1
|
Gibb CD, Tran TH, Gibb BC. Assessing Weak Anion Binding to Small Peptides. J Phys Chem B 2024; 128:3605-3613. [PMID: 38592238 PMCID: PMC11033870 DOI: 10.1021/acs.jpcb.4c00657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/11/2024] [Accepted: 03/22/2024] [Indexed: 04/10/2024]
Abstract
Since Hofmeister's seminal studies in the late 19th century, it has been known that salts and buffers can drastically affect the properties of peptides and proteins. These Hofmeister effects can be conceived of in terms of three distinct phenomena/mechanisms: water-salt interactions that indirectly induce the salting-out of a protein by water sequestration by the salt, and direct salt-protein interactions that can either salt-in or salt-out the protein. Unfortunately, direct salt-protein interactions responsible for Hofmeister effects are weak and difficult to quantify. As such, they are frequently construed of as being nonspecific. Nevertheless, there has been considerable effort to better specify these interactions. Here, we use pentapeptides to demonstrate the utility of the H-dimension of nuclear magnetic resonance (NMR) spectroscopy to assess anion binding using N-H signal shifts. We qualify binding using these, demonstrating the upfield shifts induced by anion association and revealing how they are much larger than the corresponding downfield shifts induced by magnetic susceptibility and other ionic strength change effects. We also qualify binding in terms of how the pattern of signal shifts changes with point mutations. In general, we find that the observed upfield shifts are small compared with those induced by anion binding to amide-based hosts, and MD simulations suggest that this is so. Thus, charge-diffuse anions associate mostly with the nonpolar regions of the peptide rather than directly interacting with the amide N-H groups. These findings reveal the utility of 1H NMR spectroscopy for qualifying affinity to peptides─even when affinity constants are very low─and serve as a benchmark for using NMR spectroscopy to study anion binding to more complex systems.
Collapse
Affiliation(s)
- Corinne
L. D. Gibb
- Department of Chemistry, Tulane University School of Science and Engineering, New Orleans, Louisiana 70118, United States
| | - Thien H. Tran
- Department of Chemistry, Tulane University School of Science and Engineering, New Orleans, Louisiana 70118, United States
| | - Bruce C. Gibb
- Department of Chemistry, Tulane University School of Science and Engineering, New Orleans, Louisiana 70118, United States
| |
Collapse
|
2
|
Fowler W, Deng C, Teodoro OT, de Pablo JJ, Tirrell MV. Synthetic and Computational Design Insights toward Mimicking Protein Binding of Phosphate. Bioconjug Chem 2024; 35:300-311. [PMID: 38377539 PMCID: PMC10962344 DOI: 10.1021/acs.bioconjchem.3c00454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 02/22/2024]
Abstract
The unique and precise capabilities of proteins are renowned for their specificity and range of application. Effective mimicking of protein-binding offers enticing potential to direct their abilities toward useful applications, but it is nevertheless quite difficult to realize this characteristic of protein behavior in a synthetic material. Here, we design, synthesize, and evaluate experimentally and computationally a series of multicomponent phosphate-binding peptide amphiphile micelles to derive design insights into how protein binding behavior translates to synthetic materials. By inserting the Walker A P-loop binding motif into this peptide synthetic material, we successfully implemented the protein-binding design parameters of hydrogen-bonding and electrostatic interaction to bind phosphate completely and selectively in this highly tunable synthetic platform. Moreover, in this densely arrayed peptide environment, we use molecular dynamics simulations to identify an intriguing mechanistic shift of binding that is inaccessible in traditional proteins, introducing two corresponding new design elements─flexibility and minimization of the loss of entropy due to ion binding, in protein-analogous synthetic materials. We then translate these new design factors to de novo peptide sequences that bind phosphate independent of protein-extracted sequence or conformation. Overall, this work reveals that traditional complex conformational restrictions of binding by proteins can be replaced and repurposed in a multicomponent peptide amphiphile synthetic material, opening up opportunities for future enhanced protein-inspired design.
Collapse
Affiliation(s)
- Whitney
C. Fowler
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Chuting Deng
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - O. Therese Teodoro
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Juan J. de Pablo
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Argonne
National Laboratory, Lemont, Illinois 60439, United States
| | - Matthew V. Tirrell
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Argonne
National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
3
|
A graph theoretic model to understand the behavioral difference of PPCA among its paralogs towards recognition of DXCA. J Biosci 2021. [DOI: 10.1007/s12038-021-00144-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
Yao W, Wang K, Wu A, Reed WF, Gibb BC. Anion binding to ubiquitin and its relevance to the Hofmeister effects. Chem Sci 2020; 12:320-330. [PMID: 34163600 PMCID: PMC8178748 DOI: 10.1039/d0sc04245e] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/29/2020] [Indexed: 02/01/2023] Open
Abstract
Although the non-covalent interactions between proteins and salts contributing to the Hofmeister effects have been generally mapped, there are many questions regarding the specifics of these interactions. We report here studies involving the small protein ubiquitin and salts of polarizable anions. These studies reveal a complex interplay between the reverse Hofmeister effect at low pH, the salting-in Hofmeister effect at higher pH, and six anion binding sites in ubiquitin at the root of these phenomena. These sites are all located at protuberances of preorganized secondary structure, and although stronger at low pH, are still apparent when ubiquitin possesses no net charge. These results demonstrate the traceability of these Hofmeister phenomena and suggest new strategies for understanding the supramolecular properties of proteins.
