1
|
Wang M, Wei J, Jiang L, Jiang L, Zhang J, He X, Ren Y, Wang Z, Sun Y, Wang Z. Coevolutionary phage training and Joint application delays the emergence of phage resistance in Pseudomonas aeruginosa. Virus Evol 2023; 9:vead067. [PMID: 38089014 PMCID: PMC10712906 DOI: 10.1093/ve/vead067] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 10/16/2024] Open
Abstract
Antibiotic-resistant bacteria are current threats to available antibiotic therapies, and this has renewed interest in the therapeutic use of phage as an alternative. However, development of phage resistance has led to unsuccessful therapeutic outcomes. In the current study, we applied phage training to minimize bacterial phage resistance and to improve treatment outcome by adapting the phage to their target hosts during co-evolution. We isolated and characterized a novel Pseudomonas aeruginosa N4-like lytic phage (PWJ) from wastewater in Yangzhou, China. PWJ is a double-stranded DNA podovirus that can efficiently lyse the model strain ATCC 27,853 and opportunistic pathogen PAO1. Genome sequencing of PWJ revealed features similar to those of the N4-like P. aeruginosa phage YH6. We used PWJ to screen for an evolved trained phage (WJ_Ev14) that restored infectivity to PWJ phage bacterial resisters. BLASTN analysis revealed that WJ_Ev14 is identical to its ancestor PWJ except for the amino acid substitution R1051S in its tail fiber protein. Moreover, phage adsorption tests and transmission electron microscopy of resistant bacteria demonstrated that the R1051S substitution was most likely the reason WJ_Ev14 could re-adsorb and regain infectivity. Furthermore, phage therapy assays in vitro and in a mouse P. aeruginosa lung infection model demonstrated that PWJ treatment resulted in improved clinical results and a reduction in lung bacterial load whereas the joint phage cocktail (PWJ+ WJ_Ev14) was better able to delay the emergence of resister bacteria. The phage cocktail (PWJ +WJ_Ev14) represents a promising candidate for inclusion in phage cocktails developed for clinical applications.
Collapse
Affiliation(s)
| | - Jingyi Wei
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Daxue Rd 888, Yangzhou, Jiangsu 225009, China
- Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), College of Veterinary Medicine, Daxue Rd 888, Yangzhou, Jiangsu 225009, China
| | - Lei Jiang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Daxue Rd 888, Yangzhou, Jiangsu 225009, China
- Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), College of Veterinary Medicine, Daxue Rd 888, Yangzhou, Jiangsu 225009, China
| | - Li Jiang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Daxue Rd 888, Yangzhou, Jiangsu 225009, China
- Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), College of Veterinary Medicine, Daxue Rd 888, Yangzhou, Jiangsu 225009, China
| | - Junxuan Zhang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Wushan Rd 483, Guangzhou, Guangdong 510642, China
| | - Xiaolu He
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Wushan Rd 483, Guangzhou, Guangdong 510642, China
| | - Yiwen Ren
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Daxue Rd 888, Yangzhou, Jiangsu 225009, China
- Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), College of Veterinary Medicine, Daxue Rd 888, Yangzhou, Jiangsu 225009, China
| | - Zixuan Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Daxue Rd 888, Yangzhou, Jiangsu 225009, China
- Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), College of Veterinary Medicine, Daxue Rd 888, Yangzhou, Jiangsu 225009, China
| | - Yongxue Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Wushan Rd 483, Guangzhou, Guangdong 510642, China
- South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Wushan Rd 483, Guangzhou, Guangdong 510642, China
| | - Zhiqiang Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Daxue Rd 888, Yangzhou, Jiangsu 225009, China
- Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), College of Veterinary Medicine, Daxue Rd 888, Yangzhou, Jiangsu 225009, China
- International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Daxue Rd 888, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
2
|
Lokareddy RK, Hou CFD, Li F, Yang R, Cingolani G. Viral Small Terminase: A Divergent Structural Framework for a Conserved Biological Function. Viruses 2022; 14:v14102215. [PMID: 36298770 PMCID: PMC9611059 DOI: 10.3390/v14102215] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/07/2022] Open
Abstract
The genome packaging motor of bacteriophages and herpesviruses is built by two terminase subunits, known as large (TerL) and small (TerS), both essential for viral genome packaging. TerL structure, composition, and assembly to an empty capsid, as well as the mechanisms of ATP-dependent DNA packaging, have been studied in depth, shedding light on the chemo-mechanical coupling between ATP hydrolysis and DNA translocation. Instead, significantly less is known about the small terminase subunit, TerS, which is dispensable or even inhibitory in vitro, but essential in vivo. By taking advantage of the recent revolution in cryo-electron microscopy (cryo-EM) and building upon a wealth of crystallographic structures of phage TerSs, in this review, we take an inventory of known TerSs studied to date. Our analysis suggests that TerS evolved and diversified into a flexible molecular framework that can conserve biological function with minimal sequence and quaternary structure conservation to fit different packaging strategies and environmental conditions.
