.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Liu LC, Grundy FJ, Henkin TM. Non-Conserved Residues in Clostridium acetobutylicum tRNA(Ala) Contribute to tRNA Tuning for Efficient Antitermination of the alaS T Box Riboswitch. Life (Basel) 2015; 5:1567-82. [PMID: 26426057 PMCID: PMC4695836 DOI: 10.3390/life5041567] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 09/16/2015] [Accepted: 09/18/2015] [Indexed: 11/16/2022] Open
Abstract
The T box riboswitch regulates expression of amino acid-related genes in Gram-positive bacteria by monitoring the aminoacylation status of a specific tRNA, the binding of which affects the folding of the riboswitch into mutually exclusive terminator or antiterminator structures. Two main pairing interactions between the tRNA and the leader RNA have been demonstrated to be necessary, but not sufficient, for efficient antitermination. In this study, we used the Clostridium acetobutylicum alaS gene, which encodes alanyl-tRNA synthetase, to investigate the specificity of the tRNA response. We show that the homologous C. acetobutylicum tRNAAla directs antitermination of the C. acetobutylicum alaS gene in vitro, but the heterologous Bacillus subtilis tRNAAla (with the same anticodon and acceptor end) does not. Base substitutions at positions that vary between these two tRNAs revealed synergistic and antagonistic effects. Variation occurs primarily at positions that are not conserved in tRNAAla species, which indicates that these non-conserved residues contribute to optimal antitermination of the homologous alaS gene. This study suggests that elements in tRNAAla may have coevolved with the homologous alaS T box leader RNA for efficient antitermination.
Collapse
Affiliation(s)
- Liang-Chun Liu
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.
| | - Frank J Grundy
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.
| | - Tina M Henkin
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
6
|
Jackman JE, Alfonzo JD. Transfer RNA modifications: nature's combinatorial chemistry playground. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 4:35-48. [PMID: 23139145 DOI: 10.1002/wrna.1144] [Citation(s) in RCA: 235] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Following synthesis, tRNAs are peppered by numerous chemical modifications which may differentially affect a tRNA's structure and function. Although modifications affecting the business ends of a tRNA are predictably important for cell viability, a majority of modifications play more subtle structural roles that can affect tRNA stability and folding. The current trend is that modifications act in concert and it is in the context of the specific sequence of a given tRNA that they impart their differing effects. Recent developments in the modification field have highlighted the diversity of modifications in tRNA. From these, the combinatorial nature of modifications in explaining previously described phenotypes derived from their absence has emerged as a growing theme.
Collapse
Affiliation(s)
- Jane E Jackman
- The Ohio State Center for RNA Biology, The Ohio State University, Columbus, OH, USA.
| | | |
Collapse
|
7
|
Ye HY, Xiao LL, Zhou ZJ, Huang Y. Complete mitochondrial genome of Locusta migratoria migratoria (Orthoptera: Oedipodidae): three tRNA-like sequences on the N-strand. Zoolog Sci 2012; 29:90-6. [PMID: 22303849 DOI: 10.2108/zsj.29.90] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The complete 16053 bp mitochondrial genome (mitogenome) sequence of Locusta migratoria migratoria has been determined. This mitogenome contains the base compositional biases and codon usage typical of metazoans, and the RSCU values indicate a negative correlation with the C and G contents in codon. The orientation and gene order of the L. migratoria migratoria is identical to Locusta migratoria migratoiodes. An unusual feature of the L. migratoria migratoria mitogenome is the presence of three tRNA-like structures on the N-strand: one tRNA(Ile)-like and two tRNA(Leu(CUN))-like sequences. The tRNA-like sequences have proper folding structures and anticodons sequences. Two repeated DNA sequences, Rpt I and Rpt II, were found in the A+T-rich region of the L. migratoria migratoria mitogenome. Both repeated sequences have various features. In the 5' region of Rpt I, a 51 bp fragment is localized in the srRNA gene; and there are two tandemly sub-repeated DNA sequences (sub-Rpts), Rpt 1-4, within Rpt I and Rpt II. One stem-loop structure on the N-strand that may be involved in the N-strand replication initiation was found in the A+T-rich region.