Collapse
Affiliation(s)
- Wei Yao
- Department of Chemistry, Tulane University New Orleans LA 70118 USA
| | - Kaiyu Wang
- Department of Chemistry, Tulane University New Orleans LA 70118 USA
| | - Aide Wu
- Department of Physics and Engineering Physics, Tulane University New Orleans LA 70118 USA
| | - Wayne F Reed
- Department of Physics and Engineering Physics, Tulane University New Orleans LA 70118 USA
| | - Bruce C Gibb
- Department of Chemistry, Tulane University New Orleans LA 70118 USA
| |
Collapse
|
5
|
Pal D, Sahu S, Banerjee R. New facets of larger Nest motifs in proteins. Proteins 2020; 88:1413-1422. [PMID: 32519388 DOI: 10.1002/prot.25961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 06/06/2020] [Indexed: 11/07/2022]
Abstract
The Nest is a concave-shaped structural motif in proteins formed by consecutive enantiomeric left-handed (L) and right-handed (R) helical conformation of the backbone. This important motif subsumes many turn and helix capping structures and binds electron-rich ligands. Simple Nests are either RL or LR. Larger Nests (>2 residues long) may be RLR, LRL, RLRL, and so forth, being considered as composed of overlapping simple Nests. The larger Nests remain under-explored despite their widely known contributions to protein function. In our study, we address whether the recurrence of enantiomeric geometry in the larger Nests constrains the peptide backbone such that distinct compositional and conformational preferences are seen compared to simple Nests. Our analysis reveals the critical role of the L helical torsion angle in the formation of larger Nests. This can be observed through the higher propensity of residue or secondary structure combinations in LR and LRL backbone conformation in comparison to RL or RLR, although LR/LRL is considerably lower by occurrence. We also find that the most abundant doublets and triplets in Nests have a propensity for particular secondary structures, suggesting a strong sequence-structure relationship in the larger Nest. Overall, our analysis corroborates distinct features of simple and the larger Nests. Such insights would be helpful towards in-vitro design of peptides and peptidomimetic studies.
Collapse
Affiliation(s)
- Debnath Pal
- Department of Computational and Data Sciences, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Subhankar Sahu
- Department of Bioinformatics, Maulana Abul Kalam Azad University of Technology, Kolkata, West Bengal, India
| | - Raja Banerjee
- Department of Bioinformatics, Maulana Abul Kalam Azad University of Technology, Kolkata, West Bengal, India.,Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Kolkata, West Bengal, India
| |
Collapse
|
6
|
Sheet T, Banerjee R. Design of a Peptide-Based Model Leads for Scavenging Anions. ACS OMEGA 2020; 5:9759-9767. [PMID: 32391463 PMCID: PMC7203709 DOI: 10.1021/acsomega.9b04180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
Among several peptide-based anion recognition motifs, the "CαNN" motif containing C-1 α, N0, and N+1 of three consecutive residues is unique in its mode of interaction. Having a spatial geometry of βαα or βαβ, this motif occurs in the N terminus of a helix and often found at the functional interface of a protein, mediating crucial biological significance upon interaction with anion(s). The interaction of anion(s) with chimeric peptide sequences containing the naturally occurring "CαNN" motif (CPS224Ac, CPS226, and CPS228) reported in our previous attempts strongly confirms that the information regarding the interaction is embedded within the local sequences of the motif segment. At these prevailing circumstances, an effort has been pursued to design novel scaffolds based on the "CαNN" motif for achieving better recognition of anion(s). Exploring the existing data set of the "CαNN" motif available in the FSSP database, four novel peptide-based scaffolds have been designed (DS1, DS2, DS3, and DS4), and preliminary screenings have been performed using computational approaches. Our initial work suggests that two (DS1 and DS3) out of the four scaffolds are potential candidates for better anion recognition. By employing biophysical characterization using both qualitative and quantitative measures, in this present study, we report the interaction of sulfate and phosphate ions with these two designed scaffolds, in which there is much better recognition of anions by these scaffolds than the natural sequences, justifying their logical engineering. Our observation strongly suggests that these designed scaffolds are better potential candidates than those of the naturally occurring "CαNN" motif in terms of anion recognition and could be utilized for the scavenging of anion(s) for different purposes.
