1
|
De D, Thapliyal N, Prakash Tiwari V, Toyama Y, Flemming Hansen D, Kay LE, Vallurupalli P. Mapping the FF domain folding pathway via structures of transiently populated folding intermediates. Proc Natl Acad Sci U S A 2024; 121:e2416682121. [PMID: 39630857 DOI: 10.1073/pnas.2416682121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
Despite the tremendous accomplishments of AlpaFold2/3 in predicting biomolecular structure, the protein folding problem remains unsolved in the sense that accurate atomistic models of how protein molecules fold into their native conformations from an unfolded ensemble are still elusive. Here, using chemical exchange saturation transfer (CEST) NMR experiments and a comprehensive four-state kinetic model of the folding trajectory of a 71 residue four-helix bundle FF domain from human HYPA/FBP11 we present an atomic resolution structure of a transiently formed intermediate, I2, that along with the structure of a second intermediate, I1, provides a description of the FF domain folding trajectory. By recording CEST profiles as a function of urea concentration the extent of compaction along the folding pathway is evaluated. Our data establish that unlike the partially disordered I1 state, the I2 intermediate that is also formed before the rate-limiting folding barrier is well ordered and compact like the native conformer, while retaining nonnative interactions similar to those found in I1. The slow-interconversion from I2 to F, involving changes in secondary structure and the breaking of nonnative interactions, proceeds via a compact transition-state. Interestingly, the native state of the FF1 domain from human p190-A Rho GAP resembles the I2 conformation, suggesting that well-ordered folding intermediates can be repurposed by nature in structurally related proteins to assume functional roles. It is anticipated that the strategy for elucidation of sparsely populated and transiently formed structures of intermediates along kinetic pathways described here will be of use in other studies of protein dynamics.
Collapse
Affiliation(s)
- Debajyoti De
- Tata Institute of Fundamental Research Hyderabad, Ranga Reddy District, Hyderabad 500046, India
| | - Nemika Thapliyal
- Tata Institute of Fundamental Research Hyderabad, Ranga Reddy District, Hyderabad 500046, India
| | - Ved Prakash Tiwari
- Tata Institute of Fundamental Research Hyderabad, Ranga Reddy District, Hyderabad 500046, India
| | - Yuki Toyama
- Department of Molecular Genetics, University of Toronto, Toronto M5S 1A8, Canada
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
- Center for Biosystems Dynamics Research, RIKEN, Kanagawa 230-0045, Japan
| | - D Flemming Hansen
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom
- The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Lewis E Kay
- Department of Molecular Genetics, University of Toronto, Toronto M5S 1A8, Canada
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Pramodh Vallurupalli
- Tata Institute of Fundamental Research Hyderabad, Ranga Reddy District, Hyderabad 500046, India
| |
Collapse
|
2
|
Camilo-Ramos A, Korzhnev DM, Pinheiro-Aguiar R, Almeida FCL. Backbone 1H, 15N, and 13C resonance assignments of the FF1 domain from P190A RhoGAP in 5 and 8 M urea. BIOMOLECULAR NMR ASSIGNMENTS 2024; 18:257-262. [PMID: 39402262 DOI: 10.1007/s12104-024-10197-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/27/2024] [Indexed: 10/27/2024]
Abstract
The Rho GTPase (Ras homolog GTPases) system is a crucial signal transducer that regulates various cellular processes, including cell cycle and migration, genetic transcription, and apoptosis. In this study, we investigated the unfolded state of the first FF domain (FF1) of P190A RhoGAP, which features four tandem FF domains. For signal transduction, FF1 is phosphorylated at tyrosine 308 (Y308), which is buried in the hydrophobic core and is inaccessible to kinases in the folded domain. It was proposed, therefore, that the phosphorylation occurs in a transiently populated unfolded state of FF1. To probe the folding pathway of the RhoGAP FF1 domain, here we have performed a nearly complete backbone resonance assignments of a putative partially unfolded state of FF1 in 5 M urea and its fully unfolded state in 8 M urea.
Collapse
Affiliation(s)
- Aarão Camilo-Ramos
- Institute of Medical Biochemistry (IBqM), National Center of Nuclear Magnetic Resonance, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Center of Nuclear Magnetic Resonance (CNRMN), National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Dmitry M Korzhnev
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, USA
| | - Ramon Pinheiro-Aguiar
- Institute of Medical Biochemistry (IBqM), National Center of Nuclear Magnetic Resonance, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
- National Center of Nuclear Magnetic Resonance (CNRMN), National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
- Augusto Motta University Center (UNISUAM), Rio de Janeiro, Brazil.
| | - Fabio C L Almeida
- Institute of Medical Biochemistry (IBqM), National Center of Nuclear Magnetic Resonance, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
- National Center of Nuclear Magnetic Resonance (CNRMN), National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
3
|
Kuravsky M, Kelly C, Redfield C, Shammas SL. The transition state for coupled folding and binding of a disordered DNA binding domain resembles the unbound state. Nucleic Acids Res 2024; 52:11822-11837. [PMID: 39315703 PMCID: PMC11514473 DOI: 10.1093/nar/gkae794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 08/22/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
The basic zippers (bZIPs) are one of two large eukaryotic families of transcription factors whose DNA binding domains are disordered in isolation but fold into stable α-helices upon target DNA binding. Here, we systematically disrupt pre-existing helical propensity within the DNA binding region of the homodimeric bZIP domain of cAMP-response element binding protein (CREB) using Ala-Gly scanning and examine the impact on target binding kinetics. We find that the secondary structure of the transition state strongly resembles that of the unbound state. The residue closest to the dimerization domain is largely folded within both unbound and transition states; dimerization apparently propagates additional helical propensity into the basic region. The results are consistent with electrostatically-enhanced DNA binding, followed by rapid folding from the folded zipper outwards. Fly-casting theory suggests that protein disorder can accelerate binding. Interestingly however, we did not observe higher association rate constants for mutants with lower levels of residual structure in the unbound state.
Collapse
Affiliation(s)
- Mikhail Kuravsky
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Conor Kelly
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | | | - Sarah L Shammas
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| |
Collapse
|
4
|
Khandave NP, Hansen DF, Vallurupalli P. Increasing the accuracy of exchange parameters reporting on slow dynamics by performing CEST experiments with 'high' B 1 fields. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 363:107699. [PMID: 38851059 DOI: 10.1016/j.jmr.2024.107699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/11/2024] [Accepted: 05/11/2024] [Indexed: 06/10/2024]
Abstract
Over the last decade chemical exchange saturation transfer (CEST) NMR methods have emerged as powerful tools to characterize biomolecular conformational dynamics occurring between a visible major state and 'invisible' minor states. The ability of the CEST experiment to detect these minor states, and provide precise exchange parameters, hinges on using appropriate B1 field strengths during the saturation period. Typically, a pair of B1 fields with ω1 (=2πB1) values around the exchange rate kex are chosen. Here we show that the transverse relaxation rate of the minor state resonance (R2,B) also plays a crucial role in determining the B1 fields that lead to the most informative datasets. Using [Formula: see text] ≥ kex, to guide the choice of B1, instead of kex, leads to data wherefrom substantially more accurate exchange parameters can be derived. The need for higher B1 fields, guided by K, is demonstrated by studying the conformational exchange in two mutants of the 71 residue FF domain with kex ∼ 11 s-1 and ∼ 72 s-1, respectively. In both cases analysis of CEST datasets recorded using B1 field values guided by kex lead to imprecise exchange parameters, whereas using B1 values guided by K resulted in precise site-specific exchange parameters. The conclusions presented here will be valuable while using CEST to study slow processes at sites with large intrinsic relaxation rates, including carbonyl sites in small to medium sized proteins, amide 15N sites in large proteins and when the minor state dips are broadened due to exchange among the minor states.
Collapse
Affiliation(s)
- Nihar Pradeep Khandave
- Tata Institute of Fundamental Research Hyderabad, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500046, India
| | - D Flemming Hansen
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom; The Francis Crick Institute, London, NW1 1BF, United Kingdom.
| | - Pramodh Vallurupalli
- Tata Institute of Fundamental Research Hyderabad, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500046, India.
| |
Collapse
|
5
|
Fersht AR. From covalent transition states in chemistry to noncovalent in biology: from β- to Φ-value analysis of protein folding. Q Rev Biophys 2024; 57:e4. [PMID: 38597675 DOI: 10.1017/s0033583523000045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Solving the mechanism of a chemical reaction requires determining the structures of all the ground states on the pathway and the elusive transition states linking them. 2024 is the centenary of Brønsted's landmark paper that introduced the β-value and structure-activity studies as the only experimental means to infer the structures of transition states. It involves making systematic small changes in the covalent structure of the reactants and analysing changes in activation and equilibrium-free energies. Protein engineering was introduced for an analogous procedure, Φ-value analysis, to analyse the noncovalent interactions in proteins central to biological chemistry. The methodology was developed first by analysing noncovalent interactions in transition states in enzyme catalysis. The mature procedure was then applied to study transition states in the pathway of protein folding - 'part (b) of the protein folding problem'. This review describes the development of Φ-value analysis of transition states and compares and contrasts the interpretation of β- and Φ-values and their limitations. Φ-analysis afforded the first description of transition states in protein folding at the level of individual residues. It revealed the nucleation-condensation folding mechanism of protein domains with the transition state as an expanded, distorted native structure, containing little fully formed secondary structure but many weak tertiary interactions. A spectrum of transition states with various degrees of structural polarisation was then uncovered that spanned from nucleation-condensation to the framework mechanism of fully formed secondary structure. Φ-analysis revealed how movement of the expanded transition state on an energy landscape accommodates the transition from framework to nucleation-condensation mechanisms with a malleability of structure as a unifying feature of folding mechanisms. Such movement follows the rubric of analysis of classical covalent chemical mechanisms that began with Brønsted. Φ-values are used to benchmark computer simulation, and Φ and simulation combine to describe folding pathways at atomic resolution.