Collapse
|
8
|
Christian BE, Spremulli LL. Mechanism of protein biosynthesis in mammalian mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:1035-54. [PMID: 22172991 DOI: 10.1016/j.bbagrm.2011.11.009] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/03/2011] [Accepted: 11/08/2011] [Indexed: 01/25/2023]
Abstract
Protein synthesis in mammalian mitochondria produces 13 proteins that are essential subunits of the oxidative phosphorylation complexes. This review provides a detailed outline of each phase of mitochondrial translation including initiation, elongation, termination, and ribosome recycling. The roles of essential proteins involved in each phase are described. All of the products of mitochondrial protein synthesis in mammals are inserted into the inner membrane. Several proteins that may help bind ribosomes to the membrane during translation are described, although much remains to be learned about this process. Mutations in mitochondrial or nuclear genes encoding components of the translation system often lead to severe deficiencies in oxidative phosphorylation, and a summary of these mutations is provided. This article is part of a Special Issue entitled: Mitochondrial Gene Expression.
Collapse
Affiliation(s)
- Brooke E Christian
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
9
|
Kolesnikova O, Kazakova H, Comte C, Steinberg S, Kamenski P, Martin RP, Tarassov I, Entelis N. Selection of RNA aptamers imported into yeast and human mitochondria. RNA (NEW YORK, N.Y.) 2010; 16:926-941. [PMID: 20348443 PMCID: PMC2856887 DOI: 10.1261/rna.1914110] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2009] [Accepted: 02/01/2010] [Indexed: 05/29/2023]
Abstract
In the yeast Saccharomyces cerevisiae, nuclear DNA-encoded is partially imported into mitochondria. We previously found that the synthetic transcripts of yeast tRNA(Lys) and a number of their mutant versions could be specifically internalized by isolated yeast and human mitochondria. The mitochondrial targeting of tRNA(Lys) in yeast was shown to depend on the cytosolic precursor of mitochondrial lysyl-tRNA synthetase and the glycolytic enzyme enolase. Here we applied the approach of in vitro selection (SELEX) to broaden the spectrum of importable tRNA-derived molecules. We found that RNAs selected for their import into isolated yeast mitochondria have lost the potential to acquire a classical tRNA-shape. Analysis of conformational rearrangements in the importable RNAs by in-gel fluorescence resonance energy transfer (FRET) approach permitted us to suggest that protein factor binding and subsequent import require formation of an alternative structure, different from a classic L-form tRNA model. We show that in the complex with targeting protein factor, enolase 2, tRK1 adopts a particular conformation characterized by bringing together the 3'-end and the TPsiC loop. This is a first evidence for implication of RNA secondary structure rearrangement in the mechanism of mitochondrial import selectivity. Based on these data, a set of small RNA molecules with significantly improved efficiency of import into yeast and human mitochondria was constructed, opening the possibility of creating a new mitochondrial vector system able to target therapeutic oligoribonucleotides into deficient human mitochondria.
Collapse
MESH Headings
- Aptamers, Nucleotide/chemistry
- Aptamers, Nucleotide/genetics
- Aptamers, Nucleotide/metabolism
- Base Sequence
- Biological Transport, Active
- Fluorescence Resonance Energy Transfer
- Humans
- In Vitro Techniques
- Lysine-tRNA Ligase/metabolism
- Mitochondria/metabolism
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Phosphopyruvate Hydratase/metabolism
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Transfer, Amino Acyl/genetics
- RNA, Transfer, Amino Acyl/metabolism
- SELEX Aptamer Technique
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- Olga Kolesnikova
- UMR 7156, Université de Strasbourg/Centre National de la Recherche Scientifique (UdS/CNRS), 67084 Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Zhang D, Zhi Y, Yin H, Li X, Yin X. The complete mitochondrial genome of Thrinchus schrenkii (Orthoptera: Caelifera, Acridoidea, Pamphagidae). Mol Biol Rep 2010; 38:611-9. [DOI: 10.1007/s11033-010-0147-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 03/23/2010] [Indexed: 11/24/2022]
|
11
|
Das S, Mukherjee R, Sahoo S, Thakkar R, Chakrabarti J. Structural Clones of UAG Decoding RNA. J Biomol Struct Dyn 2009; 27:381-90. [DOI: 10.1080/07391102.2009.10507324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
12
|
Zhou Z, Shi F, Huang Y. The complete mitogenome of the Chinese bush cricket, Gampsocleis gratiosa (Orthoptera: Tettigonioidea). J Genet Genomics 2009; 35:341-8. [PMID: 18571122 DOI: 10.1016/s1673-8527(08)60050-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2008] [Revised: 03/03/2008] [Accepted: 03/06/2008] [Indexed: 11/17/2022]
Abstract
The complete mitochondrial genome (mitogenome) of Gampsocleis gratiosa was determined. The 15,929 bp in the size of G. gratiosa mitogenome contains a typical gene content, base composition, and codon usage found in metazoan. All 13 protein coding genes (PCGs) of the G. gratiosa mitogenome start with a typical ATN codon. The usual termination codons (TAA and TAG) were found from 10 PCGs. However, the atp6, nad4, and nad5 had incomplete termination codon (T). The anticodons of all tRNAs are identical to those observed in Drosophila yakuba and Locusta migratoria, and can be folded in the form of a typical clover leaf structure except for trnS (AGN). The secondary structure of trnS (AGN) was drawn according with the Steinberg-Cedergren tertiary structure. The A+T content (67.4%) of the A+T-rich region is relatively lower among the mitogenome regions, in contrast, it usually contains the highest A+T content for most insects. Two isolated sequence repeat regions (202 bp) were found in the A+T-rich region with mapping and secondary structure information.