Collapse
Affiliation(s)
- Tridip Sheet
- Department
of Bioinformatics, Maulana Abul Kalam Azad
University of Technology, West Bengal (Formerly Known as West Bengal
University of Technology), BF-142, Sector-1, Salt Lake, Kolkata 700064, India
| | - Raja Banerjee
- Department
of Bioinformatics, Maulana Abul Kalam Azad
University of Technology, West Bengal (Formerly Known as West Bengal
University of Technology), BF-142, Sector-1, Salt Lake, Kolkata 700064, India
- Department
of Biotechnology, Maulana Abul Kalam Azad
University of Technology, West Bengal (Formerly Known as West Bengal
University of Technology), BF-142, Sector-1, Salt Lake, Kolkata 700064, India
| |
Collapse
|
7
|
Johansson NG, Turku A, Vidilaseris K, Dreano L, Khattab A, Ayuso Pérez D, Wilkinson A, Zhang Y, Tamminen M, Grazhdankin E, Kiriazis A, Fishwick CWG, Meri S, Yli-Kauhaluoma J, Goldman A, Boije af Gennäs G, Xhaard H. Discovery of Membrane-Bound Pyrophosphatase Inhibitors Derived from an Isoxazole Fragment. ACS Med Chem Lett 2020; 11:605-610. [PMID: 32292570 PMCID: PMC7153278 DOI: 10.1021/acsmedchemlett.9b00537] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/10/2020] [Indexed: 12/21/2022] Open
Abstract
![]()
Membrane-bound
pyrophosphatases (mPPases) regulate energy homeostasis
in pathogenic protozoan parasites and lack human homologues, which
makes them promising targets in e.g. malaria. Yet
only few nonphosphorus inhibitors have been reported so far. Here,
we explore an isoxazole fragment hit, leading to the discovery of
small mPPase inhibitors with 6–10 μM IC50 values
in the Thermotoga maritima test system. Promisingly,
the compounds retained activity against Plasmodium falciparum mPPase in membranes and inhibited parasite growth.
Collapse
Affiliation(s)
- Niklas G. Johansson
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56 (Viikinkaari 5 E), FI-00014 Helsinki, Finland
| | - Ainoleena Turku
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56 (Viikinkaari 5 E), FI-00014 Helsinki, Finland
| | - Keni Vidilaseris
- Department of Biosciences, Division of Biochemistry, University of Helsinki, P.O. Box 56
(Viikinkaari 9), FI-00014 Helsinki, Finland
| | - Loïc Dreano
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56 (Viikinkaari 5 E), FI-00014 Helsinki, Finland
| | - Ayman Khattab
- Malaria Research Laboratory, Translational Immunology Research Program, Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, P.O. Box 21
(Haartmaninkatu 3), FI-00014 Helsinki, Finland
| | - Daniel Ayuso Pérez
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56 (Viikinkaari 5 E), FI-00014 Helsinki, Finland
| | - Aaron Wilkinson
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom
| | - Yuezhou Zhang
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56 (Viikinkaari 5 E), FI-00014 Helsinki, Finland
| | - Matti Tamminen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56 (Viikinkaari 5 E), FI-00014 Helsinki, Finland
| | - Evgeni Grazhdankin
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56 (Viikinkaari 5 E), FI-00014 Helsinki, Finland
| | - Alexandros Kiriazis
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56 (Viikinkaari 5 E), FI-00014 Helsinki, Finland
| | - Colin W. G. Fishwick
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom
| | - Seppo Meri
- Malaria Research Laboratory, Translational Immunology Research Program, Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, P.O. Box 21
(Haartmaninkatu 3), FI-00014 Helsinki, Finland
| | - Jari Yli-Kauhaluoma
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56 (Viikinkaari 5 E), FI-00014 Helsinki, Finland
| | - Adrian Goldman
- Department of Biosciences, Division of Biochemistry, University of Helsinki, P.O. Box 56
(Viikinkaari 9), FI-00014 Helsinki, Finland
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Clarendon Way, Leeds LS2 9JT, United Kingdom
| | - Gustav Boije af Gennäs
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56 (Viikinkaari 5 E), FI-00014 Helsinki, Finland
| | - Henri Xhaard
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56 (Viikinkaari 5 E), FI-00014 Helsinki, Finland
| |
Collapse
|
8
|
Sahu S, Sheet T, Banerjee R. Interaction landscape of a 'C αNN' motif with arsenate and arsenite: a potential peptide-based scavenger of arsenic. RSC Adv 2019; 9:1062-1074. [PMID: 35517606 PMCID: PMC9059529 DOI: 10.1039/c8ra08225a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/08/2018] [Indexed: 12/01/2022] Open
Abstract
Arsenic (As) is a toxic metalloid that has drawn immense attention from the scientific community recently due to its fatal effects through its unwanted occurrence in ground water around the globe. The presence of an excess amount of water soluble arsenate and/or arsenite salt (permissible limit 10 μg L-1 as recommended by the WHO) in water has been correlated with several human diseases. Although arsenate (HAsO4 2-) is a molecular analogue of phosphate (HPO4 2-), phosphate is indispensable for life, while arsenic and its salts are toxic. Therefore, it is worthwhile to focus on the removal of arsenic from water. Towards this end, the design of peptide-based scaffolds for the recognition of arsenate and arsenite would add a new dimension. Utilizing the stereochemical similarity between arsenate (HAsO4 2-) and phosphate (HPO4 2-), we successfully investigated the recognition of arsenate and arsenite with a naturally occurring novel phosphate binding 'CαNN' motif and its related designed analogues. Using computational as well as biophysical approaches, for the first time, we report here that a designed peptide-based scaffold based on the 'CαNN' motif can recognize anions of arsenic in a thermodynamically favorable manner in a context-free system. This peptide-based arsenic binding agent has the potential for future development as a scavenger of arsenic anions to obtain arsenic free water.