Collapse
|
3
|
Whole genome sequence analysis of bacteriophage P1 that infects the Lactobacillus plantarum. Virus Genes 2022; 58:570-583. [DOI: 10.1007/s11262-022-01929-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 07/12/2022] [Indexed: 10/15/2022]
|
4
|
Abstract
Although the process of genome encapsidation is highly conserved in tailed bacteriophages and eukaryotic double-stranded DNA viruses, there are two distinct packaging pathways that these viruses use to catalyze ATP-driven translocation of the viral genome into a preassembled procapsid shell. One pathway is used by ϕ29-like phages and adenoviruses, which replicate and subsequently package a monomeric, unit-length genome covalently attached to a virus/phage-encoded protein at each 5'-end of the dsDNA genome. In a second, more ubiquitous packaging pathway characterized by phage lambda and the herpesviruses, the viral DNA is replicated as multigenome concatemers linked in a head-to-tail fashion. Genome packaging in these viruses thus requires excision of individual genomes from the concatemer that are then translocated into a preassembled procapsid. Hence, the ATPases that power packaging in these viruses also possess nuclease activities that cut the genome from the concatemer at the beginning and end of packaging. This review focuses on proposed mechanisms of genome packaging in the dsDNA viruses using unit-length ϕ29 and concatemeric λ genome packaging motors as representative model systems.
Collapse
Affiliation(s)
- Carlos E Catalano
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, United States.
| | - Marc C Morais
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural and Molecular Biophysics, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| |
Collapse
|
5
|
Zhang J, He X, Shen S, Shi M, Zhou Q, Liu J, Wang M, Sun Y. Effects of the Newly Isolated T4-like Phage on Transmission of Plasmid-Borne Antibiotic Resistance Genes via Generalized Transduction. Viruses 2021; 13:v13102070. [PMID: 34696499 PMCID: PMC8538795 DOI: 10.3390/v13102070] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 10/07/2021] [Indexed: 01/21/2023] Open
Abstract
Bacteriophages are the most abundant biological entities on earth and may play an important role in the transmission of antibiotic resistance genes (ARG) from host bacteria. Although the specialized transduction mediated by the temperate phage targeting a specific insertion site is widely explored, the carrying characteristics of “transducing particles” for different ARG subtypes in the process of generalized transduction remains largely unclear. Here, we isolated a new T4-like lytic phage targeting transconjugant Escherichia coli C600 that contained plasmid pHNAH67 (KX246266) and encoded 11 different ARG subtypes. We found that phage AH67C600_Q9 can misload plasmid-borne ARGs and package host DNA randomly. Moreover, for any specific ARG subtype, the carrying frequency was negatively correlated with the multiplicity of infection (MOI). Further, whole genome sequencing (WGS) identified that only 0.338% (4/1183) of the contigs of an entire purified phage population contained ARG sequences; these were floR, sul2, aph(4)-Ia, and fosA. The low coverage indicated that long-read sequencing methods are needed to explore the mechanism of ARG transmission during generalized transduction.
Collapse
Affiliation(s)
- Junxuan Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (X.H.); (S.S.); (M.S.); (Q.Z.); (J.L.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510000, China
| | - Xiaolu He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (X.H.); (S.S.); (M.S.); (Q.Z.); (J.L.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510000, China
| | - Shuqing Shen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (X.H.); (S.S.); (M.S.); (Q.Z.); (J.L.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510000, China
| | - Mengya Shi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (X.H.); (S.S.); (M.S.); (Q.Z.); (J.L.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510000, China
| | - Qin Zhou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (X.H.); (S.S.); (M.S.); (Q.Z.); (J.L.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510000, China
| | - Junlin Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (X.H.); (S.S.); (M.S.); (Q.Z.); (J.L.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510000, China
| | - Mianzhi Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Correspondence: (M.W.); (Y.S.); Tel.: +86-159-5270-4257 (M.W.); +86-135-0304-8309 (Y.S.)