Collapse
Affiliation(s)
- Alan R Fersht
- MRC Laboratory of Molecular Biology, Cambridge, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- Gonville and Caius College, University of Cambridge, Cambridge, UK
| |
Collapse
|
6
|
Rothfuss MT, Becht DC, Zeng B, McClelland LJ, Yates-Hansen C, Bowler BE. High-Accuracy Prediction of Stabilizing Surface Mutations to the Three-Helix Bundle, UBA(1), with EmCAST. J Am Chem Soc 2023; 145:22979-22992. [PMID: 37815921 PMCID: PMC10626973 DOI: 10.1021/jacs.3c04966] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
The accurate modeling of energetic contributions to protein structure is a fundamental challenge in computational approaches to protein analysis and design. We describe a general computational method, EmCAST (empirical Cα stabilization), to score and optimize the sequence to the structure in proteins. The method relies on an empirical potential derived from the database of the Cα dihedral angle preferences for all possible four-residue sequences, using the data available in the Protein Data Bank. Our method produces stability predictions that naturally correlate one-to-one with the experimental results for solvent-exposed mutation sites. EmCAST predicted four mutations that increased the stability of a three-helix bundle, UBA(1), from 2.4 to 4.8 kcal/mol by optimizing residues in both helices and turns. For a set of eight variants, the predicted and experimental stabilizations correlate very well (R2 = 0.97) with a slope near 1 and with a 0.16 kcal/mol standard error for EmCAST predictions. Tests against literature data for the stability effects of surface-exposed mutations show that EmCAST outperforms the existing stability prediction methods. UBA(1) variants were crystallized to verify and analyze their structures at an atomic resolution. Thermodynamic and kinetic folding experiments were performed to determine the magnitude and mechanism of stabilization. Our method has the potential to enable the rapid, rational optimization of natural proteins, expand the analysis of the sequence/structure relationship, and supplement the existing protein design strategies.
Collapse
Affiliation(s)
- Michael T. Rothfuss
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT 59812, United States
| | - Dustin C. Becht
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT 59812, United States
| | - Baisen Zeng
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, United States
| | - Levi J. McClelland
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, United States
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, United States
| | - Cindee Yates-Hansen
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, United States
| | - Bruce E. Bowler
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT 59812, United States
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, United States
| |
Collapse
|
7
|
Tsuboyama K, Dauparas J, Chen J, Laine E, Mohseni Behbahani Y, Weinstein JJ, Mangan NM, Ovchinnikov S, Rocklin GJ. Mega-scale experimental analysis of protein folding stability in biology and design. Nature 2023; 620:434-444. [PMID: 37468638 PMCID: PMC10412457 DOI: 10.1038/s41586-023-06328-6] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/14/2023] [Indexed: 07/21/2023]
Abstract
Advances in DNA sequencing and machine learning are providing insights into protein sequences and structures on an enormous scale1. However, the energetics driving folding are invisible in these structures and remain largely unknown2. The hidden thermodynamics of folding can drive disease3,4, shape protein evolution5-7 and guide protein engineering8-10, and new approaches are needed to reveal these thermodynamics for every sequence and structure. Here we present cDNA display proteolysis, a method for measuring thermodynamic folding stability for up to 900,000 protein domains in a one-week experiment. From 1.8 million measurements in total, we curated a set of around 776,000 high-quality folding stabilities covering all single amino acid variants and selected double mutants of 331 natural and 148 de novo designed protein domains 40-72 amino acids in length. Using this extensive dataset, we quantified (1) environmental factors influencing amino acid fitness, (2) thermodynamic couplings (including unexpected interactions) between protein sites, and (3) the global divergence between evolutionary amino acid usage and protein folding stability. We also examined how our approach could identify stability determinants in designed proteins and evaluate design methods. The cDNA display proteolysis method is fast, accurate and uniquely scalable, and promises to reveal the quantitative rules for how amino acid sequences encode folding stability.
Collapse
Affiliation(s)
- Kotaro Tsuboyama
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
- PRESTO, Japan Science and Technology Agency, Tokyo, Japan
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Justas Dauparas
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Jonathan Chen
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
- McCormick School of Engineering, Northwestern University, Evanston, IL, USA
| | - Elodie Laine
- Sorbonne Université, CNRS, IBPS, Laboratory of Computational and Quantitative Biology (LCQB), UMR 7238, Paris, France
| | - Yasser Mohseni Behbahani
- Sorbonne Université, CNRS, IBPS, Laboratory of Computational and Quantitative Biology (LCQB), UMR 7238, Paris, France
| | - Jonathan J Weinstein
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Niall M Mangan
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL, USA
| | - Sergey Ovchinnikov
- John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA, USA
| | - Gabriel J Rocklin
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
8
|
Bolik-Coulon N, Hansen DF, Kay LE. Optimizing frequency sampling in CEST experiments. JOURNAL OF BIOMOLECULAR NMR 2022; 76:167-183. [PMID: 36192571 DOI: 10.1007/s10858-022-00403-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
For the past decade chemical exchange saturation transfer (CEST) experiments have been successfully applied to study exchange processes in biomolecules involving sparsely populated, transiently formed conformers. Initial implementations focused on extensive sampling of the CEST frequency domain, requiring significant measurement times. Here we show that the lengthy sampling schemes often used are not optimal and that reduced frequency sampling schedules can be developed without a priori knowledge of the exchange parameters, that only depend on the chosen B1 field, and, to a lesser extent, on the intrinsic transverse relaxation rates of ground state spins. The reduced sampling approach described here can be used synergistically with other methods for reducing measurement times such as those that excite multiple frequencies in the CEST dimension simultaneously, or make use of non-uniform sampling of indirectly detected time domains, to further decrease measurement times. The proposed approach is validated by analysis of simulated and experimental datasets.
Collapse
Affiliation(s)
- Nicolas Bolik-Coulon
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, Canada.
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada.
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| | - D Flemming Hansen
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK.
| | - Lewis E Kay
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, Canada.
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada.
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada.
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON, M5G 0A4, Canada.
| |
Collapse
|
9
|
Golla H, Kannan A, Gopi S, Murugan S, Perumalsamy LR, Naganathan AN. Structural-Energetic Basis for Coupling between Equilibrium Fluctuations and Phosphorylation in a Protein Native Ensemble. ACS CENTRAL SCIENCE 2022; 8:282-293. [PMID: 35233459 PMCID: PMC8880421 DOI: 10.1021/acscentsci.1c01548] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Indexed: 06/14/2023]
Abstract
The functioning of proteins is intimately tied to their fluctuations in the native ensemble. The structural-energetic features that determine fluctuation amplitudes and hence the shape of the underlying landscape, which in turn determine the magnitude of the functional output, are often confounded by multiple variables. Here, we employ the FF1 domain from human p190A RhoGAP protein as a model system to uncover the molecular basis for phosphorylation of a buried tyrosine, which is crucial to the transcriptional activity associated with transcription factor TFII-I. Combining spectroscopy, calorimetry, statistical-mechanical modeling, molecular simulations, and in vitro phosphorylation assays, we show that the FF1 domain samples a diverse array of conformations in its native ensemble, some of which are phosphorylation-competent. Upon eliminating unfavorable charge-charge interactions through a single charge-reversal (K53E) or charge-neutralizing (K53Q) mutation, we observe proportionately lower phosphorylation extents due to the altered structural coupling, damped equilibrium fluctuations, and a more compact native ensemble. We thus establish a conformational selection mechanism for phosphorylation in the FF1 domain with K53 acting as a "gatekeeper", modulating the solvent exposure of the buried tyrosine. Our work demonstrates the role of unfavorable charge-charge interactions in governing functional events through the modulation of native ensemble characteristics, a feature that could be prevalent in ordered protein domains.