Collapse
Affiliation(s)
- Subhankar Sahu
- Department of Biotechnology and Head Department of Bioinformatics, Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly Known as West Bengal University of Technology) BF-142, Salt Lake Kolkata 700064 West Bengal India
| | - Tridip Sheet
- Department of Biotechnology and Head Department of Bioinformatics, Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly Known as West Bengal University of Technology) BF-142, Salt Lake Kolkata 700064 West Bengal India
| | - Raja Banerjee
- Department of Biotechnology and Head Department of Bioinformatics, Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly Known as West Bengal University of Technology) BF-142, Salt Lake Kolkata 700064 West Bengal India
| |
Collapse
|
9
|
Patra P, Ghosh M, Banerjee R, Chakrabarti J. Quantum chemical studies on anion specificity of C αNN motif in functional proteins. J Comput Aided Mol Des 2018; 32:929-936. [PMID: 30182143 DOI: 10.1007/s10822-018-0157-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/29/2018] [Indexed: 10/28/2022]
Abstract
Anion binding CαNN motif is found in functionally important regions of protein structures. This motif based only on backbone atoms from three adjacent residues, recognizes free sulphate or phosphate ion as well as phosphate groups in nucleotides and in a variety of cofactors. The mode of anion recognition and microscopic picture of binding interaction remains unclear. Here we perform self-consistent quantum chemical calculations considering sulphate and phosphate bound CαNN motif fragments from crystal structures of functional proteins in order to figure out microscopic basis of anion recognition. Our calculations indicate that stability and preference of the anion in the motif depends on the sequence of the motif. The stabilization energy is larger in case of polar residue containing motif fragment. Nitrogen atom of the polar residue of motif mainly participates in the coordination at the lowest energy levels. Anion replacement decreases stabilization energy along with coordination between motif atoms and oxygen atoms of anion shifted to higher energies, suggesting preference of the motif residues to specific anion. Our analysis may be helpful to understand microscopic basis of interaction between proteins and ionic species.
Collapse
Affiliation(s)
- Piya Patra
- Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly known as WBUT), BF-142, Sector-I, Salt Lake, Kolkata, 700064, India.
| | - Mahua Ghosh
- Department of Chemical, Biological and Macro-Molecular Sciences, S.N. Bose National Centre for Basic Sciences, Sector III, Block JD, Salt Lake, Kolkata, 700106, India
| | - Raja Banerjee
- Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly known as WBUT), BF-142, Sector-I, Salt Lake, Kolkata, 700064, India
| | - Jaydeb Chakrabarti
- Department of Chemical, Biological and Macro-Molecular Sciences, S.N. Bose National Centre for Basic Sciences, Sector III, Block JD, Salt Lake, Kolkata, 700106, India. .,The Thematic Unit of Excellence on Computational Materials Science, S.N. Bose National Centre for Basic Sciences, Sector-III, Block JD, Salt Lake, Kolkata, 700106, India.
| |
Collapse
|
10
|
Sullivan MR, Yao W, Tang D, Ashbaugh HS, Gibb BC. The Thermodynamics of Anion Complexation to Nonpolar Pockets. J Phys Chem B 2018; 122:1702-1713. [PMID: 29373793 PMCID: PMC10668596 DOI: 10.1021/acs.jpcb.7b12259] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The interactions between nonpolar surfaces and polarizable anions lie in a gray area between the hydrophobic and Hofmeister effects. To assess the affinity of these interactions, NMR and ITC were used to probe the thermodynamics of eight anions binding to four different hosts whose pockets each consist primarily of hydrocarbon. Two classes of host were examined: cavitands and cyclodextrins. For all hosts, anion affinity was found to follow the Hofmeister series, with associations ranging from 1.6-5.7 kcal mol-1. Despite the fact that cavitand hosts 1 and 2 possess intrinsic negative electrostatic fields, it was determined that these more enveloping hosts generally bound anions more strongly. The observation that the four hosts each possess specific anion affinities that cannot be readily explained by their structures, points to the importance of counter cations and the solvation of the "empty" hosts, free guests, and host-guest complexes, in defining the affinity.