Collapse
Affiliation(s)
- Zhijun Zhou
- College of Life Science, Shaanxi Normal University, Xi'an, China
| | | | | |
Collapse
|
13
|
Pan D, Zhang CM, Kirillov S, Hou YM, Cooperman BS. Perturbation of the tRNA tertiary core differentially affects specific steps of the elongation cycle. J Biol Chem 2008; 283:18431-40. [PMID: 18448426 DOI: 10.1074/jbc.m801560200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The tRNA tertiary core region is important for both tRNA stability and activity in the translation elongation cycle. Here we report the effects of mutating each of two highly conserved base pairs in the tertiary core of Phe-tRNA(Phe), 18-55 and 19-56, on rate and equilibrium constants for specific steps of this cycle, beginning with formation of aminoacyl-tRNA.EF-Tu.GTP ternary complexs and culminating with translocation of A-site-bound peptidyl-tRNA into the P-site. We find that codon-dependent binding of aminoacyl-tRNA to the A/T-site and proofreading of near-cognate tRNA are sensitive to perturbation of either base pair; formation of the ternary complex and accommodation from the A/T to the A-site are sensitive to 18-55 perturbation only, and translocation of peptidyl-tRNA from the A- to P-site is insensitive to perturbation of either. These results underline the importance of the core region in promoting the efficiency and accuracy of translation, and they likely reflect different requirements for structural integrity of the core during specific steps of the elongation cycle.
Collapse
Affiliation(s)
- Dongli Pan
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | | | | | | | | |
Collapse
|
14
|
Zhou Z, Huang Y, Shi F, Ye H. The complete mitochondrial genome of Deracantha onos (Orthoptera: Bradyporidae). Mol Biol Rep 2007; 36:7-12. [PMID: 17891510 DOI: 10.1007/s11033-007-9145-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2007] [Accepted: 09/07/2007] [Indexed: 10/22/2022]
Abstract
The complete mitochondrial genome 15,650 bp in size of the Deracantha onos has been determined. The gene content, base composition and codon usage of D. onos are coincident to typical hexapods mitochondrial genomes. Genes arrangement of D. onos is identical to Gryllotalpa orientalis, Ruspolia dubia and Anabrus simplex, in that the relative locations of tRNA(Lys) and tRNA(Asp) was different to that of Locusta migratoria. All tRNAs could be folded into the typical cloverleaf secondary structure, excluding tRNA(Ser(AGN)) which forms another structure according to the Steinberg-Cedergren tertiary structure. Sequence analysis of the A + T-rich region with Dot-plot did not find any conspicuous repeat clusters. Two poly-thymine (poly-T) nucleotide stretches of 20 bp and 11 bp in size, which may involved in the recognition of replication origin, were found on the H-strand and L-strand in the A + T-rich region of the D. onos mitogenome, respectively. One open reading frame (ORF) 87 amino acids in size was found on the H-strand, but Protein Blast searches analysis indicated that it was a nonfunctional ORF.
