1
|
Hall BM, Roberts SA, Cordes MHJ. Extreme divergence between one-to-one orthologs: the structure of N15 Cro bound to operator DNA and its relationship to the λ Cro complex. Nucleic Acids Res 2020; 47:7118-7129. [PMID: 31180482 PMCID: PMC6649833 DOI: 10.1093/nar/gkz507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 05/25/2019] [Accepted: 06/01/2019] [Indexed: 11/13/2022] Open
Abstract
The gene cro promotes lytic growth of phages through binding of Cro protein dimers to regulatory DNA sites. Most Cro proteins are one-to-one orthologs, yet their sequence, structure and binding site sequences are quite divergent across lambdoid phages. We report the cocrystal structure of bacteriophage N15 Cro with a symmetric consensus site. We contrast this complex with an orthologous structure from phage λ, which has a dissimilar binding site sequence and a Cro protein that is highly divergent in sequence, dimerization interface and protein fold. The N15 Cro complex has less DNA bending and smaller DNA-induced changes in protein structure. N15 Cro makes fewer direct contacts and hydrogen bonds to bases, relying mostly on water-mediated and Van der Waals contacts to recognize the sequence. The recognition helices of N15 Cro and λ Cro make mostly nonhomologous and nonanalogous contacts. Interface alignment scores show that half-site binding geometries of N15 Cro and λ Cro are less similar to each other than to distantly related CI repressors. Despite this divergence, the Cro family shows several code-like protein–DNA sequence covariations. In some cases, orthologous genes can achieve a similar biological function using very different specific molecular interactions.
Collapse
Affiliation(s)
- Branwen M Hall
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Sue A Roberts
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Matthew H J Cordes
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
2
|
Kojima T, Hata J, Oka H, Hayashi K, Hitomi K, Nakano H. Spatial arrangement of proteins using scCro-tag: application for an in situ enzymatic microbead assay. Biosci Biotechnol Biochem 2018; 82:1911-1921. [PMID: 30067465 DOI: 10.1080/09168451.2018.1501265] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In natural systems, various metabolic reactions are often spatially organized to increase enzyme activity and specificity. Thus, by spatially arranging enzyme molecules in synthetic systems to imitate these natural systems, it is possible to promote a high rate of enzymatic turnover. In this present study, a normal and mutant form of the scCro DNA-binding protein were shown to bind orthogonally to specific recognition sequences under appropriate conditions. Furthermore, these DNA-binding tags were used to establish an enzyme assay system based on the spatial arrangement of transglutaminase and its substrate at the molecular level. Together, the results of the present study suggest that the scCro-tag may be a powerful tool to facilitate the synthetic spatial arrangement of proteins on a DNA ligand.
Collapse
Affiliation(s)
- Takaaki Kojima
- a Graduate School of Bioagricultural Sciences , Nagoya University , Nagoya , Japan
| | - Jumpei Hata
- a Graduate School of Bioagricultural Sciences , Nagoya University , Nagoya , Japan
| | - Hiroya Oka
- a Graduate School of Bioagricultural Sciences , Nagoya University , Nagoya , Japan
| | - Kenta Hayashi
- a Graduate School of Bioagricultural Sciences , Nagoya University , Nagoya , Japan
| | - Kiyotaka Hitomi
- b Graduate School of Pharmaceutical Sciences , Nagoya University , Nagoya , Japan
| | - Hideo Nakano
- a Graduate School of Bioagricultural Sciences , Nagoya University , Nagoya , Japan
| |
Collapse
|
3
|
Korostelev YD, Zharov IA, Mironov AA, Rakhmaininova AB, Gelfand MS. Identification of Position-Specific Correlations between DNA-Binding Domains and Their Binding Sites. Application to the MerR Family of Transcription Factors. PLoS One 2016; 11:e0162681. [PMID: 27690309 PMCID: PMC5045206 DOI: 10.1371/journal.pone.0162681] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 08/26/2016] [Indexed: 11/25/2022] Open
Abstract
The large and increasing volume of genomic data analyzed by comparative methods provides information about transcription factors and their binding sites that, in turn, enables statistical analysis of correlations between factors and sites, uncovering mechanisms and evolution of specific protein-DNA recognition. Here we present an online tool, Prot-DNA-Korr, designed to identify and analyze crucial protein-DNA pairs of positions in a family of transcription factors. Correlations are identified by analysis of mutual information between columns of protein and DNA alignments. The algorithm reduces the effects of common phylogenetic history and of abundance of closely related proteins and binding sites. We apply it to five closely related subfamilies of the MerR family of bacterial transcription factors that regulate heavy metal resistance systems. We validate the approach using known 3D structures of MerR-family proteins in complexes with their cognate DNA binding sites and demonstrate that a significant fraction of correlated positions indeed form specific side-chain-to-base contacts. The joint distribution of amino acids and nucleotides hence may be used to predict changes of specificity for point mutations in transcription factors.
