1
|
Kim HJ, Lee EJ, Park JS, Sim SJ, Lee J. Reversible and multi-cyclic protein-protein interaction in bacterial cellulosome-mimic system using rod-shaped viral nanostructure. J Biotechnol 2016; 221:101-6. [PMID: 26820321 DOI: 10.1016/j.jbiotec.2016.01.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 01/19/2016] [Accepted: 01/22/2016] [Indexed: 12/31/2022]
Abstract
The type II cohesin domain and type II dockerin of bacterial cellulosome were cloned from Clostridium thermocellum and expressed with the fusion of tobacco mosaic virus coat protein (TMVcp) and enhanced green fluorescent protein (EGFP), respectively, in Escherichia coli. The TMVcp-cohesin fusion protein was assembled to the stable and rod-shaped nanostructure (TMVcp-Coh rod) under a particular buffer condition, where many active cohesin proteins are biologically and densely displayed around the 3-dimensional surface of TMVcp-Coh rod. Using EGFP-dockerin as a fluorescent reporter, we confirmed that the Ca(2+)-dependent binding and dissociation between native cohesin and dockerin were reproduced with the two recombinant fusion proteins, TMVcp-cohesin and EGFP-dockerin. The multi-cyclic binding-dissociation operation of TMVcp-Coh rod and EGFP-dockerin was successfully performed with maintaining the reversible cohesin-dockerin interaction in every cycle. EGFP that was fused to dockerin as a proof-of-concept here can be switched to other functional proteins/peptides that need to be used in multi-cyclic operation.
Collapse
Affiliation(s)
- Hyun Jin Kim
- Department of Chemical and Biological Engineering, Korea University, Anam-Dong 5-1, Seongbuk-Gu, Seoul 136-713, Republic of Korea
| | - Eun Jung Lee
- Department of Chemical and Biological Engineering, Korea University, Anam-Dong 5-1, Seongbuk-Gu, Seoul 136-713, Republic of Korea; Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, Seongbuk-gu, Seoul 136-791, Republic of Korea
| | - Jin-Seung Park
- Department of Chemical and Biological Engineering, Korea University, Anam-Dong 5-1, Seongbuk-Gu, Seoul 136-713, Republic of Korea; Research Institute of Biotechnology, CJ CheilJedang, 92 Gayang-Dong, Gangseo-Gu, Seoul 157-801, Republic of Korea
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering, Korea University, Anam-Dong 5-1, Seongbuk-Gu, Seoul 136-713, Republic of Korea
| | - Jeewon Lee
- Department of Chemical and Biological Engineering, Korea University, Anam-Dong 5-1, Seongbuk-Gu, Seoul 136-713, Republic of Korea.
| |
Collapse
|
2
|
Cameron K, Weinstein JY, Zhivin O, Bule P, Fleishman SJ, Alves VD, Gilbert HJ, Ferreira LMA, Fontes CMGA, Bayer EA, Najmudin S. Combined Crystal Structure of a Type I Cohesin: MUTATION AND AFFINITY BINDING STUDIES REVEAL STRUCTURAL DETERMINANTS OF COHESIN-DOCKERIN SPECIFICITIES. J Biol Chem 2015; 290:16215-25. [PMID: 25934389 PMCID: PMC4481221 DOI: 10.1074/jbc.m115.653303] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 04/24/2015] [Indexed: 11/06/2022] Open
Abstract
Cohesin-dockerin interactions orchestrate the assembly of one of nature's most elaborate multienzyme complexes, the cellulosome. Cellulosomes are produced exclusively by anaerobic microbes and mediate highly efficient hydrolysis of plant structural polysaccharides, such as cellulose and hemicellulose. In the canonical model of cellulosome assembly, type I dockerin modules of the enzymes bind to reiterated type I cohesin modules of a primary scaffoldin. Each type I dockerin contains two highly conserved cohesin-binding sites, which confer quaternary flexibility to the multienzyme complex. The scaffoldin also bears a type II dockerin that anchors the entire complex to the cell surface by binding type II cohesins of anchoring scaffoldins. In Bacteroides cellulosolvens, however, the organization of the cohesin-dockerin types is reversed, whereby type II cohesin-dockerin pairs integrate the enzymes into the primary scaffoldin, and type I modules mediate cellulosome attachment to an anchoring scaffoldin. Here, we report the crystal structure of a type I cohesin from B. cellulosolvens anchoring scaffoldin ScaB to 1.84-Å resolution. The structure resembles other type I cohesins, and the putative dockerin-binding site, centered at β-strands 3, 5, and 6, is likely to be conserved in other B. cellulosolvens type I cohesins. Combined computational modeling, mutagenesis, and affinity-based binding studies revealed similar hydrogen-bonding networks between putative Ser/Asp recognition residues in the dockerin at positions 11/12 and 45/46, suggesting that a dual-binding mode is not exclusive to the integration of enzymes into primary cellulosomes but can also characterize polycellulosome assembly and cell-surface attachment. This general approach may provide valuable structural information of the cohesin-dockerin interface, in lieu of a definitive crystal structure.