Collapse
Affiliation(s)
- Hemashree Golla
- Department
of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Adithi Kannan
- Department
of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Soundhararajan Gopi
- Department
of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Sowmiya Murugan
- Department
of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Lakshmi R Perumalsamy
- Department
of Biomedical Sciences, Sri Ramachandra
Institute of Higher Education and Research, Chennai 600116, India
| | - Athi N. Naganathan
- Department
of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
10
|
The A39G FF domain folds on a volcano-shaped free energy surface via separate pathways. Proc Natl Acad Sci U S A 2021; 118:2115113118. [PMID: 34764225 DOI: 10.1073/pnas.2115113118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2021] [Indexed: 11/18/2022] Open
Abstract
Conformational dynamics play critical roles in protein folding, misfolding, function, misfunction, and aggregation. While detecting and studying the different conformational states populated by protein molecules on their free energy surfaces (FESs) remain a challenge, NMR spectroscopy has emerged as an invaluable experimental tool to explore the FES of a protein, as conformational dynamics can be probed at atomic resolution over a wide range of timescales. Here, we use chemical exchange saturation transfer (CEST) to detect "invisible" minor states on the energy landscape of the A39G mutant FF domain that exhibited "two-state" folding kinetics in traditional experiments. Although CEST has mostly been limited to studies of processes with rates between ∼5 to 300 s-1 involving sparse states with populations as low as ∼1%, we show that the line broadening that is often associated with minor state dips in CEST profiles can be exploited to inform on additional conformers, with lifetimes an order of magnitude shorter and populations close to 10-fold smaller than what typically is characterized. Our analysis of CEST profiles that exploits the minor state linewidths of the 71-residue A39G FF domain establishes a folding mechanism that can be described in terms of a four-state exchange process between interconverting states spanning over two orders of magnitude in timescale from ∼100 to ∼15,000 μs. A similar folding scheme is established for the wild-type domain as well. The study shows that the folding of this small domain proceeds through a pair of sparse, partially structured intermediates via two discrete pathways on a volcano-shaped FES.
Collapse
|
11
|
Gao Y, Zhao Y, Guan Q, Wang F. A theoretical study for the role of complex in hydrogen abstraction of OH. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.138035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Luo L, Lv J. Quantum protein folding. ADVANCES IN QUANTUM CHEMISTRY 2020. [DOI: 10.1016/bs.aiq.2020.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Wang W, Navarro S, Azizyan RA, Baño-Polo M, Esperante SA, Kajava AV, Ventura S. Prion soft amyloid core driven self-assembly of globular proteins into bioactive nanofibrils. NANOSCALE 2019; 11:12680-12694. [PMID: 31237592 DOI: 10.1039/c9nr01755k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Amyloids have been exploited to build amazing bioactive materials. In most cases, short synthetic peptides constitute the functional components of such materials. The controlled assembly of globular proteins into active amyloid nanofibrils is still challenging, because the formation of amyloids implies a conformational conversion towards a β-sheet-rich structure, with a concomitant loss of the native fold and the inactivation of the protein. There is, however, a remarkable exception to this rule: yeast prions. They are singular proteins able to switch between a soluble and an amyloid state. In both states, the structure of their globular domains remains essentially intact. The transit between these two conformations is encoded in prion domains (PrDs): long and disordered sequences to which the active globular domains are appended. PrDs are much larger than typical self-assembling peptides. This seriously limits their use for nanotechnological applications. We have recently shown that these domains contain soft amyloid cores (SACs) that suffice to nucleate their self-assembly reaction. Here we genetically fused a model SAC with different globular proteins. We demonstrate that this very short sequence acts as a minimalist PrD, driving the selective and slow assembly of the initially soluble fusion proteins into amyloid fibrils in which the globular proteins retain their native structure and display high activity. Overall, we provide here a novel, modular and straightforward strategy to build active protein-based nanomaterials at a preparative scale.
Collapse
Affiliation(s)
- Weiqiang Wang
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | - Susanna Navarro
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | - Rafayel A Azizyan
- Centre de Recherche en Biologie cellulaire de Montpellier, UMR 5237 CNRS, Université Montpellier, 1919 Route de Mende, 34293 Montpellier, Cedex 5, France
| | - Manuel Baño-Polo
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | - Sebastian A Esperante
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | - Andrey V Kajava
- Centre de Recherche en Biologie cellulaire de Montpellier, UMR 5237 CNRS, Université Montpellier, 1919 Route de Mende, 34293 Montpellier, Cedex 5, France
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
14
|
Marinelli P, Navarro S, Baño-Polo M, Morel B, Graña-Montes R, Sabe A, Canals F, Fernandez MR, Conejero-Lara F, Ventura S. Global Protein Stabilization Does Not Suffice to Prevent Amyloid Fibril Formation. ACS Chem Biol 2018; 13:2094-2105. [PMID: 29966079 DOI: 10.1021/acschembio.8b00607] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mutations or cellular conditions that destabilize the native protein conformation promote the population of partially unfolded conformations, which in many cases assemble into insoluble amyloid fibrils, a process associated with multiple human pathologies. Therefore, stabilization of protein structures is seen as an efficient way to prevent misfolding and subsequent aggregation. This has been suggested to be the underlying reason why proteins living in harsh environments, such as the extracellular space, have evolved disulfide bonds. The effect of protein disulfides on the thermodynamics and kinetics of folding has been extensively studied, but much less is known on its effect on aggregation reactions. Here, we designed a single point mutation that introduces a disulfide bond in the all-α FF domain, a protein that, despite being devoid of preformed β-sheets, forms β-sheet-rich amyloid fibrils. The novel and unique covalent bond in the FF domain dramatically increases its thermodynamic stability and folding speed. Nevertheless, these optimized properties cannot counteract the inherent aggregation propensity of the protein, thus indicating that a high global protein stabilization does not suffice to prevent amyloid formation unless it contributes to hide from exposure the specific regions that nucleate the aggregation reaction.
Collapse
Affiliation(s)
- Patrizia Marinelli
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
| | - Susanna Navarro
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
| | - Manuel Baño-Polo
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
| | - Bertrand Morel
- Departamento de Química Física e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - Ricardo Graña-Montes
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
| | - Anna Sabe
- Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron University Hospital, 08135 Barcelona, Spain
| | - Francesc Canals
- Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron University Hospital, 08135 Barcelona, Spain
| | - Maria Rosario Fernandez
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
| | - Francisco Conejero-Lara
- Departamento de Química Física e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
| |
Collapse
|
15
|
Yuwen T, Kay LE, Bouvignies G. Dramatic Decrease in CEST Measurement Times Using Multi‐Site Excitation. Chemphyschem 2018; 19:1707-1710. [DOI: 10.1002/cphc.201800249] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Tairan Yuwen
- Departments of Molecular Genetics, Biochemistry and ChemistryUniversity of Toronto Toronto, Ontario M5S 1A8 Canada
| | - Lewis E. Kay
- Departments of Molecular Genetics, Biochemistry and ChemistryUniversity of Toronto Toronto, Ontario M5S 1A8 Canada
- Hospital for Sick ChildrenProgram in Molecular Medicine 555 University Avenue Toronto, Ontario M5G 1X8 Canada
| | - Guillaume Bouvignies
- Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure, PSL UniversitySorbonne Université, CNRS 75005 Paris France
| |
Collapse
|
16
|
A single cysteine post-translational oxidation suffices to compromise globular proteins kinetic stability and promote amyloid formation. Redox Biol 2017; 14:566-575. [PMID: 29132128 PMCID: PMC5684091 DOI: 10.1016/j.redox.2017.10.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/24/2017] [Accepted: 10/29/2017] [Indexed: 12/22/2022] Open
Abstract
Oxidatively modified forms of proteins accumulate during aging. Oxidized protein conformers might act as intermediates in the formation of amyloids in age-related disorders. However, it is not known whether this amyloidogenic conversion requires an extensive protein oxidative damage or it can be promoted just by a discrete, localized post-translational modification of certain residues. Here, we demonstrate that the irreversible oxidation of a single free Cys suffices to severely perturb the folding energy landscape of a stable globular protein, compromise its kinetic stability, and lead to the formation of amyloids under physiological conditions. Experiments and simulations converge to indicate that this specific oxidation-promoted protein aggregation requires only local unfolding. Indeed, a large scale analysis indicates that many cellular proteins are at risk of undergoing this kind of deleterious transition; explaining how oxidative stress can impact cell proteostasis and subsequently lead to the onset of pathological states. The population of aggregation-prone states by natural proteins does not require their extensive oxidation. A single residue irreversible oxidation suffices to promote the formation of amyloid fibrils. Under oxidative stress, many cellular proteins are at risk of aggregating into toxic species.
Collapse
|
17
|
Cieplak AS. Protein folding, misfolding and aggregation: The importance of two-electron stabilizing interactions. PLoS One 2017; 12:e0180905. [PMID: 28922400 PMCID: PMC5603215 DOI: 10.1371/journal.pone.0180905] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 06/22/2017] [Indexed: 12/17/2022] Open
Abstract
Proteins associated with neurodegenerative diseases are highly pleiomorphic and may adopt an all-α-helical fold in one environment, assemble into all-β-sheet or collapse into a coil in another, and rapidly polymerize in yet another one via divergent aggregation pathways that yield broad diversity of aggregates’ morphology. A thorough understanding of this behaviour may be necessary to develop a treatment for Alzheimer’s and related disorders. Unfortunately, our present comprehension of folding and misfolding is limited for want of a physicochemical theory of protein secondary and tertiary structure. Here we demonstrate that electronic configuration and hyperconjugation of the peptide amide bonds ought to be taken into account to advance such a theory. To capture the effect of polarization of peptide linkages on conformational and H-bonding propensity of the polypeptide backbone, we introduce a function of shielding tensors of the Cα atoms. Carrying no information about side chain-side chain interactions, this function nonetheless identifies basic features of the secondary and tertiary structure, establishes sequence correlates of the metamorphic and pH-driven equilibria, relates binding affinities and folding rate constants to secondary structure preferences, and manifests common patterns of backbone density distribution in amyloidogenic regions of Alzheimer’s amyloid β and tau, Parkinson’s α-synuclein and prions. Based on those findings, a split-intein like mechanism of molecular recognition is proposed to underlie dimerization of Aβ, tau, αS and PrPC, and divergent pathways for subsequent association of dimers are outlined; a related mechanism is proposed to underlie formation of PrPSc fibrils. The model does account for: (i) structural features of paranuclei, off-pathway oligomers, non-fibrillar aggregates and fibrils; (ii) effects of incubation conditions, point mutations, isoform lengths, small-molecule assembly modulators and chirality of solid-liquid interface on the rate and morphology of aggregation; (iii) fibril-surface catalysis of secondary nucleation; and (iv) self-propagation of infectious strains of mammalian prions.