Collapse
Affiliation(s)
- Yuriy D. Korostelev
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, 19-1 Bolshoy Karetny pereulok, Moscow, Russia, 127994
- Department of Bioengineering and Bioinformatics, Moscow State University, 1-73 Vorobievy Gory, Moscow, Russia, 119991
| | - Ilya A. Zharov
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, 19-1 Bolshoy Karetny pereulok, Moscow, Russia, 127994
| | - Andrey A. Mironov
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, 19-1 Bolshoy Karetny pereulok, Moscow, Russia, 127994
- Department of Bioengineering and Bioinformatics, Moscow State University, 1-73 Vorobievy Gory, Moscow, Russia, 119991
| | - Alexandra B. Rakhmaininova
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, 19-1 Bolshoy Karetny pereulok, Moscow, Russia, 127994
| | - Mikhail S. Gelfand
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, 19-1 Bolshoy Karetny pereulok, Moscow, Russia, 127994
- Department of Bioengineering and Bioinformatics, Moscow State University, 1-73 Vorobievy Gory, Moscow, Russia, 119991
- * E-mail:
| |
Collapse
|
4
|
Binding Specificities of the Telomere Phage ϕKO2 Prophage Repressor CB and Lytic Repressor Cro. Viruses 2016; 8:v8080213. [PMID: 27527206 PMCID: PMC4997575 DOI: 10.3390/v8080213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/15/2016] [Accepted: 07/25/2016] [Indexed: 11/16/2022] Open
Abstract
Temperate bacteriophages possess a genetic switch which regulates the lytic and lysogenic cycle. The genomes of the temperate telomere phages N15, PY54, and ϕKO2 harbor a primary immunity region (immB) comprising genes for the prophage repressor (cI or cB), the lytic repressor (cro) and a putative antiterminator (q). The roles of these products are thought to be similar to those of the lambda proteins CI (CI prophage repressor), Cro (Cro repressor), and Q (antiterminator Q), respectively. Moreover, the gene order and the location of several operator sites in the prototype telomere phage N15 and in ϕKO2 are reminiscent of lambda-like phages. We determined binding sites of the ϕKO2 prophage repressor CB and lytic repressor Cro on the ϕKO2 genome in detail by electrophoretic mobility shift assay (EMSA) studies. Unexpectedly, ϕKO2 CB and Cro revealed different binding specificities. CB was bound to three OR operators in the intergenic region between cB and cro, two OL operators between cB and the replication gene repA and even to operators of N15. Cro bound exclusively to the 16 bp operator site OR3 upstream of the ϕKO2 prophage repressor gene. The ϕKO2 genes cB and cro are regulated by several strong promoters overlapping with the OR operators. The data suggest that Cro represses cB transcription but not its own synthesis, as already reported for PY54 Cro. Thus, not only PY54, but also phage ϕKO2 possesses a genetic switch that diverges significantly from the switch of lambda-like phages.
Collapse
|
5
|
A λ Cro-Like Repressor Is Essential for the Induction of Conjugative Transfer of SXT/R391 Elements in Response to DNA Damage. J Bacteriol 2015; 197:3822-33. [PMID: 26438816 DOI: 10.1128/jb.00638-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/26/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Integrative and conjugative elements (ICEs) of the SXT/R391 family are the main contributors to acquired multidrug resistance in the seventh pandemic lineage of Vibrio cholerae, the etiological agent of the diarrheal disease cholera. Conjugative transfer of SXT/R391 ICEs is triggered by antibiotics and agents promoting DNA damage through RecA-dependent autoproteolysis of SetR, an ICE-encoded λ CI-like repressor. Here, we describe the role of CroS, a distant λ Cro homolog, as a key component contributing to the regulation of expression of the activator SetCD that orchestrates the expression of the conjugative transfer genes. We show that deletion of croS abolishes the SOS response-dependent induction of SXT despite the presence of a functional setR gene. Using quantitative reverse transcription-PCR and lacZ reporter assays, we also show that CroS represses setR and setCD expression by binding to operator sites shared with SetR. Furthermore, we provide evidence of an additional operator site bound by SetR and CroS. Finally, we show that SetCD expression generates a positive feedback loop due to SXT excision and replication in a fraction of the cell population. Together, these results refine our understanding of the genetic regulation governing the propagation of major vectors of multidrug resistance. IMPORTANCE Healthcare systems worldwide are challenged by an alarming drug resistance crisis caused by the massive and rapid propagation of antibiotic resistance genes and the associated emergence of multidrug-resistant pathogenic bacteria. SXT/R391 ICEs contribute to this phenomenon not only in clinical and environmental vibrios but also in several members of the family Enterobacteriaceae. We have identified and characterized here the regulator CroS as a key factor in the stimulation of conjugative transfer of these ICEs in response to DNA-damaging agents. We have also untangled conflicting evidence regarding autoactivation of transfer by the master activator of SXT/R391 ICEs, SetCD. Discovery of CroS provides a clearer and more complete understanding of the regulatory network that governs the dissemination of SXT/R391 ICEs in bacterial populations.