Collapse
Affiliation(s)
- Kate Cameron
- From the CIISA, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Jonathan Y Weinstein
- the Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, 76100 Israel, and
| | - Olga Zhivin
- the Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, 76100 Israel, and
| | - Pedro Bule
- From the CIISA, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Sarel J Fleishman
- the Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, 76100 Israel, and
| | - Victor D Alves
- From the CIISA, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Harry J Gilbert
- the Institute of Cell and Molecular Biosciences, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Luís M A Ferreira
- From the CIISA, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Carlos M G A Fontes
- From the CIISA, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Edward A Bayer
- the Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, 76100 Israel, and
| | - Shabir Najmudin
- From the CIISA, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| |
Collapse
|
3
|
Blumer-Schuette SE, Brown SD, Sander KB, Bayer EA, Kataeva I, Zurawski JV, Conway JM, Adams MWW, Kelly RM. Thermophilic lignocellulose deconstruction. FEMS Microbiol Rev 2014; 38:393-448. [DOI: 10.1111/1574-6976.12044] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 08/20/2013] [Accepted: 08/28/2013] [Indexed: 11/28/2022] Open
|
4
|
Voronov-Goldman M, Levy-Assaraf M, Yaniv O, Wisserman G, Jindou S, Borovok I, Bayer EA, Lamed R, Shimon LJW, Frolow F. Structural characterization of a novel autonomous cohesin from Ruminococcus flavefaciens. Acta Crystallogr F Struct Biol Commun 2014; 70:450-6. [PMID: 24699736 PMCID: PMC3976060 DOI: 10.1107/s2053230x14004051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 02/20/2014] [Indexed: 11/11/2022] Open
Abstract
Ruminococcus flavefaciens is a cellulolytic bacterium found in the rumen of herbivores and produces one of the most elaborate and variable cellulosome systems. The structure of an R. flavefaciens protein (RfCohG, ZP_06142108), representing a freestanding (non-cellulosomal) type III cohesin module, has been determined. A selenomethionine derivative with a C-terminal histidine tag was crystallized and diffraction data were measured to 2.44 Å resolution. Its structure was determined by single-wavelength anomalous dispersion, revealing eight molecules in the asymmetric unit. RfCohG exhibits the most complex among all known cohesin structures, possessing four α-helical elements and a topographical protuberance on the putative dockerin-binding surface.
Collapse
Affiliation(s)
- Milana Voronov-Goldman
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv 69978, Israel
- The Daniella Rich Institute for Structural Biology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Maly Levy-Assaraf
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv 69978, Israel
- The Daniella Rich Institute for Structural Biology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Oren Yaniv
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv 69978, Israel
- The Daniella Rich Institute for Structural Biology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Gloria Wisserman
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Sadanari Jindou
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv 69978, Israel
- Faculty of Agriculture, Meijo University, Nagoya 468-8502, Japan
| | - Ilya Borovok
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Edward A. Bayer
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Raphael Lamed
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv 69978, Israel
- The Daniella Rich Institute for Structural Biology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Linda J. W. Shimon
- Department of Chemical Research Support, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Felix Frolow
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv 69978, Israel
- The Daniella Rich Institute for Structural Biology, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
5
|
Smith SP, Bayer EA. Insights into cellulosome assembly and dynamics: from dissection to reconstruction of the supramolecular enzyme complex. Curr Opin Struct Biol 2013; 23:686-94. [PMID: 24080387 DOI: 10.1016/j.sbi.2013.09.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 09/11/2013] [Indexed: 11/23/2022]
Abstract
Cellulosomes are multi-enzyme complexes produced by anaerobic bacteria for the efficient deconstruction of plant cell wall polysaccharides. The assembly of enzymatic subunits onto a central non-catalytic scaffoldin subunit is mediated by a highly specific interaction between the enzyme-bearing dockerin modules and the resident cohesin modules of the scaffoldin, which affords their catalytic activities to work synergistically. The scaffoldin also imparts substrate-binding and bacterial-anchoring properties, the latter of which involves a second cohesin-dockerin interaction. Recent structure-function studies reveal an ever-growing array of unique and increasingly complex cohesin-dockerin complexes and cellulosomal enzymes with novel activities. A 'build' approach involving multimodular cellulosomal segments has provided a structural model of an organized yet conformationally dynamic supramolecular assembly with the potential to form higher order structures.
Collapse
Affiliation(s)
- Steven P Smith
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| | | |
Collapse
|
6
|
Brás JLA, Alves VD, Carvalho AL, Najmudin S, Prates JAM, Ferreira LMA, Bolam DN, Romão MJ, Gilbert HJ, Fontes CMGA. Novel Clostridium thermocellum type I cohesin-dockerin complexes reveal a single binding mode. J Biol Chem 2012; 287:44394-405. [PMID: 23118225 PMCID: PMC3531753 DOI: 10.1074/jbc.m112.407700] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 10/25/2012] [Indexed: 11/06/2022] Open
Abstract
Protein-protein interactions play a pivotal role in a large number of biological processes exemplified by the assembly of the cellulosome. Integration of cellulosomal components occurs through the binding of type I cohesin modules located in a non-catalytic molecular scaffold to type I dockerin modules located at the C terminus of cellulosomal enzymes. The majority of type I dockerins display internal symmetry reflected by the presence of two essentially identical cohesin-binding surfaces. Here we report the crystal structures of two novel Clostridium thermocellum type I cohesin-dockerin complexes (CohOlpC-Doc124A and CohOlpA-Doc918). The data revealed that the two dockerins, Doc918 and Doc124A, are unusual because they lack the structural symmetry required to support a dual binding mode. Thus, in both cases, cohesin recognition is dominated by residues located at positions 11, 12, and 19 of one of the dockerin binding surfaces. The alternative binding mode is not possible (Doc918) or highly limited (Doc124A) because residues that assume the critical interacting positions, when dockerins are reoriented by 180°, make steric clashes with the cohesin. In common with a third dockerin (Doc258) that also presents a single binding mode, Doc124A directs the appended cellulase, Cel124A, to the surface of C. thermocellum and not to cellulosomes because it binds preferentially to type I cohesins located at the cell envelope. Although there are a few exceptions, such as Doc918 described here, these data suggest that there is considerable selective pressure for the evolution of a dual binding mode in type I dockerins that direct enzymes into cellulosomes.