Collapse
Affiliation(s)
- Zhijun Zhou
- College of Life Science, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China
| | | | | | | |
Collapse
|
15
|
Kotlova N, Ishii TM, Zagryadskaya EI, Steinberg SV. Active suppressor tRNAs with a double helix between the D- and T-loops. J Mol Biol 2007; 373:462-75. [PMID: 17822715 DOI: 10.1016/j.jmb.2007.07.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Revised: 07/25/2007] [Accepted: 07/26/2007] [Indexed: 10/23/2022]
Abstract
One of the most conserved elements of the tRNA structure is the reverse-Hoogsteen base-pair T54--A58 in the T-loop, which plays a major role in the maintenance of the standard L-shape conformation. Here, we present the results of in vivo selection of 51 active suppressor tRNA clones, none of which contains base-pair T54--A58. In 49 clones, we found two regions in the D and T-loops that are complementary to each other. This finding suggests the existence of an inter-loop double helix consisting of three base-pairs, which could have the same role as base-pair T54--A58 in the fixation of the juxtaposition of the two helical domains within the L-shape. From this point of view, the appearance of the inter-loop double helix represents a compensatory effect for the absence of base-pair T54--A58. The results shed new light on the role of different elements of the tRNA structure in the formation of the standard L-shape conformation and on the possibility of synonymous replacements of one arrangement by another in functional RNA molecules.
Collapse
Affiliation(s)
- Natalia Kotlova
- Département de Biochimie, Université de Montréal, Montréal, Québec, Canada H3C 3J7
| | | | | | | |
Collapse
|
16
|
Herring S, Ambrogelly A, Polycarpo CR, Söll D. Recognition of pyrrolysine tRNA by the Desulfitobacterium hafniense pyrrolysyl-tRNA synthetase. Nucleic Acids Res 2007; 35:1270-8. [PMID: 17267409 PMCID: PMC1851642 DOI: 10.1093/nar/gkl1151] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pyrrolysine (Pyl), the 22nd co-translationally inserted amino acid, is incorporated in response to a UAG amber stop codon. Pyrrolysyl-tRNA synthetase (PylRS) attaches Pyl to its cognate tRNA, the special amber suppressor tRNAPyl. The genes for tRNAPyl (pylT) and PylRS (pylS) are found in all members of the archaeal family Methanosarcinaceae, and in Desulfitobacterium hafniense. The activation and aminoacylation properties of D. hafniense PylRS and the nature of the tRNAPyl identity elements were determined by measuring the ability of 24 mutant tRNAPyl species to be aminoacylated with the pyrrolysine analog N-ε-cyclopentyloxycarbonyl-l-lysine. The discriminator base G73 and the first base pair (G1·C72) in the acceptor stem were found to be major identity elements. Footprinting analysis showed that PylRS binds tRNAPyl predominantly along the phosphate backbone of the T-loop, the D-stem and the acceptor stem. Significant contacts with the anticodon arm were not observed. The tRNAPyl structure contains the highly conserved T-loop contact U54·A58 and position 57 is conserved as a purine, but the canonical T- to D-loop contact between positions 18 and 56 was not present. Unlike most tRNAs, the tRNAPyl anticodon was shown not to be important for recognition by bacterial PylRS.
Collapse
Affiliation(s)
- Stephanie Herring
- Departments of Molecular Biophysics and Biochemistry and Chemistry Yale University, New Haven, CT 06520-8114, USA
| | - Alexandre Ambrogelly
- Departments of Molecular Biophysics and Biochemistry and Chemistry Yale University, New Haven, CT 06520-8114, USA
| | - Carla R. Polycarpo
- Departments of Molecular Biophysics and Biochemistry and Chemistry Yale University, New Haven, CT 06520-8114, USA
| | - Dieter Söll
- Departments of Molecular Biophysics and Biochemistry and Chemistry Yale University, New Haven, CT 06520-8114, USA
- *To whom Correspondence should be addressed. Tel: +1 203 432 6200; Fax: +1 203 432 6202;
| |
Collapse
|
17
|
Pan D, Kirillov S, Zhang CM, Hou YM, Cooperman BS. Rapid ribosomal translocation depends on the conserved 18-55 base pair in P-site transfer RNA. Nat Struct Mol Biol 2006; 13:354-9. [PMID: 16532005 DOI: 10.1038/nsmb1074] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2005] [Accepted: 02/14/2006] [Indexed: 11/09/2022]
Abstract
The L shape of tRNA is stabilized by the 'tertiary core' region, which contains base-pairing interactions between the D and T loops. Distortions of the L shape accompany tRNA movement across the ribosomal surface. Here, using single-turnover rapid kinetics assays, we determine the effects of mutations within the tertiary core of P site-bound tRNA(fMet) on three measures of the rate of translocation, the part of the elongation cycle involving the most extensive tRNA movement. Mutations in the strictly conserved G18.U55 base pair result in as much as an 80-fold decrease in the rate of translocation, demonstrating the importance of the 18-55 interaction for rapid translocation. This implicates the core region as a locus for functionally important dynamic interactions with the ribosome and leads to the proposal that translocation of ribosome-bound tRNAs may be sequential rather than concerted.