Collapse
Affiliation(s)
- Andrzej Stanisław Cieplak
- Department of Chemistry, Bilkent University, Ankara, Turkey
- Department of Chemistry, Yale University, New Haven, Connecticut, United States of America
- Department of Chemistry, Brandeis University, Waltham, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
18
|
Quantum conformational transition in biological macromolecule. QUANTITATIVE BIOLOGY 2017. [DOI: 10.1007/s40484-016-0087-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Zhuravleva A, Korzhnev DM. Protein folding by NMR. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2017; 100:52-77. [PMID: 28552172 DOI: 10.1016/j.pnmrs.2016.10.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 10/17/2016] [Accepted: 10/17/2016] [Indexed: 06/07/2023]
Abstract
Protein folding is a highly complex process proceeding through a number of disordered and partially folded nonnative states with various degrees of structural organization. These transiently and sparsely populated species on the protein folding energy landscape play crucial roles in driving folding toward the native conformation, yet some of these nonnative states may also serve as precursors for protein misfolding and aggregation associated with a range of devastating diseases, including neuro-degeneration, diabetes and cancer. Therefore, in vivo protein folding is often reshaped co- and post-translationally through interactions with the ribosome, molecular chaperones and/or other cellular components. Owing to developments in instrumentation and methodology, solution NMR spectroscopy has emerged as the central experimental approach for the detailed characterization of the complex protein folding processes in vitro and in vivo. NMR relaxation dispersion and saturation transfer methods provide the means for a detailed characterization of protein folding kinetics and thermodynamics under native-like conditions, as well as modeling high-resolution structures of weakly populated short-lived conformational states on the protein folding energy landscape. Continuing development of isotope labeling strategies and NMR methods to probe high molecular weight protein assemblies, along with advances of in-cell NMR, have recently allowed protein folding to be studied in the context of ribosome-nascent chain complexes and molecular chaperones, and even inside living cells. Here we review solution NMR approaches to investigate the protein folding energy landscape, and discuss selected applications of NMR methodology to studying protein folding in vitro and in vivo. Together, these examples highlight a vast potential of solution NMR in providing atomistic insights into molecular mechanisms of protein folding and homeostasis in health and disease.
Collapse
Affiliation(s)
- Anastasia Zhuravleva
- Astbury Centre for Structural Molecular Biology and Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom.
| | - Dmitry M Korzhnev
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030, USA.
| |
Collapse
|
20
|
Melnik BS, Nagibina GS, Glukhov AS, Melnik TN, Uversky VN. Substitutions of Amino Acids with Large Number of Contacts in the Native State Have no Effect on the Rates of Protein Folding. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1809-1817. [PMID: 27639966 DOI: 10.1016/j.bbapap.2016.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/09/2016] [Accepted: 09/13/2016] [Indexed: 11/28/2022]
Abstract
Various effects of amino acid substitutions on properties of globular proteins have been described in a large number of research papers. Nevertheless, no definite "rule" has been formulated as of yet that could be used by experimentalists to introduce desirable changes in the properties of proteins. Herein we attempt to establish such a "rule". To this end, a hypothesis is proposed on the effects of substitutions of hydrophobic residues with large number of contacts on free energies of different states of a globular protein. The hypothesis states: Substitutions of hydrophobic residues engaged in a large number of residue-residue contacts would not change the folding rate of a protein but could affect its unfolding rate. This hypothesis was verified by both theoretical and experimental analyses, generating a general rule that can facilitate the work of experimentalists on constructing mutant forms of proteins.
Collapse
Affiliation(s)
- Bogdan S Melnik
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow, Region, Russia.
| | - Galina S Nagibina
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow, Region, Russia
| | - Anatoly S Glukhov
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow, Region, Russia
| | - Tatiana N Melnik
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow, Region, Russia
| | - Vladimir N Uversky
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia; Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
21
|
Ma RS, Li QF, Wang AD, Zhang JH, Liu ZJ, Wu JH, Su XC, Ruan K. Determination of pseudocontact shifts of low-populated excited states by NMR chemical exchange saturation transfer. Phys Chem Chem Phys 2016; 18:13794-8. [DOI: 10.1039/c6cp01127f] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Angular and distance restraints for low populated excited conformations are studied using PCS–CEST NMR spectroscopy.
Collapse
Affiliation(s)
- R. S. Ma
- Hefei National Laboratory for Physical Science at the Microscale
- School of Life Sciences
- University of Science and Technology of China
- Hefei
- China
| | - Q. F. Li
- State Key Laboratory of Elemento-Organic Chemistry
- Collatorative Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
- Tianjin 300071
- China
| | - A. D. Wang
- Hefei National Laboratory for Physical Science at the Microscale
- School of Life Sciences
- University of Science and Technology of China
- Hefei
- China
| | - J. H. Zhang
- Hefei National Laboratory for Physical Science at the Microscale
- School of Life Sciences
- University of Science and Technology of China
- Hefei
- China
| | - Z. J. Liu
- National Center for Protein Science Shanghai
- Shanghai 201210
- China
| | - J. H. Wu
- Hefei National Laboratory for Physical Science at the Microscale
- School of Life Sciences
- University of Science and Technology of China
- Hefei
- China
| | - X. C. Su
- State Key Laboratory of Elemento-Organic Chemistry
- Collatorative Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
- Tianjin 300071
- China
| | - K. Ruan
- Hefei National Laboratory for Physical Science at the Microscale
- School of Life Sciences
- University of Science and Technology of China
- Hefei
- China
| |
Collapse
|
22
|
Dodson CA, Arbely E. Protein folding of the SAP domain, a naturally occurring two-helix bundle. FEBS Lett 2015; 589:1740-7. [PMID: 26073259 PMCID: PMC4509717 DOI: 10.1016/j.febslet.2015.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 06/01/2015] [Accepted: 06/01/2015] [Indexed: 11/25/2022]
Abstract
Thol SAP domain is one of the smallest model protein folding domains. SAP domain folds through a diffuse transition state in which helix 1 is most formed. Native state stability is dominated by contacts formed after the transition state.
The SAP domain from the Saccharomyces cerevisiae Tho1 protein is comprised of just two helices and a hydrophobic core and is one of the smallest proteins whose folding has been characterised. Φ-value analysis revealed that Tho1 SAP folds through a transition state where helix 1 is the most extensively formed element of secondary structure and flickering native-like core contacts from Leu35 are also present. The contacts that contribute most to native state stability of Tho1 SAP are not formed in the transition state.
Collapse
Affiliation(s)
- Charlotte A Dodson
- MRC Centre for Protein Engineering, Hills Road, Cambridge CB2 0QH, UK; Molecular Medicine, National Heart & Lung Institute, Imperial College London, SAF Building, London SW7 2AZ, UK.
| | - Eyal Arbely
- MRC Centre for Protein Engineering, Hills Road, Cambridge CB2 0QH, UK
| |
Collapse
|
23
|
Latham MP, Kay LE. A similar in vitro and in cell lysate folding intermediate for the FF domain. J Mol Biol 2014; 426:3214-3220. [PMID: 25083919 DOI: 10.1016/j.jmb.2014.07.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/21/2014] [Accepted: 07/22/2014] [Indexed: 11/17/2022]
Abstract
Understanding the mechanisms by which proteins fold into their three-dimensional structures, including a description of the intermediates that are formed during the folding process, remains a goal of protein science. Most studies are performed under carefully controlled conditions in which the folding reaction is monitored in a buffer solution that is far from the natural milieu of the cell. Here, we have used (13)C and (1)H relaxation dispersion NMR spectroscopy to study folding of the FF domain in both Escherichia coli and Saccharomyces cerevisiae cellular lysates. We find that a conformationally excited state is populated in both lysates, which is very similar in structure to a folding intermediate observed in previous studies in buffer, with the kinetics and thermodynamics of the interconversion between native and intermediate conformers somewhat changed. The results point to the importance of extending folding studies beyond the test tube yet emphasize that insights can be obtained through careful experiments recorded in controlled buffer solutions.