Collapse
Affiliation(s)
- Joana L. A. Brás
- From the Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade Técnica de Lisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Victor D. Alves
- From the Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade Técnica de Lisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Ana Luísa Carvalho
- the REQUIMTE/CQFB, Departamento de Química, FCT-UNL, 2829–516 Caparica, Portugal, and
| | - Shabir Najmudin
- From the Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade Técnica de Lisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - José A. M. Prates
- From the Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade Técnica de Lisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Luís M. A. Ferreira
- From the Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade Técnica de Lisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - David N. Bolam
- the Institute for Cell and Molecular Biosciences, Newcastle University, The Medical School, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Maria João Romão
- the REQUIMTE/CQFB, Departamento de Química, FCT-UNL, 2829–516 Caparica, Portugal, and
| | - Harry J. Gilbert
- the Institute for Cell and Molecular Biosciences, Newcastle University, The Medical School, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Carlos M. G. A. Fontes
- From the Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade Técnica de Lisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| |
Collapse
|
7
|
Currie MA, Adams JJ, Faucher F, Bayer EA, Jia Z, Smith SP. Scaffoldin conformation and dynamics revealed by a ternary complex from the Clostridium thermocellum cellulosome. J Biol Chem 2012; 287:26953-61. [PMID: 22707718 DOI: 10.1074/jbc.m112.343897] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cellulosomes are multienzyme complexes responsible for efficient degradation of plant cell wall polysaccharides. The nonenzymatic scaffoldin subunit provides a platform for cellulolytic enzyme binding that enhances the overall activity of the bound enzymes. Understanding the unique quaternary structural elements responsible for the enzymatic synergy of the cellulosome is hindered by the large size and inherent flexibility of these multiprotein complexes. Herein, we have used x-ray crystallography and small angle x-ray scattering to structurally characterize a ternary protein complex from the Clostridium thermocellum cellulosome that comprises a C-terminal trimodular fragment of the CipA scaffoldin bound to the SdbA type II cohesin module and the type I dockerin module from the Cel9D glycoside hydrolase. This complex represents the largest fragment of the cellulosome solved by x-ray crystallography to date and reveals two rigid domains formed by the type I cohesin·dockerin complex and by the X module-type II cohesin·dockerin complex, which are separated by a 13-residue linker in an extended conformation. The type I dockerin modules of the four structural models found in the asymmetric unit are in an alternate orientation to that previously observed that provides further direct support for the dual mode of binding. Conserved intermolecular contacts between symmetry-related complexes were also observed and may play a role in higher order cellulosome structure. SAXS analysis of the ternary complex revealed that the 13-residue intermodular linker of the scaffoldin subunit is highly dynamic in solution. These studies provide fundamental insights into modular positioning, linker flexibility, and higher order organization of the cellulosome.
Collapse
Affiliation(s)
- Mark A Currie
- Department of Biomedical and Molecular Sciences, University, Kingston, Ontario K7L 3N6, Canada
| | | | | | | | | | | |
Collapse
|
8
|
Pinheiro BA, Brás JLA, Najmudin S, Carvalho AL, Ferreira LMA, Prates JAM, Fontes CMGA. Flexibility and specificity of the cohesin–dockerin interaction: implications for cellulosome assembly and functionality. BIOCATAL BIOTRANSFOR 2012. [DOI: 10.3109/10242422.2012.681854] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
9
|
Xu J, Smith JC. Probing the mechanism of cellulosome attachment to the Clostridium thermocellum cell surface: computer simulation of the Type II cohesin-dockerin complex and its variants. Protein Eng Des Sel 2010; 23:759-68. [PMID: 20682763 DOI: 10.1093/protein/gzq049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The recalcitrance of lignocellulosic biomass to hydrolysis is the bottleneck in cellulosic ethanol production. Efficient degradation of biomass by the anaerobic bacterium Clostridium thermocellum is carried out by the multicomponent cellulosome complex. The bacterial cell-surface attachment of the cellulosome is mediated by high-affinity protein-protein interactions between the Type II cohesin domain borne by the cell envelope protein and the Type II dockerin domain, together with neighboring X-module present at the C-terminus of the scaffolding protein (Type II coh-Xdoc). Here, the Type II coh-Xdoc interaction is probed using molecular dynamics simulations, free-energy calculations and essential dynamics analyses on both the wild type and various mutants of the C. thermocellum Type II coh-Xdoc in aqueous solution. The simulations identify the hot spots, i.e. the amino acid residues that may lead to a dramatic decrease in binding affinity upon mutation and also probe the effects of mutations on the mode of binding. The results suggest that bulky and hydrophobic residues at the protein interface, which make specific contacts with their counterparts, may play essential roles in retaining a rigid cohesin-dockerin interface. Moreover, dynamical cross-correlation analysis indicates that the X-module has a dramatic effect on the cohesin-dockerin interaction and is required for the dynamical integrity of the interface.
Collapse
Affiliation(s)
- Jiancong Xu
- Center for Molecular Biophysics, Oak Ridge National Laboratory, P.O. Box 2008 Oak Ridge TN 37831-6164, USA.
| | | |
Collapse
|
10
|
Noach I, Levy-Assaraf M, Lamed R, Shimon LJW, Frolow F, Bayer EA. Modular arrangement of a cellulosomal scaffoldin subunit revealed from the crystal structure of a cohesin dyad. J Mol Biol 2010; 399:294-305. [PMID: 20394754 DOI: 10.1016/j.jmb.2010.04.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 04/01/2010] [Accepted: 04/07/2010] [Indexed: 10/19/2022]
Abstract
The cellulosome complex is composed of a conglomerate of subunits, each of which comprises a set of interacting functional modules. Scaffoldin (Sca), a major cellulosomal subunit, is responsible for organizing the cellulolytic subunits into the complex. This is accomplished by the interaction of two complementary classes of modules-a cohesin (Coh) module on the Sca subunit and a dockerin module on each of the enzymatic subunits. Although individual Coh modules from different cellulosomal scaffoldins have been subjected to intensive structural investigation, the Sca subunit in its entirety has not, and there remains a paucity of information on the arrangement and interactions of Cohs within the Sca subunit. In the present work, we describe the crystal structure of a type II Coh dyad from the ScaB "adaptor" Sca of Acetivibrio cellulolyticus. The ScaB Cohs are oriented in an "antiparallel" manner relative to one another, with their dockerin-interacting surfaces (beta-strands 8-3-6-5) facing the same direction-aligned on the same plane. A set of extensive hydrophobic and hydrogen-bond contacts between the Cohs and the short interconnecting linker segment between them stabilizes the modular orientation. This Coh dyad structure provides novel information about Coh-Coh association and arrangement in the Sca and further insight into intermodular linker interactions. Putative structural arrangements of a hexamodular complex, composed of the Coh dyad bound to two X-dockerin modules, were suggested.