Collapse
MESH Headings
- Base Pairing
- Conserved Sequence
- Escherichia coli/genetics
- Escherichia coli/metabolism
- GTP Phosphohydrolases/metabolism
- Kinetics
- Models, Biological
- Models, Molecular
- Mutation
- Nucleic Acid Conformation
- RNA Stability
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Transfer, Met/chemistry
- RNA, Transfer, Met/genetics
- RNA, Transfer, Met/metabolism
- Ribosomes/metabolism
Collapse
Affiliation(s)
- Dongli Pan
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| | | | | | | | | |
Collapse
|
18
|
Oliva R, Cavallo L, Tramontano A. Accurate energies of hydrogen bonded nucleic acid base pairs and triplets in tRNA tertiary interactions. Nucleic Acids Res 2006; 34:865-79. [PMID: 16461956 PMCID: PMC1361619 DOI: 10.1093/nar/gkj491] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Tertiary interactions are crucial in maintaining the tRNA structure and functionality. We used a combined sequence analysis and quantum mechanics approach to calculate accurate energies of the most frequent tRNA tertiary base pairing interactions. Our analysis indicates that six out of the nine classical tertiary interactions are held in place mainly by H-bonds between the bases. In the remaining three cases other effects have to be considered. Tertiary base pairing interaction energies range from -8 to -38 kcal/mol in yeast tRNA(Phe) and are estimated to contribute roughly 25% of the overall tRNA base pairing interaction energy. Six analyzed posttranslational chemical modifications were shown to have minor effect on the geometry of the tertiary interactions. Modifications that introduce a positive charge strongly stabilize the corresponding tertiary interactions. Non-additive effects contribute to the stability of base triplets.
Collapse
Affiliation(s)
- Romina Oliva
- Centro Linceo Interdisciplinare Beniamino Segre, Accademia dei Lincei, I-00165 Rome, Italy.
| | | | | |
Collapse
|
19
|
Urbonavicius J, Armengaud J, Grosjean H. Identity elements required for enzymatic formation of N2,N2-dimethylguanosine from N2-monomethylated derivative and its possible role in avoiding alternative conformations in archaeal tRNA. J Mol Biol 2006; 357:387-99. [PMID: 16434050 DOI: 10.1016/j.jmb.2005.12.087] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Revised: 12/21/2005] [Accepted: 12/29/2005] [Indexed: 10/25/2022]
Abstract
Here, we have investigated the specificity of purified recombinant tRNA:m(2)(2)G10 methyltransferase of Pyrococcus abyssi ((Pab)Trm-m(2)(2)G10 enzyme). This archaeal enzyme catalyses mono- and dimethylation of the N(2)-exocyclic amino group of guanine at position 10 of several tRNA species. Our results indicate that only few identity elements are required for the efficient formation of m(2)(2)G10. They are composed of a G10.U25 wobble base-pair in the dihydrouridine arm (D-arm) and a four nucleotide variable loop (V-loop) within a canonical three-dimensional (3D) structure. The types of base-pairs in the D-arm or amino acid acceptor stem are also important for the enzymatic reaction, but appear to affect only the rate of tRNA methylation. However, in tRNA species harbouring a G10-C25 Watson-Crick base-pair and/or five nucleotide V-loop, only m(2)G10 is produced. To impair the monomethylation reaction, drastic amputation in the T-arm is required. Our observations contrast with those reported earlier for the identity elements required for a remotely related Pyrococcus furiosus Trm-m(2)(2)G26 enzyme (alias (Pfu)Trm1) that also catalyses the two step formation of m(2)(2)G but at position 26 in several tRNA species. In this case, a G10-C25 base-pair together with the five nucleotide V-loop were shown to be required for efficient formation of m(2)(2)G26. Thus, in the Pyrococcus genus, the major identity elements that preclude formation of m(2)(2)G at positions 10 or 26 in tRNA are mutually exclusive. Therefore, the Trm-m(2)(2)G10 and Trm-m(2)(2)G26 enzymes have evolved independently towards different specificities. In addition, identity elements for m(2)/m(2)(2)G10 formation in archaeal tRNA are different from the ones required for m(2)G10 formation in eukaryal tRNA. We propose that archaeal tRNA:m(2)(2)G10 methyltransferases, unlike the orthologous eukaryal tRNA:m(2)G10 methyltransferases, evolved towards m(2)(2)G10 specificity due to the possible requirement of preventing formation of alternative structures in G/C rich archaeal tRNA species.