Collapse
Affiliation(s)
- Matthew R. Sullivan
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Wei Yao
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Du Tang
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Henry S Ashbaugh
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Bruce C. Gibb
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| |
Collapse
|
11
|
Collaborative routes to clarifying the murky waters of aqueous supramolecular chemistry. Nat Chem 2017; 10:8-16. [DOI: 10.1038/nchem.2894] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 10/20/2017] [Indexed: 12/19/2022]
|
12
|
Patra P, Ghosh M, Banerjee R, Chakrabarti J. Anion induced conformational preference of C α NN motif residues in functional proteins. Proteins 2017; 85:2179-2190. [PMID: 28905427 DOI: 10.1002/prot.25382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/16/2017] [Accepted: 09/10/2017] [Indexed: 11/12/2022]
Abstract
Among different ligand binding motifs, anion binding Cα NN motif consisting of peptide backbone atoms of three consecutive residues are observed to be important for recognition of free anions, like sulphate or biphosphate and participate in different key functions. Here we study the interaction of sulphate and biphosphate with Cα NN motif present in different proteins. Instead of total protein, a peptide fragment has been studied keeping Cα NN motif flanked in between other residues. We use classical force field based molecular dynamics simulations to understand the stability of this motif. Our data indicate fluctuations in conformational preferences of the motif residues in absence of the anion. The anion gives stability to one of these conformations. However, the anion induced conformational preferences are highly sequence dependent and specific to the type of anion. In particular, the polar residues are more favourable compared to the other residues for recognising the anion.
Collapse
Affiliation(s)
- Piya Patra
- Maulana Abul Kalam Azad University of Technology, West Bengal, (Formerly known as WBUT), BF-142, Sector-I, Saltlake, Kolkata, 700 064, India
| | - Mahua Ghosh
- Department of Chemical, Biological and Macro-Molecular Sciences, S.N. Bose National Centre for Basic Sciences, Sector III, Block JD, Salt Lake, Kolkata, 700106, India
| | - Raja Banerjee
- Maulana Abul Kalam Azad University of Technology, West Bengal, (Formerly known as WBUT), BF-142, Sector-I, Saltlake, Kolkata, 700 064, India
| | - Jaydeb Chakrabarti
- Department of Chemical, Biological and Macro-Molecular Sciences, S.N. Bose National Centre for Basic Sciences, Sector III, Block JD, Salt Lake, Kolkata, 700106, India.,The Thematic Unit of Excellence on Computational Materials Science, S. N. Bose National Centre for Basic Sciences, Sector-III, Block JD, Salt Lake, Kolkata, 700106, India
| |
Collapse
|
13
|
Banerjee R, Sheet T. Ratio of ellipticities between 192 and 208 nm (R 1 ): An effective electronic circular dichroism parameter for characterization of the helical components of proteins and peptides. Proteins 2017; 85:1975-1982. [PMID: 28707342 DOI: 10.1002/prot.25351] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 07/09/2017] [Accepted: 07/10/2017] [Indexed: 01/28/2023]
Abstract
Circular dichroism (CD) spectroscopy represents an important tool for characterization of the peptide and protein secondary structures that mainly arise from the conformational disposition of the peptide backbone in solution. In 1991 Manning and Woody proposed that, in addition to the signal intensity, the ratio between [θ]nπ* and [θ]ππ*ǁ ((R2 ) ≅ [θ]222 /[θ]208 ), along with [θ]ππ*⊥ and [θ]ππ*ǁ ((R1 ) ≅ [θ]192 /[θ]208 ), may be utilized towards identifying the peptide/protein conformation (especially 310 - and α-helices). However, till date the use of the ratiometric ellipticity component for helical structure analysis of peptides and proteins has not been reported. We studied a series of temperature dependent CD spectra of a thermally stable, model helical peptide and its related analogs in water as a function of added 2,2,2-trifluoroethanol (TFE) in order to explore their landscape of helicity. For the first time, we have experimentally shown here that the R1 parameter can characterize better the individual helices, while the other parameter R2 and the signal intensity do not always converge. We emphasize the use of the R1 ratio of ellipticities for helical characterization because of the common origin of these two bands (exciton splitting of the amide π→ π* transition in a helical polypeptide). This approach may become worthwhile and timely with the increasing accessibility of CD synchrotron sources.