Collapse
Affiliation(s)
- Ilit Noach
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
11
|
Adams JJ, Currie MA, Ali S, Bayer EA, Jia Z, Smith SP. Insights into higher-order organization of the cellulosome revealed by a dissect-and-build approach: crystal structure of interacting Clostridium thermocellum multimodular components. J Mol Biol 2010; 396:833-9. [PMID: 20070943 DOI: 10.1016/j.jmb.2010.01.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 01/05/2010] [Accepted: 01/06/2010] [Indexed: 10/20/2022]
Abstract
Cellulosomes are large, multienzyme, plant cell wall-degrading protein complexes found affixed to the surface of a variety of anaerobic microbes. The core of the cellulosome is a noncatalytic scaffoldin protein, which contains several type-I cohesin modules that bind type-I dockerin-containing enzymatic subunits, a cellulose-binding module, an X module, and a type-II dockerin that interacts with type-II cohesin-containing cell surface proteins. The unique arrangement of the enzymatic subunits in the cellulosome complex, made possible by the scaffoldin subunit, promotes enhanced substrate degradation relative to the enzymes free in solution. Despite representative high-resolution structures of all of the individual modules of the cellulosome, this mechanism of enzymatic synergy remains poorly understood. Consequently, a model of the entire cellulosome and a detailed picture of intermodular contacts will provide more detailed insight into cellulosome activity. Toward this goal, we have solved the structure of a multimodular heterodimeric complex from Clostridium thermocellum composed of the type-II cohesin module of the cell surface protein SdbA bound to a trimodular C-terminal fragment of the scaffoldin subunit CipA to a resolution of 1.95 A. The linker that connects the ninth type-I cohesin module and the X module has elevated temperature factors, reflecting an inherent flexibility within this region. Interestingly, a novel dimer interface was observed between CipA and a second, symmetry-related CipA molecule within the crystal structure, mediated by contacts between a type-I cohesin and an X module of a symmetry mate, resulting in two intertwined scaffoldins. Sedimentation velocity experiments confirmed that dimerization also occurs in solution. These observations support the intriguing possibility that individual cellulosomes can associate with one another via inter-scaffoldin interactions, which may play a role in the mechanism of action of the complex.
Collapse
Affiliation(s)
- Jarrett J Adams
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | | | |
Collapse
|
12
|
Pinheiro BA, Gilbert HJ, Sakka K, Sakka K, Fernandes VO, Prates JAM, Alves VD, Bolam DN, Ferreira LMA, Fontes CMGA. Functional insights into the role of novel type I cohesin and dockerin domains from Clostridium thermocellum. Biochem J 2009; 424:375-84. [PMID: 19758121 DOI: 10.1042/bj20091152] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Cellulosomes, synthesized by anaerobic microorganisms such as Clostridium thermocellum, are remarkably complex nanomachines that efficiently degrade plant cell wall polysaccharides. Cellulosome assembly results from the interaction of type I dockerin domains, present on the catalytic subunits, and the cohesin domains of a large non-catalytic integrating protein that acts as a molecular scaffold. In general, type I dockerins contain two distinct cohesin-binding interfaces that appear to display identical ligand specificities. Inspection of the C. thermocellum genome reveals 72 dockerin-containing proteins. In four of these proteins, Cthe_0258, Cthe_0435, Cthe_0624 and Cthe_0918, there are significant differences in the residues that comprise the two cohesin-binding sites of the type I dockerin domains. In addition, a protein of unknown function (Cthe_0452), containing a C-terminal cohesin highly similar to the equivalent domains present in C. thermocellum-integrating protein (CipA), was also identified. In the present study, the ligand specificities of the newly identified cohesin and dockerin domains are described. The results revealed that Cthe_0452 is located at the C. thermocellum cell surface and thus the protein was renamed as OlpC. The dockerins of Cthe_0258 and Cthe_0435 recognize, preferentially, the OlpC cohesin and thus these enzymes are believed to be predominantly located at the surface of the bacterium. By contrast, the dockerin domains of Cthe_0624 and Cthe_0918 are primarily cellulosomal since they bind preferentially to the cohesins of CipA. OlpC, which is a relatively abundant protein, may also adopt a 'warehouse' function by transiently retaining cellulosomal enzymes at the cell surface before they are assembled on to the multienzyme complex.
Collapse
Affiliation(s)
- Benedita A Pinheiro
- CIISA-Faculdade de Medicina Veterinária, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Alber O, Noach I, Rincon MT, Flint HJ, Shimon LJW, Lamed R, Frolow F, Bayer EA. Cohesin diversity revealed by the crystal structure of the anchoring cohesin from Ruminococcus flavefaciens. Proteins 2009; 77:699-709. [PMID: 19544570 DOI: 10.1002/prot.22483] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The cellulosome is an intriguing multienzyme complex found in cellulolytic bacteria that plays a key role in the degradation of plant cell-wall polysaccharides. In Ruminococcus flavefaciens, a predominant fiber-degrading bacterium found in ruminants, the cellulosome is anchored to the bacterial cell wall through a relatively short ScaE scaffoldin. Determination of the crystal structure of the lone type-III ScaE cohesin from R. flavefaciens (Rf-CohE) was initiated as a part of a structural effort to define cellulosome assembly. The structure was determined at 1.95 A resolution by single-wavelength anomalous diffraction. This is the first detailed description of a crystal structure for a type-III cohesin, and its features were compared with those of the known type-I and type-II cohesin structures. The Rf-CohE module folds into a nine-stranded beta-sandwich with jellyroll topology, typically observed for cohesins, and includes two beta-flaps in the midst of beta-strands 4 and 8, similar to the type-II cohesin structures. However, the presence in Rf-CohE of an additional 13-residue alpha-helix located between beta-strands 8 and 9 represents a dramatic divergence from other known cohesin structures. The prominent alpha-helix is enveloped by an extensive N-terminal loop, not observed in any other known cohesin, which embraces the helix presumably enhancing its stability. A planar surface at the upper portion of the front face of the molecule, bordered by beta-flap 8, exhibits plausible dimensions and exposed amino acid residues to accommodate the dockerin-binding site.