Collapse
|
6
|
Hammerl JA, Roschanski N, Lurz R, Johne R, Lanka E, Hertwig S. The Molecular Switch of Telomere Phages: High Binding Specificity of the PY54 Cro Lytic Repressor to a Single Operator Site. Viruses 2015; 7:2771-93. [PMID: 26043380 PMCID: PMC4488713 DOI: 10.3390/v7062746] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 05/28/2015] [Indexed: 11/16/2022] Open
Abstract
Temperate bacteriophages possess a molecular switch, which regulates the lytic and lysogenic growth. The genomes of the temperate telomere phages N15, PY54 and ϕKO2 harbor a primary immunity region (immB) comprising genes for the prophage repressor, the lytic repressor and a putative antiterminator. The roles of these products are thought to be similar to those of the lambda proteins CI, Cro and Q, respectively. Moreover, the gene order and the location of several operator sites in the prototype telomere phage N15 and in ϕKO2 are also reminiscent of lambda-like phages. By contrast, in silico analyses revealed the presence of only one operator (OR3) in PY54. The purified PY54 Cro protein was used for EMSA studies demonstrating that it exclusively binds to a 16-bp palindromic site (OR3) upstream of the prophage repressor gene. The OR3 operator sequences of PY54 and ϕKO2/N15 only differ by their peripheral base pairs, which are responsible for Cro specificity. PY54 cI and cro transcription is regulated by highly active promoters initiating the synthesis of a homogenious species of leaderless mRNA. The location of the PY54 Cro binding site and of the identified promoters suggests that the lytic repressor suppresses cI transcription but not its own synthesis. The results indicate an unexpected diversity of the growth regulation mechanisms in lambda-related phages.
Collapse
Affiliation(s)
- Jens Andre Hammerl
- Bundesinstitut für Risikobewertung (Federal Institute for Risk Assessment), Department of Biological Safety, Diedersdorfer Weg 1, D-12277 Berlin, Germany.
| | - Nicole Roschanski
- Free University Berlin, Institute of Animal Hygiene and Environmental Health, Robert-von-Ostertag-Str. 7-13, D-14163 Berlin, Germany.
| | - Rudi Lurz
- Max-Planck-Institut für Molekulare Genetik, Ihnestraße 63-73, D-14195 Berlin, Germany.
| | - Reimar Johne
- Bundesinstitut für Risikobewertung (Federal Institute for Risk Assessment), Department of Biological Safety, Diedersdorfer Weg 1, D-12277 Berlin, Germany.
| | - Erich Lanka
- Max-Planck-Institut für Molekulare Genetik, Ihnestraße 63-73, D-14195 Berlin, Germany.
| | - Stefan Hertwig
- Bundesinstitut für Risikobewertung (Federal Institute for Risk Assessment), Department of Biological Safety, Diedersdorfer Weg 1, D-12277 Berlin, Germany.