Collapse
Affiliation(s)
- Raja Banerjee
- Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly Known as West Bengal University of Technology), Salt Lake, Kolkata, 700064, West Bengal, India
| | - Tridip Sheet
- Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly Known as West Bengal University of Technology), Salt Lake, Kolkata, 700064, West Bengal, India
| |
Collapse
|
14
|
Sheet T, Ghosh S, Pal D, Banerjee R. Computational design of model scaffold for anion recognition based on the 'C α NN' motif. Biopolymers 2017; 108. [PMID: 27428807 DOI: 10.1002/bip.22921] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 07/05/2016] [Accepted: 07/14/2016] [Indexed: 11/06/2022]
Abstract
The 'novel phosphate binding 'Cα NN' motif', consisting of three consecutive amino acid residues, usually occurs in the protein loop regions preceding a helix. Recent computational and complementary biophysical experiments on a series of chimeric peptides containing the naturally occurring 'Cα NN' motif at the N-terminus of a designed helix establishes that the motif segment recognizes the anion (sulfate and phosphate ions) through local interaction along with extension of the helical conformation which is thermodynamically favored even in a context-free, nonproteinaceous isolated system. However, the strength of the interaction depends on the amino acid sequence/conformation of the motif. Such a locally-mediated recognition of anions validates its intrinsic affinity towards anions and confirms that the affinity for recognition of anions is embedded within the 'local sequence' of the motif. Based on the knowledge gathered on the sequence/structural aspects of the naturally occurring 'Cα NN' segment, which provides the guideline for rationally engineering model scaffolds, we have modeled a series of templates and investigated their interactions with anions using computational approach. Two of these designed scaffolds show more efficient anion recognition than those of the naturally occurring 'Cα NN' motif which have been studied. This may provide an avenue in designing better anion receptors suitable for various biochemical applications.
Collapse
Affiliation(s)
- Tridip Sheet
- Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly Known as West Bengal University of Technology), BF-142, Sector-1, Salt Lake, Kolkata, 700064, India
| | - Suvankar Ghosh
- Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly Known as West Bengal University of Technology), BF-142, Sector-1, Salt Lake, Kolkata, 700064, India
| | - Debnath Pal
- Indian Institute of Science, Bangalore, 560012, India
| | - Raja Banerjee
- Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly Known as West Bengal University of Technology), BF-142, Sector-1, Salt Lake, Kolkata, 700064, India
| |
Collapse
|
15
|
Kyne C, Jordon K, Filoti DI, Laue TM, Crowley PB. Protein charge determination and implications for interactions in cell extracts. Protein Sci 2017; 26:258-267. [PMID: 27813264 PMCID: PMC5275725 DOI: 10.1002/pro.3077] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/24/2016] [Accepted: 10/27/2016] [Indexed: 01/30/2023]
Abstract
Decades of dilute-solution studies have revealed the influence of charged residues on protein stability, solubility and stickiness. Similar characterizations are now required in physiological solutions to understand the effect of charge on protein behavior under native conditions. Toward this end, we used free boundary and native gel electrophoresis to explore the charge of cytochrome c in buffer and in Escherichia coli extracts. We find that the charge of cytochrome c was ∼2-fold lower than predicted from primary structure analysis. Cytochrome c charge was tuned by sulfate binding and was rendered anionic in E. coli extracts due to interactions with macroanions. Mutants in which three or four cationic residues were replaced with glutamate were charge-neutral and "inert" in extracts. A comparison of the interaction propensities of cytochrome c and the mutants emphasizes the role of negative charge in stabilizing physiological environments. Charge-charge repulsion and preferential hydration appear to prevent aggregation. The implications for molecular organization in vivo are discussed.
Collapse
Affiliation(s)
- Ciara Kyne
- School of ChemistryNational University of IrelandGalway, University RoadGalwayIreland
| | - Kiara Jordon
- Spin Analytical468 Portland StreetBerwickMaine03901
| | - Dana I. Filoti
- Centre to Advance Macromolecular Interaction Sciences University of New HampshireDurhamNew Hampshire03824
| | - Thomas M. Laue
- Spin Analytical468 Portland StreetBerwickMaine03901
- Centre to Advance Macromolecular Interaction Sciences University of New HampshireDurhamNew Hampshire03824
| | - Peter B. Crowley
- School of ChemistryNational University of IrelandGalway, University RoadGalwayIreland
| |
Collapse
|
16
|
Langton MJ, Serpell CJ, Beer PD. Anion Recognition in Water: Recent Advances from a Supramolecular and Macromolecular Perspective. Angew Chem Int Ed Engl 2016; 55:1974-87. [PMID: 26612067 PMCID: PMC4755225 DOI: 10.1002/anie.201506589] [Citation(s) in RCA: 315] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Indexed: 12/22/2022]
Abstract
The recognition of anions in water remains a key challenge in modern supramolecular chemistry, and is essential if proposed applications in biological, medical, and environmental arenas that typically require aqueous conditions are to be achieved. However, synthetic anion receptors that operate in water have, in general, been the exception rather than the norm to date. Nevertheless, a significant step change towards routinely conducting anion recognition in water has been achieved in the past few years, and this Review highlights these approaches, with particular focus on controlling and using the hydrophobic effect, as well as more exotic interactions such as C-H hydrogen bonding and halogen bonding. We also look beyond the field of small-molecule recognition into the macromolecular domain, covering recent advances in anion recognition based on biomolecules, polymers, and nanoparticles.
Collapse
Affiliation(s)
- Matthew J Langton
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Christopher J Serpell
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK.
- School of Physical Sciences, Ingram Building, University of Kent, Canterbury, Kent, CT2 7NH, UK.
| | - Paul D Beer
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|
17
|
Abstract
The ‘CαNN’ motif has an intrinsic affinity for the anions and can recognize anion through local interactions along with augmentation of the helical conformation at the motif segment.