Collapse
Affiliation(s)
- Orly Alber
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Noach I, Frolow F, Alber O, Lamed R, Shimon LJW, Bayer EA. Intermodular linker flexibility revealed from crystal structures of adjacent cellulosomal cohesins of Acetivibrio cellulolyticus. J Mol Biol 2009; 391:86-97. [PMID: 19501595 DOI: 10.1016/j.jmb.2009.06.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 05/25/2009] [Accepted: 06/02/2009] [Indexed: 10/20/2022]
Abstract
Cellulosome complexes comprise an intercalated set of multimodular dockerin-containing enzymatic subunits connected to cohesin-containing nonenzymatic subunits called scaffoldins. The adjoining modules in each cellulosomal subunit are interconnected by a variety of linker segments of different lengths and composition. The exact role of the cellulosomal linkers has yet to be described, although it is assumed that they contribute to the architecture and action of the cellulosome by providing the protein subunits with flexibility and by providing spacers between the enzymatic modules that could enhance interactions with the cellulose substrate. Here we present four crystal structures of Acetivibrio cellulolyticus cellulosomal type II cohesins with linker extensions. Two of the structures represent two different crystal forms (trigonal and orthorhombic) of the same N-terminal cohesin module (CohB1) together with its full (6-residue) native C-terminal linker, derived from scaffoldin B. The other two structures belong to the adjacent (second) cohesin module (CohB2), each of which was crystallized with the same 6-residue linker segment, but now positioned at the N-terminus and with either a truncated (5-residue) or a full-length (45-residue) C-terminal linker, respectively. Comparison between the two CohB1 structures revealed significant differences in the conformation of their equivalent C-terminal linker segment. In one crystal form a helical conformation was observed, as opposed to an extended conformation in the other. The CohB2 structures also displayed diverse conformations in their linker segments. In these structures, different linker conformations were observed in the individual molecules within the asymmetric unit of each structure. This conformational diversity implies that the linkers may adopt alternative conformations in their natural environment, consistent with varying environmental conditions. The findings suggest that linkers can play an important role in the assembly, dynamics and function of the cellulosomal components.
Collapse
Affiliation(s)
- Ilit Noach
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | |
Collapse
|
15
|
Peer A, Smith SP, Bayer EA, Lamed R, Borovok I. Noncellulosomal cohesin- and dockerin-like modules in the three domains of life. FEMS Microbiol Lett 2008; 291:1-16. [PMID: 19025568 DOI: 10.1111/j.1574-6968.2008.01420.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The high-affinity cohesin-dockerin interaction was originally discovered as modular components, which mediate the assembly of the various subunits of the multienzyme cellulosome complex that characterizes some cellulolytic bacteria. Until recently, the presence of cohesins and dockerins within a bacterial proteome was considered a definitive signature of a cellulosome-producing bacterium. Widespread genome sequencing has since revealed a wealth of putative cohesin- and dockerin-containing proteins in Bacteria, Archaea, and in primitive eukaryotes. The newly identified modules appear to serve diverse functions that are clearly distinct from the classical cellulosome archetype, and the vast majority of parent proteins are not predicted glycoside hydrolases. In most cases, only a few such genes have been identified in a given microorganism, which encode proteins containing but a single cohesin and/or dockerin. In some cases, one or the other module appears to be missing from a given species, and in other cases both modules occur within the same protein. This review provides a bioinformatics-based survey of the current status of cohesin- and dockerin-like sequences in species from the Bacteria, Archaea, and Eukarya. Surprisingly, many identified modules and their parent proteins are clearly unrelated to cellulosomes. The cellulosome paradigm may thus be the exception rather than the rule for bacterial, archaeal, and eukaryotic employment of cohesin and dockerin modules.
Collapse
Affiliation(s)
- Ayelet Peer
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv, Israel
| | | | | | | | | |
Collapse
|
16
|
Structural basis of Clostridium perfringens toxin complex formation. Proc Natl Acad Sci U S A 2008; 105:12194-9. [PMID: 18716000 DOI: 10.1073/pnas.0803154105] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The virulent properties of the common human and livestock pathogen Clostridium perfringens are attributable to a formidable battery of toxins. Among these are a number of large and highly modular carbohydrate-active enzymes, including the mu-toxin and sialidases, whose catalytic properties are consistent with degradation of the mucosal layer of the human gut, glycosaminoglycans, and other cellular glycans found throughout the body. The conservation of noncatalytic ancillary modules among these enzymes suggests they make significant contributions to the overall functionality of the toxins. Here, we describe the structural basis of an ultra-tight interaction (K(a) = 1.44 x 10(11) M(-1)) between the X82 and dockerin modules, which are found throughout numerous C. perfringens carbohydrate-active enzymes. Extensive hydrogen-bonding and van der Waals contacts between the X82 and dockerin modules give rise to the observed high affinity. The mu-toxin dockerin module in this complex is positioned approximately 180 degrees relative to the orientation of the dockerin modules on the cohesin module surface within cellulolytic complexes. These observations represent a unique property of these clostridial toxins whereby they can associate into large, noncovalent multitoxin complexes that allow potentiation of the activities of the individual toxins by combining complementary toxin specificities.
Collapse
|
17
|
Najmudin S, Pinheiro BA, Romão MJ, Prates JAM, Fontes CMGA. Purification, crystallization and crystallographic analysis of Clostridium thermocellum endo-1,4-beta-D-xylanase 10B in complex with xylohexaose. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008; 64:715-8. [PMID: 18678939 PMCID: PMC2494957 DOI: 10.1107/s1744309108019696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Accepted: 06/27/2008] [Indexed: 11/10/2022]
Abstract
The cellulosome of Clostridium thermocellum is a highly organized multi-enzyme complex of cellulases and hemicellulases involved in the hydrolysis of plant cell-wall polysaccharides. The bifunctional multi-modular xylanase Xyn10B is one of the hemicellulase components of the C. thermocellum cellulosome. The enzyme contains an internal glycoside hydrolase family 10 catalytic domain (GH10) and a C-terminal family 1 carbohydrate esterase domain (CE1). The N-terminal moiety of Xyn10B (residues 32-551), comprising a carbohydrate-binding module (CBM22-1) and the GH10 E337A mutant, was crystallized in complex with xylohexaose. The crystals belong to the trigonal space group P3(2)21 and contain a dimer in the asymmetric unit. The crystals diffracted to beyond 2.0 A resolution.