Collapse
Affiliation(s)
- Jaunius Urbonavicius
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, 1 ave de la Terrasse, Batiment 34, F-91198 Gif-sur-Yvette, France
| | | | | |
Collapse
|
20
|
Oudot-Le Secq MP, Loiseaux-de Goër S, Stam WT, Olsen JL. Complete mitochondrial genomes of the three brown algae (Heterokonta: Phaeophyceae) Dictyota dichotoma, Fucus vesiculosus and Desmarestia viridis. Curr Genet 2006; 49:47-58. [PMID: 16317568 DOI: 10.1007/s00294-005-0031-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Revised: 09/21/2005] [Accepted: 09/25/2005] [Indexed: 10/25/2022]
Abstract
We report the complete mitochondrial sequences of three brown algae (Dictyota dichotoma, Fucus vesiculosus and Desmarestia viridis) belonging to three phaeophycean lineages. They have circular mapping organization and contain almost the same set of mitochondrial genes, despite their size differences (31,617, 36,392 and 39,049 bp, respectively). These include the genes for three rRNAs (23S, 16S and 5S), 25-26 tRNAs, 35 known mitochondrial proteins and 3-4 ORFs. This gene set complements two previously studied brown algal mtDNAs, Pylaiella littoralis and Laminaria digitata. Exceptions to the very similar overall organization include the displacement of orfs, tRNA genes and four protein-coding genes found at different locations in the D. dichotoma mitochondrial genome. We present a phylogenetic analysis based on ten concatenated genes (7,479 nucleotides) and 29 taxa. Stramenopiles were always monophyletic with heterotrophic species at the base. Results support both multiple primary and multiple secondary acquisitions of plastids.
Collapse
Affiliation(s)
- Marie-Pierre Oudot-Le Secq
- Department of Marine Biology, Centre for Ecological and Evolutionary Studies, University of Groningen, PO Box 14, 9750, AA Haren, The Netherlands.
| | | | | | | |
Collapse
|
21
|
Purushothaman SK, Bujnicki JM, Grosjean H, Lapeyre B. Trm11p and Trm112p are both required for the formation of 2-methylguanosine at position 10 in yeast tRNA. Mol Cell Biol 2005; 25:4359-70. [PMID: 15899842 PMCID: PMC1140639 DOI: 10.1128/mcb.25.11.4359-4370.2005] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2004] [Revised: 12/14/2004] [Accepted: 03/01/2005] [Indexed: 11/20/2022] Open
Abstract
N(2)-Monomethylguanosine-10 (m(2)G10) and N(2),N(2)-dimethylguanosine-26 (m(2)(2)G26) are the only two guanosine modifications that have been detected in tRNA from nearly all archaea and eukaryotes but not in bacteria. In Saccharomyces cerevisiae, formation of m(2)(2)G26 is catalyzed by Trm1p, and we report here the identification of the enzymatic activity that catalyzes the formation of m(2)G10 in yeast tRNA. It is composed of at least two subunits that are associated in vivo: Trm11p (Yol124c), which is the catalytic subunit, and Trm112p (Ynr046w), a putative zinc-binding protein. While deletion of TRM11 has no detectable phenotype under laboratory conditions, deletion of TRM112 leads to a severe growth defect, suggesting that it has additional functions in the cell. Indeed, Trm112p is associated with at least four proteins: two tRNA methyltransferases (Trm9p and Trm11p), one putative protein methyltransferase (Mtc6p/Ydr140w), and one protein with a Rossmann fold dehydrogenase domain (Lys9p/Ynr050c). In addition, TRM11 interacts genetically with TRM1, thus suggesting that the absence of m(2)G10 and m(2)(2)G26 affects tRNA metabolism or functioning.