| |
Collapse
|
7
|
Hall BM, Vaughn EE, Begaye AR, Cordes MHJ. Reengineering Cro protein functional specificity with an evolutionary code. J Mol Biol 2011; 413:914-28. [PMID: 21945527 DOI: 10.1016/j.jmb.2011.08.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 08/13/2011] [Accepted: 08/29/2011] [Indexed: 11/17/2022]
Abstract
Cro proteins from different lambdoid bacteriophages are extremely variable in their target consensus DNA sequences and constitute an excellent model for evolution of transcription factor specificity. We experimentally tested a bioinformatically derived evolutionary code relating switches between pairs of amino acids at three recognition helix sites in Cro proteins to switches between pairs of nucleotide bases in the cognate consensus DNA half-sites. We generated all eight possible code variants of bacteriophage λ Cro and used electrophoretic mobility shift assays to compare binding of each variant to its own putative cognate site and to the wild-type cognate site; we also tested the wild-type protein against all eight DNA sites. Each code variant showed stronger binding to its putative cognate site than to the wild-type site, except some variants containing proline at position 27; each also bound its cognate site better than wild-type Cro bound the same site. Most code variants, however, displayed poorer affinity and specificity than wild-type λ Cro. Fluorescence anisotropy assays on λ Cro and the triple code variant (PSQ) against the two cognate sites confirmed the switch in specificity and showed larger apparent effects on binding affinity and specificity. Bacterial one-hybrid assays of λ Cro and PSQ against libraries of sequences with a single randomized half-site showed the expected switches in specificity at two of three coded positions and no clear switches in specificity at noncoded positions. With a few caveats, these results confirm that the proposed Cro evolutionary code can be used to reengineer Cro specificity.
Collapse
Affiliation(s)
- Branwen M Hall
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | |
Collapse
|
8
|
Camas FM, Alm EJ, Poyatos JF. Local gene regulation details a recognition code within the LacI transcriptional factor family. PLoS Comput Biol 2010; 6:e1000989. [PMID: 21085639 PMCID: PMC2978694 DOI: 10.1371/journal.pcbi.1000989] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 10/05/2010] [Indexed: 12/21/2022] Open
Abstract
The specific binding of regulatory proteins to DNA sequences exhibits no clear patterns of association between amino acids (AAs) and nucleotides (NTs). This complexity of protein-DNA interactions raises the question of whether a simple set of wide-coverage recognition rules can ever be identified. Here, we analyzed this issue using the extensive LacI family of transcriptional factors (TFs). We searched for recognition patterns by introducing a new approach to phylogenetic footprinting, based on the pervasive presence of local regulation in prokaryotic transcriptional networks. We identified a set of specificity correlations –determined by two AAs of the TFs and two NTs in the binding sites– that is conserved throughout a dominant subgroup within the family regardless of the evolutionary distance, and that act as a relatively consistent recognition code. The proposed rules are confirmed with data of previous experimental studies and by events of convergent evolution in the phylogenetic tree. The presence of a code emphasizes the stable structural context of the LacI family, while defining a precise blueprint to reprogram TF specificity with many practical applications. Transcriptional factors (TF) are proteins that bind specific short DNA sequences adjacent to the genes whose transcription they regulate. Although the nucleotide sequence recognized by a given regulator depends on the amino acids contacting the DNA, the mode in which amino acids and nucleotides interact is strongly influenced by the overall protein structure. This prevents the existence of a universal amino acid/nucleotide recognition code. However, recognition rules could be formulated for regulators sharing a similar structure, i.e., for a family or subfamily of TFs. In fact, such rules have already been described for several sets which, in each case, involved a limited number of related TFs. In this study, we ask to what extent a wide-coverage recognition code might actually be found. To answer this question, we use the extensive LacI family of transcriptional regulators. Our analysis suggests that a set of relatively consistent recognition rules does apply within a major subset of this family. These rules could ultimately act as a blueprint for the synthetic redesign of TFs with new specificities.
Collapse
Affiliation(s)
- Francisco M Camas
- Logic of Genomic Systems Laboratory, Spanish National Biotechnology Centre, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.
| | | | | |
Collapse
|
9
|
Bradley MJ, Chivers PT, Baker NA. Molecular dynamics simulation of the Escherichia coli NikR protein: equilibrium conformational fluctuations reveal interdomain allosteric communication pathways. J Mol Biol 2008; 378:1155-73. [PMID: 18433769 PMCID: PMC2478562 DOI: 10.1016/j.jmb.2008.03.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 03/05/2008] [Accepted: 03/07/2008] [Indexed: 11/23/2022]
Abstract
Escherichia coli NikR is a homotetrameric Ni(2+)- and DNA-binding protein that functions as a transcriptional repressor of the NikABCDE nickel permease. The protein is composed of two distinct domains. The N-terminal 50 amino acids of each chain forms part of the dimeric ribbon-helix-helix (RHH) domains, a well-studied DNA-binding fold. The 83-residue C-terminal nickel-binding domain forms an ACT (aspartokinase, chorismate mutase, and TyrA) fold and contains the tetrameric interface. In this study, we have utilized an equilibrium molecular dynamics simulation in order to explore the conformational dynamics of the NikR tetramer and determine important residue interactions within and between the RHH and ACT domains to gain insight into the effects of Ni(2+) on DNA-binding activity. The molecular simulation data were analyzed using two different correlation measures based on fluctuations in atomic position and noncovalent contacts together with a clustering algorithm to define groups of residues with similar correlation patterns for both types of correlation measure. Based on these analyses, we have defined a series of residue interrelationships that describe an allosteric communication pathway between the Ni(2+)- and DNA-binding sites, which are separated by 40 A. Several of the residues identified by our analyses have been previously shown experimentally to be important for NikR function. An additional subset of the identified residues structurally connects the experimentally implicated residues and may help coordinate the allosteric communication between the ACT and RHH domains.