Collapse
Affiliation(s)
- Shabir Najmudin
- REQUIMTE, Departamento de Química, FCT-UNL, 2829-516 Caparica, Portugal
| | - Benedita A. Pinheiro
- CIISA – Faculdade de Medicina Veterinária, Universidade Técnica de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Maria J. Romão
- REQUIMTE, Departamento de Química, FCT-UNL, 2829-516 Caparica, Portugal
| | - José A. M. Prates
- CIISA – Faculdade de Medicina Veterinária, Universidade Técnica de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Carlos M. G. A. Fontes
- CIISA – Faculdade de Medicina Veterinária, Universidade Técnica de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| |
Collapse
|
18
|
Pinheiro BA, Proctor MR, Martinez-Fleites C, Prates JAM, Money VA, Davies GJ, Bayer EA, Fontesm CMGA, Fierobe HP, Gilbert HJ. The Clostridium cellulolyticum dockerin displays a dual binding mode for its cohesin partner. J Biol Chem 2008; 283:18422-30. [PMID: 18445585 DOI: 10.1074/jbc.m801533200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
The plant cell wall degrading apparatus of anaerobic bacteria includes a large multienzyme complex termed the "cellulosome." The complex assembles through the interaction of enzyme-derived dockerin modules with the multiple cohesin modules of the noncatalytic scaffolding protein. Here we report the crystal structure of the Clostridium cellulolyticum cohesin-dockerin complex in two distinct orientations. The data show that the dockerin displays structural symmetry reflected by the presence of two essentially identical cohesin binding surfaces. In one binding mode, visualized through the A16S/L17T dockerin mutant, the C-terminal helix makes extensive interactions with its cohesin partner. In the other binding mode observed through the A47S/F48T dockerin variant, the dockerin is reoriented by 180 degrees and interacts with the cohesin primarily through the N-terminal helix. Apolar interactions dominate cohesin-dockerin recognition that is centered around a hydrophobic pocket on the surface of the cohesin, formed by Leu-87 and Leu-89, which is occupied, in the two binding modes, by the dockerin residues Phe-19 and Leu-50, respectively. Despite the structural similarity between the C. cellulolyticum and Clostridium thermocellum cohesins and dockerins, there is no cross-specificity between the protein partners from the two organisms. The crystal structure of the C. cellulolyticum complex shows that organism-specific recognition between the protomers is dictated by apolar interactions primarily between only two residues, Leu-17 in the dockerin and the cohesin amino acid Ala-129. The biological significance of the plasticity in dockerin-cohesin recognition, observed here in C. cellulolyticum and reported previously in C. thermocellum, is discussed.
Collapse
Affiliation(s)
- Benedita A Pinheiro
- Centro Interdisciplinar de Investigação em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade Técnica de Lisboa, Lisboa, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Haimovitz R, Barak Y, Morag E, Voronov-Goldman M, Shoham Y, Lamed R, Bayer EA. Cohesin-dockerin microarray: Diverse specificities between two complementary families of interacting protein modules. Proteomics 2008; 8:968-79. [PMID: 18219699 DOI: 10.1002/pmic.200700486] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Indexed: 11/10/2022]
Abstract
The cellulosome is an intricate multienzyme complex, designed for efficient degradation of plant cell wall polysaccharides, notably cellulose. The supramolecular cellulosome architecture in different bacteria is the consequence of the types and specificities of the interacting cohesin and dockerin modules, borne by the different cellulosomal subunits. In this study, we describe a microarray system for determining cohesin-dockerin specificity, which allows global comparison among the interactions between various members of these two complementary families of interacting protein modules. Matching recombinant fusion proteins were prepared that contained one of the interacting modules: cohesins were joined to an appropriate cellulose-binding module (CBM) and the dockerins were fused to a thermostable xylanase that served to enhance expression and proper folding. The CBM-fused cohesins were immobilized on cellulose-coated glass slides, to which xylanase-fused dockerin samples were applied. Knowledge of the specificity characteristics of native and mutated members of the cohesin and dockerin families provides insight into the architecture of the parent cellulosome and allows selection of suitable cohesin-dockein pairs for biotechnological and nanotechnological application. Using this approach, extensive cross-species interaction among type-II cohesins and dockerins is shown for the first time. Selective intraspecies binding of an archaeal dockerin to two complementary cohesins is also demonstrated.
Collapse
Affiliation(s)
- Rachel Haimovitz
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | |
Collapse
|
20
|
Alber O, Noach I, Lamed R, Shimon LJW, Bayer EA, Frolow F. Preliminary X-ray characterization of a novel type of anchoring cohesin from the cellulosome of Ruminococcus flavefaciens. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008; 64:77-80. [PMID: 18259053 PMCID: PMC2374186 DOI: 10.1107/s1744309107067437] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Accepted: 12/17/2007] [Indexed: 11/10/2022]
Abstract
Ruminococcus flavefaciens is an anaerobic bacterium that resides in the gastrointestinal tract of ruminants. It produces a highly organized multi-enzyme cellulosome complex that plays a key role in the degradation of plant cell walls. ScaE is one of the critical structural components of its cellulosome that serves to anchor the complex to the cell wall. The seleno-L-methionine-labelled derivative of the ScaE cohesin module has been cloned, expressed, purified and crystallized. The crystals belong to space group C2, with unit-cell parameters a = 155.6, b = 69.3, c = 93.0 A, beta = 123.4 degrees, and contain four molecules in the asymmetric unit. Diffraction data were phased to 1.95 A using the anomalous signal from the Se atoms.