Collapse
Affiliation(s)
- Michael P Latham
- Departments of Molecular Genetics, Biochemistry and Chemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Lewis E Kay
- Departments of Molecular Genetics, Biochemistry and Chemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.
| |
Collapse
|
24
|
Sekhar A, Latham MP, Vallurupalli P, Kay LE. Viscosity-Dependent Kinetics of Protein Conformational Exchange: Microviscosity Effects and the Need for a Small Viscogen. J Phys Chem B 2014; 118:4546-51. [DOI: 10.1021/jp501583t] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ashok Sekhar
- Departments
of Molecular Genetics, Biochemistry and Chemistry, The University of Toronto, Toronto, Ontario Canada, M5S 1A8
| | - Michael P. Latham
- Departments
of Molecular Genetics, Biochemistry and Chemistry, The University of Toronto, Toronto, Ontario Canada, M5S 1A8
| | - Pramodh Vallurupalli
- Departments
of Molecular Genetics, Biochemistry and Chemistry, The University of Toronto, Toronto, Ontario Canada, M5S 1A8
| | - Lewis E. Kay
- Departments
of Molecular Genetics, Biochemistry and Chemistry, The University of Toronto, Toronto, Ontario Canada, M5S 1A8
- Program
in Molecular Structure and Function, Hospital for Sick Children, 555
University Avenue, Toronto, Ontario Canada M5G 1X8
| |
Collapse
|
25
|
Bouvignies G, Vallurupalli P, Kay LE. Visualizing side chains of invisible protein conformers by solution NMR. J Mol Biol 2013; 426:763-74. [PMID: 24211467 DOI: 10.1016/j.jmb.2013.10.041] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 10/31/2013] [Accepted: 10/31/2013] [Indexed: 11/18/2022]
Abstract
Sparsely populated and transiently formed protein conformers can play key roles in many biochemical processes. Understanding the structure function paradigm requires, therefore, an atomic-resolution description of these rare states. However, they are difficult to study because they cannot be observed using standard biophysical techniques. In the past decade, NMR methods have been developed for structural studies of these elusive conformers, focusing primarily on backbone (1)H, (15)N and (13)C nuclei. Here we extend the methodology to include side chains by developing a (13)C-based chemical exchange saturation transfer experiment for the assignment of side-chain aliphatic (13)C chemical shifts in uniformly (13)C labeled proteins. A pair of applications is provided, involving the folding of β-sheet Fyn SH3 and α-helical FF domains. Over 96% and 89% of the side-chain (13)C chemical shifts for excited states corresponding to the unfolded conformation of the Fyn SH3 domain and a folding intermediate of the FF domain, respectively, have been obtained, providing insight into side-chain packing and dynamics.
Collapse
Affiliation(s)
- Guillaume Bouvignies
- Department of Molecular Genetics, The University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Biochemistry, The University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Chemistry, The University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Pramodh Vallurupalli
- Department of Molecular Genetics, The University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Biochemistry, The University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Chemistry, The University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Lewis E Kay
- Department of Molecular Genetics, The University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Biochemistry, The University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Chemistry, The University of Toronto, Toronto, Ontario M5S 1A8, Canada; Program in Molecular Structure and Function, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
26
|
Tsytlonok M, Sormanni P, Rowling PJE, Vendruscolo M, Itzhaki LS. Subdomain architecture and stability of a giant repeat protein. J Phys Chem B 2013; 117:13029-37. [PMID: 24053231 DOI: 10.1021/jp402360x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tandem repeat proteins, which are widespread in the human genome, tend to exhibit high stability and favorable expression, and hence, they are emerging as promising protein scaffolds in alternative to antibodies in biotechnology. In order to investigate the origin of the stability of these proteins, we dissect the subdomain architecture of the giant repeat protein PR65/A, which comprises 15 α-helical HEAT repeats, using a series of truncations and deletions. We find that the N (HEAT 1-2) and the C (HEAT 14-15) subdomains are not capable of independent folding, but the addition of HEAT 13 to HEAT 14-15 results in an independently stable C-terminal subdomain (HEAT 13-15), which is in turn further stabilized by the inclusion of HEAT 12 (HEAT 12-15). We also further show that the stability of HEAT 13-15 is enhanced by its fusion to HEAT 1-2, and the artificial 5-HEAT-repeat protein thereby created (HEAT NC) behaves like a cooperative multidomain protein. We construct further variants, lacking one or both of the terminal subdomains, and find that such subdomains function as stabilizing caps within full-length PR65/A as in their absence, the central subdomain of the protein unfolds to form non-native β-sheet-like oligomers. Taken together, our results suggest that in full-length PR65/A, the more unstable regions within the central repeats are protected by the adjacent folded repeats, which thus act as gatekeepers by virtue of their greater stability.
Collapse
Affiliation(s)
- Maksym Tsytlonok
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | | | | | | | | |
Collapse
|
27
|
Sekhar A, Vallurupalli P, Kay LE. Defining a length scale for millisecond-timescale protein conformational exchange. Proc Natl Acad Sci U S A 2013; 110:11391-6. [PMID: 23801755 PMCID: PMC3710843 DOI: 10.1073/pnas.1303273110] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Although atomic resolution 3D structures of protein native states and some folding intermediates are available, the mechanism of interconversion between such states remains poorly understood. Here we study the four-helix bundle FF module, which folds via a transiently formed and sparsely populated compact on-pathway intermediate, I. Relaxation dispersion NMR spectroscopy has previously been used to elucidate the 3D structure of this intermediate and to establish that the conformational exchange between the I and the native, N, states of the FF domain is driven predominantly by water dynamics. In the present study we use NMR methods to define a length scale for the FF I-N transition, namely the effective hydrodynamic radius (EHR) that provides an average measure of the size of the structural units participating in the transition at any given time. Our experiments establish that the EHR is less than 4 Å, on the order of the size of one to two amino acid side chains, much smaller than the FF domain hydrodynamic radius (13 Å). The small magnitude of the EHR provides strong evidence that the I-N interconversion does not proceed via the synchronous motion of large clusters of amino acid residues, but rather by the exposure/burial of one or two side chains from solvent at any given time. Because the hydration of small hydrophobic solutes (< 4 Å) does not involve considerable dewetting or disruption of the water-hydrogen bonding network, the FF domain I-N transition does not require appreciable changes to the structure of the surrounding water.
Collapse
Affiliation(s)
- Ashok Sekhar
- Departments of Molecular Genetics
- Biochemistry, and
- Chemistry, University of Toronto, Toronto, ON, Canada M5S 1A8; and
| | - Pramodh Vallurupalli
- Departments of Molecular Genetics
- Biochemistry, and
- Chemistry, University of Toronto, Toronto, ON, Canada M5S 1A8; and
| | - Lewis E. Kay
- Departments of Molecular Genetics
- Biochemistry, and
- Chemistry, University of Toronto, Toronto, ON, Canada M5S 1A8; and
- Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, ON, Canada M5G 1X8
| |
Collapse
|
28
|
Schmidlin T, Ploeger K, Jonsson AL, Daggett V. Early steps in thermal unfolding of superoxide dismutase 1 are similar to the conformational changes associated with the ALS-associated A4V mutation. Protein Eng Des Sel 2013; 26:503-13. [PMID: 23784844 DOI: 10.1093/protein/gzt030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
There are over 100 mutations in Cu/Zn superoxide dismutase (SOD1) that result in a subset of familial amyotrophic lateral sclerosis (fALS) cases. The hypothesis that dissociation of the dimer, misfolding of the monomer and subsequent aggregation of mutant SOD1 leads to fALS has been gaining support as an explanation for how these disparate missense mutations cause the same disease. These forms are only responsible for a fraction of the ALS cases; however, the rest are sporadic. Starting with a folded apo monomer, the species considered most likely to be involved in misfolding, we used high-temperature all-atom molecular dynamics simulations to explore the events of the wild-type protein unfolding through the denatured state. All simulations showed early loss of structure along the β5-β6 edge of the β-sandwich, supporting earlier findings of instability in this region. Transition state structures identified from the simulations are in good agreement with experiment, providing detailed, validated molecular models for this elusive state. Furthermore, we compare the process of thermal unfolding investigated here to that of the lethal A4V mutant-induced unfolding at physiological temperature and find that the pathways are very similar.
Collapse
Affiliation(s)
- Tom Schmidlin
- Department of Bioengineering, University of Washington, Seattle, WA 98195-5013, USA
| | | | | | | |
Collapse
|
29
|
The N-terminal helix controls the transition between the soluble and amyloid states of an FF domain. PLoS One 2013; 8:e58297. [PMID: 23505482 PMCID: PMC3591442 DOI: 10.1371/journal.pone.0058297] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 02/01/2013] [Indexed: 02/03/2023] Open
Abstract
Background Protein aggregation is linked to the onset of an increasing number of human nonneuropathic (either localized or systemic) and neurodegenerative disorders. In particular, misfolding of native α-helical structures and their self-assembly into nonnative intermolecular β-sheets has been proposed to trigger amyloid fibril formation in Alzheimer’s and Parkinson’s diseases. Methods Here, we use a battery of biophysical techniques to elucidate the conformational conversion of native α-helices into amyloid fibrils using an all-α FF domain as a model system. Results We show that under mild denaturing conditions at low pH this FF domain self-assembles into amyloid fibrils. Theoretical and experimental dissection of the secondary structure elements in this domain indicates that the helix 1 at the N-terminus has both the highest α-helical and amyloid propensities, controlling the transition between soluble and aggregated states of the protein. Conclusions The data illustrates the overlap between the propensity to form native α-helices and amyloid structures in protein segments. Significance The results presented contribute to explain why proteins cannot avoid the presence of aggregation-prone regions and indeed use stable α-helices as a strategy to neutralize such potentially deleterious stretches.