| | - Yongxue Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (X.H.); (S.S.); (M.S.); (Q.Z.); (J.L.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510000, China
- Correspondence: (M.W.); (Y.S.); Tel.: +86-159-5270-4257 (M.W.); +86-135-0304-8309 (Y.S.)
| |
Collapse
|
6
|
Ignatiou A, Brasilès S, El Sadek Fadel M, Bürger J, Mielke T, Topf M, Tavares P, Orlova EV. Structural transitions during the scaffolding-driven assembly of a viral capsid. Nat Commun 2019; 10:4840. [PMID: 31649265 PMCID: PMC6813328 DOI: 10.1038/s41467-019-12790-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/25/2019] [Indexed: 11/11/2022] Open
Abstract
Assembly of tailed bacteriophages and herpesviruses starts with formation of procapsids (virion precursors without DNA). Scaffolding proteins (SP) drive assembly by chaperoning the major capsid protein (MCP) to build an icosahedral lattice. Here we report near-atomic resolution cryo-EM structures of the bacteriophage SPP1 procapsid, the intermediate expanded procapsid with partially released SPs, and the mature capsid with DNA. In the intermediate state, SPs are bound only to MCP pentons and to adjacent subunits from hexons. SP departure results in the expanded state associated with unfolding of the MCP N-terminus and straightening of E-loops. The newly formed extensive inter-capsomere bonding appears to compensate for release of SPs that clasp MCP capsomeres together. Subsequent DNA packaging instigates bending of MCP A domain loops outwards, closing the hexons central opening and creating the capsid auxiliary protein binding interface. These findings provide a molecular basis for the sequential structural rearrangements during viral capsid maturation.
Collapse
Affiliation(s)
- Athanasios Ignatiou
- Institute of Structural and Molecular Biology, Birkbeck College, Malet Street, London, WC1E 7HX, UK
| | - Sandrine Brasilès
- Department of Virology, Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Mehdi El Sadek Fadel
- Department of Virology, Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Jörg Bürger
- Max-Planck-Institut für Molekulare Genetik, Microscopy and Cryo-Electron Microscopy Group, Ihnestraße 63-73, 14195, Berlin, Germany
- Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Thorsten Mielke
- Max-Planck-Institut für Molekulare Genetik, Microscopy and Cryo-Electron Microscopy Group, Ihnestraße 63-73, 14195, Berlin, Germany
| | - Maya Topf
- Institute of Structural and Molecular Biology, Birkbeck College, Malet Street, London, WC1E 7HX, UK
| | - Paulo Tavares
- Department of Virology, Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France.
| | - Elena V Orlova
- Institute of Structural and Molecular Biology, Birkbeck College, Malet Street, London, WC1E 7HX, UK.
| |
Collapse
|
7
|
Asija K, Teschke CM. A Hydrophobic Network: Intersubunit and Intercapsomer Interactions Stabilizing the Bacteriophage P22 Capsid. J Virol 2019; 93:e00727-19. [PMID: 31068429 PMCID: PMC6600197 DOI: 10.1128/jvi.00727-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 05/02/2019] [Indexed: 11/20/2022] Open
Abstract
Double-stranded DNA (dsDNA) tailed phages and herpesviruses assemble their capsids using coat proteins that have the ubiquitous HK97 fold. Though this fold is common, we do not have a thorough understanding of the different ways viruses adapt it to maintain stability in various environments. The HK97-fold E-loop, which connects adjacent subunits at the outer periphery of capsomers, has been implicated in capsid stability. Here, we show that in bacteriophage P22, residue W61 at the tip of the E-loop plays a role in stabilizing procapsids and in maturation. We hypothesize that a hydrophobic pocket is formed by residues I366 and W410 in the P domain of a neighboring subunit within a capsomer, into which W61 fits like a peg. In addition, W61 likely bridges to residues A91 and L401 in P-domain loops of an adjacent capsomer, thereby linking the entire capsid together with a network of hydrophobic interactions. There is conservation of this hydrophobic network in the distantly related P22-like phages, indicating that this structural feature is likely important for stabilizing this family of phages. Thus, our data shed light on one of the varied elegant mechanisms used in nature to consistently build stable viral genome containers through subtle adaptation of the HK97 fold.IMPORTANCE Similarities in assembly reactions and coat protein structures of the dsDNA tailed phages and herpesviruses make phages ideal models to understand capsid assembly and identify potential targets for antiviral drug discovery. The coat protein E-loops of these viruses are involved in both intra- and intercapsomer interactions. In phage P22, hydrophobic interactions peg the coat protein subunits together within a capsomer, where the E-loop hydrophobic residue W61 of one subunit packs into a pocket of hydrophobic residues I366 and W410 of the adjacent subunit. W61 also makes hydrophobic interactions with A91 and L401 of a subunit in an adjacent capsomer. We show these intra- and intercapsomer hydrophobic interactions form a network crucial to capsid stability and proper assembly.