Collapse
Affiliation(s)
- Orly Alber
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ilit Noach
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Raphael Lamed
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv 69978, Israel
- The Daniella Rich Institute for Structural Biology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Linda J. W. Shimon
- Department of Chemical Research Support, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Edward A. Bayer
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Felix Frolow
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv 69978, Israel
- The Daniella Rich Institute for Structural Biology, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
21
|
Chitayat S, Gregg K, Adams JJ, Ficko-Blean E, Bayer EA, Boraston AB, Smith SP. Three-dimensional structure of a putative non-cellulosomal cohesin module from a Clostridium perfringens family 84 glycoside hydrolase. J Mol Biol 2008; 375:20-8. [PMID: 17999932 DOI: 10.1016/j.jmb.2007.10.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 10/11/2007] [Accepted: 10/12/2007] [Indexed: 11/21/2022]
Abstract
The genomes of myonecrotic strains of Clostridium perfringens encode a large number of secreted glycoside hydrolases. The activities of these enzymes are consistent with degradation of the mucosal layer of the human gastrointestinal tract, glycosaminoglycans and other cellular glycans found throughout the body. In many cases this is thought to aid in the propagation of the major toxins produced by C. perfringens. One such example is the family 84 glycoside hydrolases, which contains five C. perfringens members (CpGH84A-E), each displaying a unique modular architecture. The smallest and most extensively studied member, CpGH84C, comprises an N-terminal catalytic domain with beta-N-acetylglucosaminidase activity, a family 32 carbohydrate-binding module, a family 82 X-module (X82) of unknown function, and a fibronectin type-III-like module. Here we present the structure of the X82 module from CpGH84C, determined by both NMR spectroscopy and X-ray crystallography. CpGH84C X82 adopts a jell-roll fold comprising two beta-sheets formed by nine beta-strands. CpGH84C X82 displays distant amino acid sequence identity yet close structural similarity to the cohesin modules of cellulolytic anaerobic bacteria. Cohesin modules are responsible for the assembly of numerous hydrolytic enzymes in a cellulose-degrading multi-enzyme complex, termed the cellulosome, through a high-affinity interaction with the calcium-binding dockerin module. A planar surface is located on the face of the CpGH84 X82 structure that corresponds to the dockerin-binding region of cellulolytic cohesin modules and has the approximate dimensions to accommodate a dockerin module. The presence of cohesin-like X82 modules in glycoside hydrolases of C. perfringens is an indication that the formation of novel X82-dockerin mediated multi-enzyme complexes, with potential roles in pathogenesis, is possible.
Collapse
Affiliation(s)
- Seth Chitayat
- Department of Biochemistry, Queen's University, Kingston, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
22
|
Noach I, Alber O, Bayer EA, Lamed R, Levy-Assaraf M, Shimon LJW, Frolow F. Crystallization and preliminary X-ray analysis of Acetivibrio cellulolyticus cellulosomal type II cohesin module: two versions having different linker lengths. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008; 64:58-61. [PMID: 18097105 PMCID: PMC2373993 DOI: 10.1107/s1744309107066821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Accepted: 12/13/2007] [Indexed: 11/10/2022]
Abstract
The second type II cohesin module of the cellulosomal scaffoldin polypeptide ScaB from Acetivibrio cellulolyticus (CohB2) was cloned into two constructs: one containing a short (five-residue) C-terminal linker (CohB2_S) and the second incorporating the full native 45-residue linker (CohB2_L). Both constructs encode proteins that also include the full native six-residue N-terminal linker. The CohB2_S and CohB2_L proteins were expressed, purified and crystallized in the orthorhombic crystal system, but with different unit cells and symmetries: space group P2(1)2(1)2(1) with unit-cell parameters a = 90.36, b = 68.65, c = 111.29 A for CohB2_S and space group P2(1)2(1)2 with unit-cell parameters a = 68.76, b = 159.22, c = 44.21 A for CohB2_L. The crystals diffracted to 2.0 and 2.9 A resolution, respectively. The asymmetric unit of CohB2_S contains three cohesin molecules, while that of CohB2_L contains two molecules.
Collapse
Affiliation(s)
- Ilit Noach
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Orly Alber
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Edward A. Bayer
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Raphael Lamed
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
- The Daniella Rich Institute for Structural Biology, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Maly Levy-Assaraf
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Linda J. W. Shimon
- Department of Chemical Research Support, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Felix Frolow
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
- The Daniella Rich Institute for Structural Biology, Tel Aviv University, Ramat Aviv 69978, Israel
| |
Collapse
|
23
|
Abstract
The assembly of proteins that display complementary activities into supramolecular intra- and extracellular complexes is central to cellular function. One such nanomachine of considerable biological and industrial significance is the plant cell wall degrading apparatus of anaerobic bacteria termed the cellulosome. The Clostridium thermocellum cellulosome assembles through the interaction of a type I dockerin module in the catalytic entities with one of several type I cohesin modules in the non-catalytic scaffolding protein. Recent structural studies have provided the molecular details of how dockerin-cohesin interactions mediate both cellulosome assembly and the retention of the protein complex on the bacterial cell surface. The type I dockerin, which displays near-perfect sequence and structural symmetry, interacts with its cohesin partner through a dual binding mode in which either the N- or C-terminal helix dominate heterodimer formation. The biological significance of this dual binding mode is discussed with respect to the plasticity of the orientation of the catalytic subunits within this supramolecular assembly. The flexibility in the quaternary structure of the cellulosome may reflect the challenges presented by the degradation of a heterogenous recalcitrant insoluble substrate by an intricate macromolecular complex, in which the essential synergy between the catalytic subunits is a key feature of cellulosome function.