Collapse
Affiliation(s)
- Tridip Sheet
- Maulana Abul Kalam Azad University of Technology (Formerly Known as West Bengal University of Technology)
- Kolkata – 700064
- India
| | - Raja Banerjee
- Maulana Abul Kalam Azad University of Technology (Formerly Known as West Bengal University of Technology)
- Kolkata – 700064
- India
| |
Collapse
|
18
|
Langton MJ, Serpell CJ, Beer PD. Anionenerkennung in Wasser: aktuelle Fortschritte aus supramolekularer und makromolarer Sicht. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201506589] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Matthew J. Langton
- Chemistry Research Laboratory; Department of Chemistry; University of Oxford; Mansfield Road Oxford OX1 3TA Vereinigtes Königreich
| | - Christopher J. Serpell
- Chemistry Research Laboratory; Department of Chemistry; University of Oxford; Mansfield Road Oxford OX1 3TA Vereinigtes Königreich
- School of Physical Sciences, Ingram Building; University of Kent; Canterbury Kent CT2 7NH Vereinigtes Königreich
| | - Paul D. Beer
- Chemistry Research Laboratory; Department of Chemistry; University of Oxford; Mansfield Road Oxford OX1 3TA Vereinigtes Königreich
| |
Collapse
|
19
|
Giuliano MW, Lin CY, Romney DK, Miller SJ, Anslyn EV. A Synergistic Combinatorial and Chiroptical Study of Peptide Catalysts for Asymmetric Baeyer-Villiger Oxidation. Adv Synth Catal 2015; 357:2301-2309. [PMID: 26543444 DOI: 10.1002/adsc.201500230] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We report an approach to the asymmetric Baeyer-Villiger oxidation utilizing bioinformatics-inspired combinatorial screening for catalyst discovery. Scaled-up validation of our on-bead efforts with a circular dichroism-based assay of alcohols derived from the products of solution-phase reactions established the absolute configuration of lactone products; this assay proved equivalent to HPLC in its ability to evaluate catalyst performance, but was far superior in its speed of analysis. Further solution-phase screening of a focused library suggested a mode of asymmetric induction that draws distinct parallels with the mechanism of Baeyer-Villiger monooxygenases.
Collapse
Affiliation(s)
- Michael W Giuliano
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States,
| | - Chung-Yon Lin
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States,
| | - David K Romney
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States,
| | - Scott J Miller
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States,
| | - Eric V Anslyn
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States,
| |
Collapse
|
20
|
Sheet T, Supakar S, Banerjee R. Conformational preference of 'CαNN' short peptide motif towards recognition of anions. PLoS One 2013; 8:e57366. [PMID: 23516403 PMCID: PMC3596363 DOI: 10.1371/journal.pone.0057366] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 01/21/2013] [Indexed: 11/18/2022] Open
Abstract
Among several ‘anion binding motifs’, the recently described ‘CαNN’ motif occurring in the loop regions preceding a helix, is conserved through evolution both in sequence and its conformation. To establish the significance of the conserved sequence and their intrinsic affinity for anions, a series of peptides containing the naturally occurring ‘CαNN’ motif at the N-terminus of a designed helix, have been modeled and studied in a context free system using computational techniques. Appearance of a single interacting site with negative binding free-energy for both the sulfate and phosphate ions, as evidenced in docking experiments, establishes that the ‘CαNN’ segment has an intrinsic affinity for anions. Molecular Dynamics (MD) simulation studies reveal that interaction with anion triggers a conformational switch from non-helical to helical state at the ‘CαNN’ segment, which extends the length of the anchoring-helix by one turn at the N-terminus. Computational experiments substantiate the significance of sequence/structural context and justify the conserved nature of the ‘CαNN’ sequence for anion recognition through “local” interaction.
Collapse
Affiliation(s)
- Tridip Sheet
- Department of Bioinformatics, West Bengal University of Technology, Salt Lake, Kolkata, India
| | - Subhrangshu Supakar
- Department of Bioinformatics, West Bengal University of Technology, Salt Lake, Kolkata, India
| | - Raja Banerjee
- Department of Bioinformatics, West Bengal University of Technology, Salt Lake, Kolkata, India
- * E-mail:
| |
Collapse
|
21
|
Masola B, Ngubane NP. The activity of phosphate-dependent glutaminase from the rat small intestine is modulated by ADP and is dependent on integrity of mitochondria. Arch Biochem Biophys 2010; 504:197-203. [PMID: 20831857 DOI: 10.1016/j.abb.2010.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 08/29/2010] [Accepted: 09/01/2010] [Indexed: 11/20/2022]
Abstract
The effect of adenine nucleotides and phosphate on rat small intestine phosphate-dependent glutaminase (PDG) activity was investigated in intact mitochondria. Disruption of the integrity of mitochondria by sonication or freeze-thawing resulted in loss of enzyme activity. ADP was the strongest adenine nucleotide activator of the enzyme giving a V(max) that was over 5-fold of that for AMP or ATP. The sigmoid activation curve of PDG by ADP became hyperbolic in presence ATP. ADP also lowered the K(m) for glutamine and increased V(max) and these effects were further enhanced by the presence of ATP. Activation of PDG by phosphate and ADP was not completely additive suggesting some antagonism between the activators. There was no clear relationship between changing ATP/ADP ratios and PDG activity in presence of a constant concentration of phosphate. However, ratios of approximately 1:4 and 4:1 gave the highest and lowest activities, respectively. The pH dependence of PDG activity was affected by phosphate concentration and results suggest that the divalent ion is the activating species.