Collapse
|
30
|
Vallurupalli P, Kay LE. Probing Slow Chemical Exchange at Carbonyl Sites in Proteins by Chemical Exchange Saturation Transfer NMR Spectroscopy. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201209118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
31
|
Vallurupalli P, Kay LE. Probing slow chemical exchange at carbonyl sites in proteins by chemical exchange saturation transfer NMR spectroscopy. Angew Chem Int Ed Engl 2013; 52:4156-9. [PMID: 23450751 DOI: 10.1002/anie.201209118] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Indexed: 11/12/2022]
Affiliation(s)
- Pramodh Vallurupalli
- Department of Molecular Genetics, The University of Toronto, Toronto, Ontario, M5S1A8, Canada.
| | | |
Collapse
|
32
|
Bouvignies G, Kay LE. Measurement of proton chemical shifts in invisible states of slowly exchanging protein systems by chemical exchange saturation transfer. J Phys Chem B 2012. [PMID: 23194058 DOI: 10.1021/jp311109u] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chemical exchange saturation transfer (CEST) NMR spectroscopy has emerged as a powerful technique for studies of transiently formed, sparsely populated (excited) conformational states of protein molecules in slow exchange with a dominant structure. The most popular form of the experiment, and the version originally developed, uses a weak (1)H radio frequency field to perturb longitudinal magnetization of one state with the effect transferred to magnetization in the second conformation via chemical exchange. A significant limitation of the method for protein applications emerges from (1)H magnetization transfer via dipolar relaxation (NOE effect) that can severely complicate analysis of the resulting CEST profile. This is particularly an issue since the (1)H chemical shifts of the excited state, critical for structural studies of these elusive conformers, become difficult to extract. Here we present a method for measurement of these shifts via CEST experiments in which the NOE effect is not an issue. The methodology is illustrated through applications to a pair of exchanging systems where the results are cross-validated.
Collapse
Affiliation(s)
- Guillaume Bouvignies
- Departments of Molecular Genetics, Biochemistry and Chemistry, The University of Toronto, Toronto, Ontario, Canada, M5S 1A8.
| | | |
Collapse
|
33
|
Folding of the four-helix bundle FF domain from a compact on-pathway intermediate state is governed predominantly by water motion. Proc Natl Acad Sci U S A 2012; 109:19268-73. [PMID: 23129654 DOI: 10.1073/pnas.1212036109] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Friction plays a critical role in protein folding. Frictional forces originating from random solvent and protein fluctuations both retard motion along the folding pathway and activate protein molecules to cross free energy barriers. Studies of friction thus may provide insights into the driving forces underlying protein conformational dynamics. However, the molecular origin of friction in protein folding remains poorly understood because, with the exception of the native conformer, there generally is little detailed structural information on the other states participating in the folding process. Here, we study the folding of the four-helix bundle FF domain that proceeds via a transiently formed, sparsely populated compact on-pathway folding intermediate whose structure was elucidated previously. Because the intermediate is stabilized by both native and nonnative interactions, friction in the folding transition between intermediate and folded states is expected to arise from intrachain reorganization in the protein. However, the viscosity dependencies of rates of folding from or unfolding to the intermediate, as established by relaxation dispersion NMR spectroscopy, clearly indicate that contributions from internal friction are small relative to those from solvent, so solvent frictional forces drive the folding process. Our results emphasize the importance of solvent dynamics in mediating the interconversion between protein configurations, even those that are highly compact, and in equilibrium folding/unfolding fluctuations in general.
Collapse
|
34
|
Transiently populated intermediate functions as a branching point of the FF domain folding pathway. Proc Natl Acad Sci U S A 2012; 109:17777-82. [PMID: 22647611 DOI: 10.1073/pnas.1201799109] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Studies of protein folding and the intermediates that are formed along the folding pathway provide valuable insights into the process by which an unfolded ensemble forms a functional native conformation. However, because intermediates on folding pathways can serve as initiation points of aggregation (implicated in a number of diseases), their characterization assumes an even greater importance. Establishing the role of such intermediates in folding, misfolding, and aggregation remains a major challenge due to their often low populations and short lifetimes. We recently used NMR relaxation dispersion methods and computational techniques to determine an atomic resolution structure of the folding intermediate of a small protein module--the FF domain--with an equilibrium population of 2-3% and a millisecond lifetime, 25 °C. Based on this structure a variant FF domain has been designed in which the native state is selectively destabilized by removing the carboxyl-terminal helix in the native structure to produce a highly populated structural mimic of the intermediate state. Here, we show via solution NMR studies of the designed mimic that the mimic forms distinct conformers corresponding to monomeric and dimeric (K(d) = 0.2 mM) forms of the protein. The conformers exchange on the seconds timescale with a monomer association rate of 1.1 · 10(4) M(-1) s(-1) and with a region responsible for dimerization localized to the amino-terminal residues of the FF domain. This study establishes the FF domain intermediate as a central player in both folding and misfolding pathways and illustrates how incomplete folding can lead to the formation of higher-order structures.
Collapse
|
35
|
Vallurupalli P, Bouvignies G, Kay LE. Studying “Invisible” Excited Protein States in Slow Exchange with a Major State Conformation. J Am Chem Soc 2012; 134:8148-61. [DOI: 10.1021/ja3001419] [Citation(s) in RCA: 353] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pramodh Vallurupalli
- Departments of Molecular
Genetics,
Biochemistry, and Chemistry, The University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Guillaume Bouvignies
- Departments of Molecular
Genetics,
Biochemistry, and Chemistry, The University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Lewis E. Kay
- Departments of Molecular
Genetics,
Biochemistry, and Chemistry, The University of Toronto, Toronto, Ontario, Canada M5S 1A8
- Program in Molecular Structure
and Function, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8
| |
Collapse
|
36
|
Zhao L, Cao Z, Wang J. The Effect of C-Terminal Helix on the Stability of FF Domain Studied by Molecular Dynamics Simulation. Int J Mol Sci 2012; 13:1720-1732. [PMID: 22408419 PMCID: PMC3291988 DOI: 10.3390/ijms13021720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 01/20/2012] [Accepted: 01/29/2012] [Indexed: 01/30/2023] Open
Affiliation(s)
- Liling Zhao
- Shandong Provincial Key Laboratory of Functional Macromolecular Biophysics, Dezhou University, 566 University Rd. West, Dezhou 253023, China; E-Mails: (L.Z.); (Z.C.)
- Department of Physics, Dezhou University, 566 University Rd. West, Dezhou 253023, China
| | - Zanxia Cao
- Shandong Provincial Key Laboratory of Functional Macromolecular Biophysics, Dezhou University, 566 University Rd. West, Dezhou 253023, China; E-Mails: (L.Z.); (Z.C.)
- Department of Physics, Dezhou University, 566 University Rd. West, Dezhou 253023, China
| | - Jihua Wang
- Shandong Provincial Key Laboratory of Functional Macromolecular Biophysics, Dezhou University, 566 University Rd. West, Dezhou 253023, China; E-Mails: (L.Z.); (Z.C.)
- Department of Physics, Dezhou University, 566 University Rd. West, Dezhou 253023, China
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-534-8985933; Fax: +86-534-8985884
| |
Collapse
|
37
|
Barette J, Velyvis A, Religa TL, Korzhnev DM, Kay LE. Cross-validation of the structure of a transiently formed and low populated FF domain folding intermediate determined by relaxation dispersion NMR and CS-Rosetta. J Phys Chem B 2011; 116:6637-44. [PMID: 22148426 DOI: 10.1021/jp209974f] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have recently reported the atomic resolution structure of a low populated and transiently formed on-pathway folding intermediate of the FF domain from human HYPA/FBP11 [Korzhnev, D. M.; Religa, T. L.; Banachewicz, W.; Fersht, A. R.; Kay, L.E. Science 2011, 329, 1312-1316]. The structure was determined on the basis of backbone chemical shift and bond vector orientation restraints of the invisible intermediate state measured using relaxation dispersion nuclear magnetic resonance (NMR) spectroscopy that were subsequently input into the database structure determination program, CS-Rosetta. As a cross-validation of the structure so produced, we present here the solution structure of a mimic of the folding intermediate that is highly populated in solution, obtained from the wild-type domain by mutagenesis that destabilizes the native state. The relaxation dispersion/CS-Rosetta structures of the intermediate are within 2 Å of those of the mimic, with the nonnative interactions in the intermediate also observed in the mimic. This strongly confirms the structure of the FF domain folding intermediate, in particular, and validates the use of relaxation dispersion derived restraints in structural studies of invisible excited states, in general.
Collapse
Affiliation(s)
- Julia Barette
- Department of Molecular Genetics, The University of Toronto, Toronto, Ontario M5S1A8, Canada
| | | | | | | | | |
Collapse
|
38
|
Vallurupalli P, Bouvignies G, Kay LE. Increasing the exchange time-scale that can be probed by CPMG relaxation dispersion NMR. J Phys Chem B 2011; 115:14891-900. [PMID: 22077866 DOI: 10.1021/jp209610v] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Carr-Purcell-Meiboom-Gill relaxation dispersion NMR spectroscopy has emerged as a valuable tool to characterize conformational exchange between major and minor states in a large variety of biomolecules. The window of exchange that is amenable for study, corresponding to rates on the order of 2000 s(-1) or less, is limiting, however. Here we show that a combined analysis of both amide (15)N and (1)H(N) CPMG profiles and major state exchange induced (15)N chemical shift changes leads to significant increases in the exchange time scale for which accurate exchange parameters and chemical shift differences between the interconverting states can be obtained. The utility of the approach is illustrated with examples involving a pair of protein systems that are in the moderately fast exchange regime. In these cases the analysis of dispersion profiles alone is not sufficient to obtain robust measures of exchange parameters and chemical shift differences. Inclusion of major state exchange induced (15)N chemical shift changes measured in ((15)N-(1)H(N)) HMQC and HSQC data sets in addition to the (15)N and (1)H(N) dispersion profiles in the analysis "breaks" the correlation in parameters, allowing accurate values to be obtained. The approach is straightforward to implement and makes use of HMQC/HSQC data sets that are recorded as a matter of routine to obtain chemical shifts of the excited state. It promises to increase the range of exchanging systems involving low populated, transiently formed excited states that can be studied by relaxation dispersion NMR.