Collapse
Affiliation(s)
- Michael J. Bradley
- Graduate Program in Molecular Biophysics, Washington University in St. Louis
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis
| | - Peter T. Chivers
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis
| | - Nathan A. Baker
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis
| |
Collapse
|
10
|
Dubrava MS, Ingram WM, Roberts SA, Weichsel A, Montfort WR, Cordes MHJ. N15 Cro and lambda Cro: orthologous DNA-binding domains with completely different but equally effective homodimer interfaces. Protein Sci 2008; 17:803-12. [PMID: 18369196 DOI: 10.1110/ps.073330808] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Bacteriophage Cro proteins bind to target DNA as dimers but do not all dimerize with equal strength, and differ in fold in the region of the dimer interface. We report the structure of the Cro protein from Enterobacteria phage N15 at 1.05 A resolution. The subunit fold contains five alpha-helices and is closely similar to the structure of P22 Cro (1.3 A backbone room mean square difference over 52 residues), but quite different from that of lambda Cro, a structurally diverged member of this family with a mixed alpha-helix/beta-sheet fold. N15 Cro crystallizes as a biological dimer with an extensive interface (1303 A(2) change in accessible surface area per dimer) and also dimerizes in solution with a K(d) of 5.1 +/- 1.5 microM. Its dimerization is much stronger than that of its structural homolog P22 Cro, which does not self-associate detectably in solution. Instead, the level of self-association and interfacial area for N15 Cro is similar to that of lambda Cro, even though these two orthologs do not share the same fold and have dimer interfaces that are qualitatively different in structure. The common Cro ancestor is thought to be an all-helical monomer similar to P22 Cro. We propose that two Cro descendants independently developed stronger dimerization by entirely different mechanisms.
Collapse
Affiliation(s)
- Matthew S Dubrava
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | | | |
Collapse
|
11
|
Hall BM, Roberts SA, Heroux A, Cordes MHJ. Two structures of a lambda Cro variant highlight dimer flexibility but disfavor major dimer distortions upon specific binding of cognate DNA. J Mol Biol 2007; 375:802-11. [PMID: 18054042 DOI: 10.1016/j.jmb.2007.10.082] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Revised: 10/29/2007] [Accepted: 10/30/2007] [Indexed: 10/22/2022]
Abstract
Previously reported crystal structures of free and DNA-bound dimers of lambda Cro differ strongly (about 4 A backbone rmsd), suggesting both flexibility of the dimer interface and induced-fit protein structure changes caused by sequence-specific DNA binding. Here, we present two crystal structures, in space groups P3(2)21 and C2 at 1.35 and 1.40 A resolution, respectively, of a variant of lambda Cro with three mutations in its recognition helix (Q27P/A29S/K32Q, or PSQ for short). One dimer structure (P3(2)21; PSQ form 1) resembles the DNA-bound wild-type Cro dimer (1.0 A backbone rmsd), while the other (C2; PSQ form 2) resembles neither unbound (3.6 A) nor bound (2.4 A) wild-type Cro. Both PSQ form 2 and unbound wild-type dimer crystals have a similar interdimer beta-sheet interaction between the beta1 strands at the edges of the dimer. In the former, an infinite, open beta-structure along one crystal axis results, while in the latter, a closed tetrameric barrel is formed. Neither the DNA-bound wild-type structure nor PSQ form 1 contains these interdimer interactions. We propose that beta-sheet superstructures resulting from crystal contact interactions distort Cro dimers from their preferred solution conformation, which actually resembles the DNA-bound structure. These results highlight the remarkable flexibility of lambda Cro but also suggest that sequence-specific DNA binding may not induce large changes in the protein structure.
Collapse
Affiliation(s)
- Branwen M Hall
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | |
Collapse
|