Collapse
|
22
|
Yousef MR, Grundy FJ, Henkin TM. Structural transitions induced by the interaction between tRNA(Gly) and the Bacillus subtilis glyQS T box leader RNA. J Mol Biol 2005; 349:273-87. [PMID: 15890195 DOI: 10.1016/j.jmb.2005.03.061] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Revised: 03/18/2005] [Accepted: 03/22/2005] [Indexed: 10/25/2022]
Abstract
The T box system regulates expression of amino acid-related genes in Gram-positive bacteria through premature termination of transcription. Synthesis of the full-length mRNA requires stabilization of an antiterminator element in the 5' untranslated leader RNA by the cognate uncharged tRNA. tRNA(Gly)-dependent antitermination of the Bacillus subtilis glyQS gene (encoding glycyl-tRNA synthetase) can be reproduced in a purified in vitro transcription system, indicating that the nascent transcript is sufficient for interaction with the tRNA. Genetic analyses previously demonstrated base pairing of a single codon in the leader RNA with the tRNA anticodon, and between the antiterminator and the tRNA acceptor end. In this study, we established conditions for specific binding of tRNA(Gly) to glyQS leader RNA generated by phage T7 RNA polymerase. Structural mapping studies revealed tRNA(Gly)-induced protection in the glyQS leader RNA at the two known sites of interaction with the tRNA, as well as at other regions between these sites. The proposed tRNA-dependent structural switch between the competing terminator and antiterminator forms of the leader RNA was demonstrated directly. Changes in tRNA(Gly) upon binding to glyQS leader RNA were detected in the anticodon loop, consistent with pairing with the specifier sequence, and in the highly conserved G19 in the D-loop, similar to effects induced by codon-anticodon interaction in the ribosome. This study provides biochemical evidence for direct interaction of tRNA(Gly) with full-length in vitro transcribed glyQS leader RNA, and an initial view of structural modulations of both RNA partners within the complex.
Collapse
MESH Headings
- 5' Untranslated Regions/chemistry
- 5' Untranslated Regions/genetics
- 5' Untranslated Regions/metabolism
- Bacillus subtilis/genetics
- Glycine-tRNA Ligase/genetics
- Magnesium/pharmacology
- Nucleic Acid Conformation
- Peptide Chain Termination, Translational/genetics
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Transfer, Gly/chemistry
- RNA, Transfer, Gly/genetics
- RNA, Transfer, Gly/metabolism
- Ribonuclease H/metabolism
Collapse
Affiliation(s)
- Mary R Yousef
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
23
|
Doyon FR, Zagryadskaya EI, Chen J, Steinberg SV. Specific and non-specific purine trap in the T-loop of normal and suppressor tRNAs. J Mol Biol 2004; 343:55-69. [PMID: 15381420 DOI: 10.1016/j.jmb.2004.08.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2004] [Revised: 08/09/2004] [Accepted: 08/09/2004] [Indexed: 11/18/2022]
Abstract
To elucidate the general constraints imposed on the structure of the D and T-loops in functional tRNAs, active suppressor tRNAs were selected in vivo from a combinatorial tRNA gene library in which several nucleotide positions in these loops were randomized. Analysis of the nucleotide sequences of the selected clones demonstrates that most of them contain combination U54-A58 allowing the formation of the standard reverse-Hoogsteen base-pair 54-58 in the T-loop. With only one exception, all these clones fall into two groups, each characterized by a distinct sequence pattern. Analysis of these two groups has allowed us to suggest two different types of nucleotide arrangement in the DT region. The first type, the so-called specific purine trap, is found in 12 individual tRNA clones and represents a generalized version of the standard D-T loop interaction. It consists of purine 18 sandwiched between the reverse-Hoogsteen base-pair U54-A58 and purine 57. The identity of purine 18 is restricted by the specific base-pairing with nucleotide 55. Depending on whether nucleotide 55 is U or G, purine 18 should be, respectively, G or A. The second structural type, the so-called non-specific purine trap, corresponds to the nucleotide sequence pattern found in 16 individual tRNA clones and is described here for the first time. It consists of purine 18 sandwiched between two reverse-Hoogsteen base-pairs U54-A58 and A55-C57 and, unlike the specific purine trap, requires the T-loop to contain an extra eighth nucleotide. Since purine 18 does not form a base-pair in the non-specific purine trap, both purines, G18 and A18, fit to the structure equally well. The important role of both the specific and non-specific purine traps in the formation of the tRNA L-shape is discussed.
Collapse
Affiliation(s)
- Félix R Doyon
- Département de Biochimie, Université de Montréal, Quebec, Canada H3C 3J7
| | | | | | | |
Collapse
|