Collapse
Affiliation(s)
- Pramodh Vallurupalli
- Department of Molecular Genetics, The University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
39
|
Korzhnev DM, Vernon RM, Religa TL, Hansen AL, Baker D, Fersht AR, Kay LE. Nonnative interactions in the FF domain folding pathway from an atomic resolution structure of a sparsely populated intermediate: an NMR relaxation dispersion study. J Am Chem Soc 2011; 133:10974-82. [PMID: 21639149 PMCID: PMC3705915 DOI: 10.1021/ja203686t] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Several all-helical single-domain proteins have been shown to fold rapidly (microsecond time scale) to a compact intermediate state and subsequently rearrange more slowly to the native conformation. An understanding of this process has been hindered by difficulties in experimental studies of intermediates in cases where they are both low-populated and only transiently formed. One such example is provided by the on-pathway folding intermediate of the small four-helix bundle FF domain from HYPA/FBP11 that is populated at several percent with a millisecond lifetime at room temperature. Here we have studied the L24A mutant that has been shown previously to form nonnative interactions in the folding transition state. A suite of Carr-Purcell-Meiboom-Gill relaxation dispersion NMR experiments have been used to measure backbone chemical shifts and amide bond vector orientations of the invisible folding intermediate that form the input restraints in calculations of atomic resolution models of its structure. Despite the fact that the intermediate structure has many features that are similar to that of the native state, a set of nonnative contacts is observed that is even more extensive than noted previously for the wild-type (WT) folding intermediate. Such nonnative interactions, which must be broken prior to adoption of the native conformation, explain why the transition from the intermediate state to the native conformer (millisecond time scale) is significantly slower than from the unfolded ensemble to the intermediate and why the L24A mutant folds more slowly than the WT.
Collapse
Affiliation(s)
- Dmitry M. Korzhnev
- Departments of Molecular Genetics, Biochemistry and Chemistry, The University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, Connecticut 06030, United States
| | - Robert M. Vernon
- Department of Biochemistry, University of Washington, Box 357350, 1705 NE Pacific Street, Seattle, Washington 98195-7350, United States
| | - Tomasz L. Religa
- Departments of Molecular Genetics, Biochemistry and Chemistry, The University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Alexandar L. Hansen
- Departments of Molecular Genetics, Biochemistry and Chemistry, The University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - David Baker
- Department of Biochemistry, University of Washington, Box 357350, 1705 NE Pacific Street, Seattle, Washington 98195-7350, United States
| | - Alan R. Fersht
- Center for Protein Engineering, Medical Research Council, Cambridge, United Kingdom
| | - Lewis E. Kay
- Departments of Molecular Genetics, Biochemistry and Chemistry, The University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
40
|
Korzhnev DM, Religa TL, Banachewicz W, Fersht AR, Kay LE. A Transient and Low-Populated Protein-Folding Intermediate at Atomic Resolution. Science 2010; 329:1312-6. [DOI: 10.1126/science.1191723] [Citation(s) in RCA: 250] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Proteins can sample conformational states that are critical for function but are seldom detected directly because of their low occupancies and short lifetimes. In this work, we used chemical shifts and bond-vector orientation constraints obtained from nuclear magnetic resonance relaxation dispersion spectroscopy, in concert with a chemical shift–based method for structure elucidation, to determine an atomic-resolution structure of an “invisible” folding intermediate of a small protein module: the FF domain. The structure reveals non-native elements preventing formation of the native conformation in the carboxyl-terminal part of the protein. This is consistent with the kinetics of folding in which a well-structured intermediate forms rapidly and then rearranges slowly to the native state. The approach introduces a general strategy for structure determination of low-populated and transiently formed protein states.
Collapse
|
41
|
What lessons can be learned from studying the folding of homologous proteins? Methods 2010; 52:38-50. [PMID: 20570731 PMCID: PMC2965948 DOI: 10.1016/j.ymeth.2010.06.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 05/25/2010] [Accepted: 06/01/2010] [Indexed: 01/30/2023] Open
Abstract
The studies of the folding of structurally related proteins have proved to be a very important tool for investigating protein folding. Here we review some of the insights that have been gained from such studies. Our highlighted studies show just how such an investigation should be designed and emphasise the importance of the synergy between experiment and theory. We also stress the importance of choosing the right system carefully, exploiting the excellent structural and sequence databases at our disposal.
Collapse
|
42
|
Unfolding simulations reveal the mechanism of extreme unfolding cooperativity in the kinetically stable alpha-lytic protease. PLoS Comput Biol 2010; 6:e1000689. [PMID: 20195497 PMCID: PMC2829044 DOI: 10.1371/journal.pcbi.1000689] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 01/26/2010] [Indexed: 12/03/2022] Open
Abstract
Kinetically stable proteins, those whose stability is derived from their slow unfolding kinetics and not thermodynamics, are examples of evolution's best attempts at suppressing unfolding. Especially in highly proteolytic environments, both partially and fully unfolded proteins face potential inactivation through degradation and/or aggregation, hence, slowing unfolding can greatly extend a protein's functional lifetime. The prokaryotic serine protease α-lytic protease (αLP) has done just that, as its unfolding is both very slow (t1/2 ∼1 year) and so cooperative that partial unfolding is negligible, providing a functional advantage over its thermodynamically stable homologs, such as trypsin. Previous studies have identified regions of the domain interface as critical to αLP unfolding, though a complete description of the unfolding pathway is missing. In order to identify the αLP unfolding pathway and the mechanism for its extreme cooperativity, we performed high temperature molecular dynamics unfolding simulations of both αLP and trypsin. The simulated αLP unfolding pathway produces a robust transition state ensemble consistent with prior biochemical experiments and clearly shows that unfolding proceeds through a preferential disruption of the domain interface. Through a novel method of calculating unfolding cooperativity, we show that αLP unfolds extremely cooperatively while trypsin unfolds gradually. Finally, by examining the behavior of both domain interfaces, we propose a model for the differential unfolding cooperativity of αLP and trypsin involving three key regions that differ between the kinetically stable and thermodynamically stable classes of serine proteases. Proteins, synthesized as linear polymers of amino acids, fold up into compact native states, burying their hydrophobic amino acids into their interiors. Protein folding minimizes the non-specific interactions that unfolded protein chains can make, which include aggregation with other proteins and degradation by proteases. Unfortunately, even in the native state, proteins can partially unfold, opening up regions of their structure and making these adverse events possible. Some proteins, particularly those in harsh environments full of proteases, have evolved to virtually eliminate partial unfolding, significantly reducing their rate of degradation. This elimination of partial unfolding is termed “cooperative,” because unfolding is an all-or-none process. One class of proteins has diverged into two families, one bacterial and highly cooperative and the other animal and non-cooperative. We have used detailed simulations of unfolding for members of each family, α-lytic protease (bacterial) and trypsin (animal) to understand the unfolding pathways of each and the mechanism for the differential unfolding cooperativity. Our results explain prior biochemical experiments, reproduce the large difference in unfolding cooperativity between the families, and point to the interface between α-lytic protease's two domains as essential to establishing unfolding cooperativity. As seen in an unrelated protein family, generation of a cooperative domain interface may be a common evolutionary response for ensuring the highest protein stability.
Collapse
|
43
|
Dynameomics: a consensus view of the protein unfolding/folding transition state ensemble across a diverse set of protein folds. Biophys J 2010; 97:2958-66. [PMID: 19948125 DOI: 10.1016/j.bpj.2009.09.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 08/31/2009] [Accepted: 09/01/2009] [Indexed: 11/21/2022] Open
Abstract
The Dynameomics project aims to simulate a representative sample of all globular protein metafolds under both native and unfolding conditions. We have identified protein unfolding transition state (TS) ensembles from multiple molecular dynamics simulations of high-temperature unfolding in 183 structurally distinct proteins. These data can be used to study individual proteins and individual protein metafolds and to mine for TS structural features common across all proteins. Separating the TS structures into four different fold classes (all proteins, all-alpha, all-beta, and mixed alpha/beta and alpha +beta) resulted in no significant difference in the overall protein properties. The residues with the most contacts in the native state lost the most contacts in the TS ensemble. On average, residues beginning in an alpha-helix maintained more structure in the TS ensemble than did residues starting in beta-strands or any other conformation. The metafolds studied here represent 67% of all known protein structures, and this is, to our knowledge, the largest, most comprehensive study of the protein folding/unfolding TS ensemble to date. One might have expected broad distributions in the average global properties of the TS relative to the native state, indicating variability in the amount of structure present in the TS. Instead, the average global properties converged with low standard deviations across metafolds, suggesting that there are general rules governing the structure and properties of the TS.