Collapse
Affiliation(s)
- B Masola
- Department of Biochemistry, University of KwaZulu-Natal, Durban, South Africa.
| | | |
Collapse
|
22
|
Sheet T, Banerjee R. Sulfate ion interaction with 'anion recognition' short peptide motif at the N-terminus of an isolated helix: A conformational landscape. J Struct Biol 2010; 171:345-52. [PMID: 20570734 DOI: 10.1016/j.jsb.2010.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 05/26/2010] [Accepted: 06/01/2010] [Indexed: 10/19/2022]
Abstract
Anion-binding motifs in proteins are typically conserved in sequence and conformation. Crystal structural studies have shown that such motifs often occur in loop regions preceding a helix and interaction with the anions can induce their well defined conformational changes. In order to understand the properties of such motifs in isolation, we have synthesized an 18-residue chimeric polypeptide whose C-terminal part is a designed helix and its N-terminal consists of a C(alpha)NN anion binding structural motif containing residues Leu-Gly-Lys-Gln (residues 107-110 of protein DNA-glycosylase). We present evidence for the interaction of a sulfate (SO(4)(2-)) ion with the L-G-K-Q segment using complementary spectroscopic techniques. Moreover, upon interaction with SO(4)(2-) ion the N-terminal L-G-K-Q segment undergoes a non-helical to helical transition similar to what is observed in protein crystal structure. This work clearly demonstrates the "local" nature of anion binding and the accompanying conformational change that helps in understanding the influence of sequence/structural context of anion binding in proteins.
Collapse
Affiliation(s)
- Tridip Sheet
- Department of Bioinformatics, West Bengal University of Technology, BF-142, Sector-1, Salt Lake, Kolkata 700064, India
| | | |
Collapse
|
23
|
Hirsch A, Fischer F, Diederich F. Molekulare Erkennung von Phosphaten in der Strukturbiologie. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200603420] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
24
|
Abstract
Drug-discovery research in the past decade has seen an increased selection of targets with phosphate recognition sites, such as protein kinases and phosphatases, in the past decade. This review attempts, with the help of database-mining tools, to give an overview of the most important principles in molecular recognition of phosphate groups by enzymes. A total of 3003 X-ray crystal structures from the RCSB Protein Data Bank with bound organophosphates has been analyzed individually, in particular for H-bonding interactions between proteins and ligands. The various known binding motifs for phosphate binding are reviewed, and similarities to phosphate complexation by synthetic receptors are highlighted. An analysis of the propensities of amino acids in various classes of phosphate-binding enzymes showed characteristic distributions of amino acids used for phosphate binding. This review demonstrates that structure-based lead development and optimization should carefully address the phosphate-binding-site environment and also proposes new alternatives for filling such sites.
Collapse
Affiliation(s)
- Anna K H Hirsch
- Laboratorium für Organische Chemie, ETH Zürich, Hönggerberg, HCI, 8093 Zürich, Switzerland
| | | | | |
Collapse
|
25
|
Decameric Water Clusters Shaped as Two Parallel Cyclic Pentamers with Staggered Conformation Stabilize Supramolecularly Bonded Infinite Chains of H2PO4– Ions. Eur J Inorg Chem 2006. [DOI: 10.1002/ejic.200501055] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
26
|
Roque ACA, Lowe CR. Lessons from nature: On the molecular recognition elements of the phosphoprotein binding-domains. Biotechnol Bioeng 2005; 91:546-55. [PMID: 15959902 DOI: 10.1002/bit.20561] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The reversible phosphorylation of proteins regulates many biological processes. Despite the technological advances in the enrichment and detection of phosphorylated proteins, the currently available techniques still struggle with the complexity of the human proteome. The aim of this review is to highlight the molecular recognition elements of the interaction between phosphorylated proteins and peptides and pTyr or pSer/Thr-binding domains. The identification of the recognition features of the naturally occurring pTyr- and pSer/Thr-binding domains can contribute to an understanding of the molecular aspects of the affinity and specificity for phosphorylated residues. This might inspire the design of small "biomimetic" molecules with potential applications in assessing the extent of the phosphoproteome using affinity-based strategies.
Collapse
Affiliation(s)
- A Cecília A Roque
- Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QT, United Kingdom.
| | | |
Collapse
|