Collapse
Affiliation(s)
- Harry J Gilbert
- Institute for Cell and Molecular Biosciences, Newcastle University, The Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
24
|
Carvalho AL, Dias FMV, Nagy T, Prates JAM, Proctor MR, Smith N, Bayer EA, Davies GJ, Ferreira LMA, Romão MJ, Fontes CMGA, Gilbert HJ. Evidence for a dual binding mode of dockerin modules to cohesins. Proc Natl Acad Sci U S A 2007; 104:3089-94. [PMID: 17360613 PMCID: PMC1805526 DOI: 10.1073/pnas.0611173104] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Indexed: 11/18/2022] Open
Abstract
The assembly of proteins that display complementary activities into macromolecular complexes is critical to cellular function. One such enzyme complex, of environmental significance, is the plant cell wall degrading apparatus of anaerobic bacteria, termed the cellulosome. The complex assembles through the interaction of enzyme-derived "type I dockerin" modules with the multiple "cohesin" modules of the scaffolding protein. Clostridium thermocellum type I dockerin modules contain a duplicated 22-residue sequence that comprises helix-1 and helix-3, respectively. The crystal structure of a C. thermocellum type I cohesin-dockerin complex showed that cohesin recognition was predominantly through helix-3 of the dockerin. The sequence duplication is reflected in near-perfect 2-fold structural symmetry, suggesting that both repeats could interact with cohesins by a common mechanism in wild-type (WT) proteins. Here, a helix-3 disrupted mutant dockerin is used to visualize the reverse binding in which the dockerin mutant is indeed rotated 180 degrees relative to the WT dockerin such that helix-1 now dominates recognition of its protein partner. The dual binding mode is predicted to impart significant plasticity into the orientation of the catalytic subunits within this supramolecular assembly, which reflects the challenges presented by the degradation of a heterogeneous, recalcitrant, insoluble substrate by a tethered macromolecular complex.
Collapse
Affiliation(s)
- Ana Luísa Carvalho
- *Rede de Química e Tecnologia/Centro de Química Fina e Biotecnologia (REQUIMTE/CQFB), Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Fernando M. V. Dias
- Centro Interdisciplinar de Investigação em Sanidade Animal Faculdade de Medicina Veterinária, Universidade Técnica de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - Tibor Nagy
- Institute for Cell and Molecular Biosciences, University of Newcastle upon Tyne, The Medical School, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - José A. M. Prates
- Centro Interdisciplinar de Investigação em Sanidade Animal Faculdade de Medicina Veterinária, Universidade Técnica de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - Mark R. Proctor
- Institute for Cell and Molecular Biosciences, University of Newcastle upon Tyne, The Medical School, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Nicola Smith
- Institute for Cell and Molecular Biosciences, University of Newcastle upon Tyne, The Medical School, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Edward A. Bayer
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel; and
| | - Gideon J. Davies
- Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5YW, United Kingdom
| | - Luís M. A. Ferreira
- Centro Interdisciplinar de Investigação em Sanidade Animal Faculdade de Medicina Veterinária, Universidade Técnica de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - Maria J. Romão
- *Rede de Química e Tecnologia/Centro de Química Fina e Biotecnologia (REQUIMTE/CQFB), Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Carlos M. G. A. Fontes
- Centro Interdisciplinar de Investigação em Sanidade Animal Faculdade de Medicina Veterinária, Universidade Técnica de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - Harry J. Gilbert
- Institute for Cell and Molecular Biosciences, University of Newcastle upon Tyne, The Medical School, Newcastle upon Tyne NE2 4HH, United Kingdom
| |
Collapse
|
25
|
Kang S, Barak Y, Lamed R, Bayer EA, Morrison M. The functional repertoire of prokaryote cellulosomes includes the serpin superfamily of serine proteinase inhibitors. Mol Microbiol 2006; 60:1344-54. [PMID: 16796673 DOI: 10.1111/j.1365-2958.2006.05182.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Many of the Firmicutes bacteria responsible for plant polysaccharide degradation in Nature produce a multiprotein complex called a cellulosome, which co-ordinates glycoside hydrolase assembly, bacterial adhesion to substrate and polysaccharide hydrolysis. Cellulosomal proteins possess a dockerin module, which mediates their attachment to the scaffoldin protein via its interaction with cohesin modules, and only glycoside hydrolases and other carbohydrate active enzymes were known to reside within the cellulosome. We show here with Clostridium thermocellum ATCC 27405 that members of the serpin superfamily of serine proteinase inhibitors, which are best recognized for their conformational flexibility and co-ordination of key regulatory functions in multicellular eukaryotes, also reside within the cellulosome. These studies are the first to expand the cellulosome paradigm of protein complex assembly beyond glycoside hydrolase and carbohydrate active enzymes, and to include a newly identified functionality in the Firmicutes.
Collapse
Affiliation(s)
- Seungha Kang
- The MAPLE Research Initiative, Department of Animal Sciences, The Ohio State University, Columbus, OH, USA
| | | | | | | | | |
Collapse
|
26
|
Adams JJ, Pal G, Jia Z, Smith SP. Mechanism of bacterial cell-surface attachment revealed by the structure of cellulosomal type II cohesin-dockerin complex. Proc Natl Acad Sci U S A 2005; 103:305-10. [PMID: 16384918 PMCID: PMC1326161 DOI: 10.1073/pnas.0507109103] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacterial cell-surface attachment of macromolecular complexes maintains the microorganism in close proximity to extracellular substrates and allows for optimal uptake of hydrolytic byproducts. The cellulosome is a large multienzyme complex used by many anaerobic bacteria for the efficient degradation of plant cell-wall polysaccharides. The mechanism of cellulosome retention to the bacterial cell surface involves a calcium-mediated protein-protein interaction between the dockerin (Doc) module from the cellulosomal scaffold and a cohesin (Coh) module of cell-surface proteins located within the proteoglycan layer. Here, we report the structure of an ultra-high-affinity (K(a) = 1.44 x 10(10) M(-1)) complex between type II Doc, together with its neighboring X module from the cellulosome scaffold of Clostridium thermocellum, and a type II Coh module associated with the bacterial cell surface. Identification of X module-Doc and X module-Coh contacts reveal roles for the X module in Doc stability and enhanced Coh recognition. This extremely tight interaction involves one face of the Coh and both helices of the Doc and comprises significant hydrophobic character and a complementary extensive hydrogen-bond network. This structure represents a unique mechanism for cell-surface attachment in anaerobic bacteria and provides a rationale for discriminating between type I and type II Coh modules.
Collapse
Affiliation(s)
- Jarrett J Adams
- Department of Biochemistry and Protein Function Discovery Group, Queen's University, Kingston, ON, Canada K7L 3N6
| | | | | | | |
Collapse
|