Collapse
|
44
|
van Ingen H, Korzhnev DM, Kay LE. An analysis of the effects of 1HN-(1)HN dipolar couplings on the measurement of amide bond vector orientations in invisible protein states by relaxation dispersion NMR. J Phys Chem B 2009; 113:9968-77. [PMID: 19569643 DOI: 10.1021/jp902793y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Marginally and transiently populated conformational states of biomolecules can play important functional roles in biochemical processes. It is of significant interest, therefore, to develop tools for characterizing the structural and dynamical properties of these excited states. One recent development has been the emergence of spin-state-selective relaxation dispersion methods for quantifying dipolar vector orientations in invisible excited-state conformers through measurement of residual dipolar couplings (RDCs). Particularly powerful are 1HN-(15)N RDCs that can be measured with high sensitivity on fractionally aligned, deuterated, uniformly 15N-labeled protein samples. Fractional alignment also produces nonzero 1HN-(1)HN dipolar couplings. These can be problematic for the extraction of robust 1HN-(15)N RDC values, and hence amide bond vector orientations, in cases where the amide proton of interest and a proximal amide proton have small chemical shift differences and a significant 1HN-(1)HN dipolar coupling. Here, we show that while this strong coupling effect leads to aberrant relaxation dispersion profiles, extracted excited-state 1HN-(15)N RDCs are for the most part only marginally affected. Experimental examples of such aberrant profiles are provided, as well as a theoretical consideration of the influence of this strong coupling effect and numerical simulations that assess its impact on extracted parameters.
Collapse
Affiliation(s)
- Hugo van Ingen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada, M5A 1A8
| | | | | |
Collapse
|
45
|
Steward A, McDowell GS, Clarke J. Topology is the principal determinant in the folding of a complex all-alpha Greek key death domain from human FADD. J Mol Biol 2009; 389:425-37. [PMID: 19362094 PMCID: PMC2724026 DOI: 10.1016/j.jmb.2009.04.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 03/26/2009] [Accepted: 04/01/2009] [Indexed: 11/24/2022]
Abstract
In order to elucidate the relative importance of secondary structure and topology in determining folding mechanism, we have carried out a phi-value analysis of the death domain (DD) from human FADD. FADD DD is a 100 amino acid domain consisting of six anti-parallel alpha helices arranged in a Greek key structure. We asked how does the folding of this domain compare with that of (a) other all-alpha-helical proteins and (b) other Greek key proteins? Is the folding pathway determined mainly by secondary structure or is topology the principal determinant? Our Φ-value analysis reveals a striking resemblance to the all-beta Greek key immunoglobulin-like domains. Both fold via diffuse transition states and, importantly, long-range interactions between the four central elements of secondary structure are established in the transition state. The elements of secondary structure that are less tightly associated with the central core are less well packed in both cases. Topology appears to be the dominant factor in determining the pathway of folding in all Greek key domains.
Collapse
Affiliation(s)
- Annette Steward
- University of Cambridge, Department of Chemistry, MRC Centre for Protein Engineering, Lensfield Road, Cambridge, CB2 1EW, UK
| | | | | |
Collapse
|
46
|
Neudecker P, Lundström P, Kay LE. Relaxation dispersion NMR spectroscopy as a tool for detailed studies of protein folding. Biophys J 2009; 96:2045-54. [PMID: 19289032 PMCID: PMC2717354 DOI: 10.1016/j.bpj.2008.12.3907] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2008] [Revised: 12/11/2008] [Accepted: 12/12/2008] [Indexed: 11/16/2022] Open
Abstract
Characterization of the mechanisms by which proteins fold into their native conformations is important not only for protein structure prediction and design but also because protein misfolding intermediates may play critical roles in fibril formation that are commonplace in neurodegenerative disorders. In practice, the study of folding pathways is complicated by the fact that for the most part intermediates are low-populated and short-lived so that biophysical studies are difficult. Due to recent methodological advances, relaxation dispersion NMR spectroscopy has emerged as a particularly powerful tool to obtain high-resolution structural information about protein folding events on the millisecond timescale. Applications of the methodology to study the folding of SH3 domains have shown that folding proceeds via previously undetected on-pathway intermediates, sometimes stabilized by nonnative long-range interactions. The relaxation dispersion approach provides a detailed kinetic and thermodynamic description of the folding process as well as the promise of obtaining an atomic level structural description of intermediate states. We review the concerted application of a variety of recently developed NMR relaxation dispersion experiments to obtain a "high-resolution" picture of the folding pathway of the A39V/N53P/V55L Fyn SH3 domain.
Collapse
Affiliation(s)
| | | | - Lewis E. Kay
- Departments of Molecular Genetics, Biochemistry, and Chemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
47
|
Friel CT, Smith DA, Vendruscolo M, Gsponer J, Radford SE. The mechanism of folding of Im7 reveals competition between functional and kinetic evolutionary constraints. Nat Struct Mol Biol 2009; 16:318-24. [PMID: 19252485 PMCID: PMC2651959 DOI: 10.1038/nsmb.1562] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Accepted: 01/21/2009] [Indexed: 11/17/2022]
Abstract
Many proteins reach their native state through pathways involving the presence of folding intermediates. It is not clear whether this type of folding landscape results from insufficient evolutionary pressure to optimize folding efficiency, or arises from a conflict between functional and folding constraints. Here, using protein-engineering, ultra-rapid mixing and stopped-flow experiments combined with restrained molecular dynamics simulations, we characterize the transition state for the formation of the intermediate populated during the folding of the bacterial immunity protein, Im7, and the subsequent molecular steps leading to the native state. The results provide a comprehensive view of the folding process of this small protein. An analysis of the contributions of native and non-native interactions at different stages of folding reveals how the complexity of the folding landscape arises from concomitant evolutionary pressures for function and folding efficiency.
Collapse
Affiliation(s)
- Claire T Friel
- Astbury Centre for Structural Molecular Biology, University of Leeds, Mount Preston Street, Leeds LS2 9JT, UK
| | | | | | | | | |
Collapse
|
48
|
Abstract
We investigate the structures of the major folding transition states of nine proteins by correlation of published Phi-values with inter-residue contact maps. Combined with previous studies on six proteins, the analysis suggests that at least 10 of the 15 small globular proteins fold via a nucleation-condensation mechanism with a concurrent build-up of secondary and tertiary structure contacts, but a structural consolidation that is clearly nonuniformly distributed over the molecule and most intense in a single structural region suggesting the occurrence of a single folding nucleus. However, on average helix- and sheet-forming residues show somewhat larger Phi-values in the major transition state, suggesting that secondary structure formation is one important driving force in the nucleation-condensation in many proteins and that secondary-structure forming residues tend to be more prominent in folding nuclei. We synthesize the combined information on these 10 of 15 proteins into a unified nucleation-condensation mechanism which also accounts for effects described by the framework, hydrophobic collapse, zipper, and funnel models.
Collapse
Affiliation(s)
- Bengt Nölting
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158-2517, USA
| | | |
Collapse
|
49
|
Nickson AA, Stoll KE, Clarke J. Folding of a LysM domain: entropy-enthalpy compensation in the transition state of an ideal two-state folder. J Mol Biol 2008; 380:557-69. [PMID: 18538343 PMCID: PMC2441773 DOI: 10.1016/j.jmb.2008.05.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 04/14/2008] [Accepted: 05/09/2008] [Indexed: 10/27/2022]
Abstract
Protein-engineering methods (Phi-values) were used to investigate the folding transition state of a lysin motif (LysM) domain from Escherichia coli membrane-bound lytic murein transglycosylase D. This domain consists of just 48 structured residues in a symmetrical betaalphaalphabeta arrangement and is the smallest alphabeta protein yet investigated using these methods. An extensive mutational analysis revealed a highly robust folding pathway with no detectable transition state plasticity, indicating that LysM is an example of an ideal two-state folder. The pattern of Phi-values denotes a highly polarised transition state, with significant formation of the helices but no structure within the beta-sheet. Remarkably, this transition state remains polarised after circularisation of the domain, and exhibits an identical Phi-value pattern; however, the interactions within the transition state are uniformly weaker in the circular variant. This observation is supported by results from an Eyring analysis of the folding rates of the two proteins. We propose that the folding pathway of LysM is dominated by enthalpic rather than entropic considerations, and suggest that the lower entropy cost of formation of the circular transition state is balanced, to some extent, by the lower enthalpy of contacts within this structure.
Collapse
Affiliation(s)
- Adrian A Nickson
- University of Cambridge Department of Chemistry, MRC Centre for Protein Engineering, Lensfield Road, Cambridge, CB2 1EW, UK
| | | | | |
Collapse
|
50
|
Smolin N, Daggett V. Formation of Ice-like Water Structure on the Surface of an Antifreeze Protein. J Phys Chem B 2008; 112:6193-202. [DOI: 10.1021/jp710546e] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nikolai Smolin
- Department of Bioengineering, University of Washington, Seattle, Washington 98195-5013
| | - Valerie Daggett
- Department of Bioengineering, University of Washington, Seattle, Washington 98195-5013
| |
Collapse
|