Collapse
Affiliation(s)
- Kunica Asija
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Carolyn M Teschke
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
8
|
The Revisited Genome of Bacillus subtilis Bacteriophage SPP1. Viruses 2018; 10:v10120705. [PMID: 30544981 PMCID: PMC6316719 DOI: 10.3390/v10120705] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/06/2018] [Accepted: 12/06/2018] [Indexed: 02/05/2023] Open
Abstract
Bacillus subtilis bacteriophage SPP1 is a lytic siphovirus first described 50 years ago [1]. Its complete DNA sequence was reported in 1997 [2]. Here we present an updated annotation of the 44,016 bp SPP1 genome and its correlation to different steps of the viral multiplication process. Five early polycistronic transcriptional units encode phage DNA replication proteins and lysis functions together with less characterized, mostly non-essential, functions. Late transcription drives synthesis of proteins necessary for SPP1 viral particles assembly and for cell lysis, together with a short set of proteins of unknown function. The extensive genetic, biochemical and structural biology studies on the molecular mechanisms of SPP1 DNA replication and phage particle assembly rendered it a model system for tailed phages research. We propose SPP1 as the reference species for a new SPP1-like viruses genus of the Siphoviridae family.
Collapse
|
9
|
Catalano CE. Bacteriophage lambda: The path from biology to theranostic agent. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2018. [DOI: 10.1002/wnan.1517] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Carlos E. Catalano
- Department of Pharmaceutical Chemistry, Skaggs School of Pharmacy and Pharmaceutical ScienceUniversity of ColoradoAuroraColorado
| |
Collapse
|
10
|
Valero-Rello A, López-Sanz M, Quevedo-Olmos A, Sorokin A, Ayora S. Molecular Mechanisms That Contribute to Horizontal Transfer of Plasmids by the Bacteriophage SPP1. Front Microbiol 2017; 8:1816. [PMID: 29018417 PMCID: PMC5615212 DOI: 10.3389/fmicb.2017.01816] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/06/2017] [Indexed: 01/02/2023] Open
Abstract
Natural transformation and viral-mediated transduction are the main avenues of horizontal gene transfer in Firmicutes. Bacillus subtilis SPP1 is a generalized transducing bacteriophage. Using this lytic phage as a model, we have analyzed how viral replication and recombination systems contribute to the transfer of plasmid-borne antibiotic resistances. Phage SPP1 DNA replication relies on essential phage-encoded replisome organizer (G38P), helicase loader (G39P), hexameric replicative helicase (G40P), recombinase (G35P) and in less extent on the partially dispensable 5′→3′ exonuclease (G34.1P), the single-stranded DNA binding protein (G36P) and the Holliday junction resolvase (G44P). Correspondingly, the accumulation of linear concatemeric plasmid DNA, and the formation of transducing particles were blocked in the absence of G35P, G38P, G39P, and G40P, greatly reduced in the G34.1P, G36P mutants, and slightly reduced in G44P mutants. In contrast, establishment of injected linear plasmid DNA in the recipient host was independent of viral-encoded functions. DNA homology between SPP1 and the plasmid, rather than a viral packaging signal, enhanced the accumulation of packagable plasmid DNA. The transfer efficiency was also dependent on plasmid copy number, and rolling-circle plasmids were encapsidated at higher frequencies than theta-type replicating plasmids.
Collapse
Affiliation(s)
- Ana Valero-Rello
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones CientíficasMadrid, Spain.,Micalis Institute, INRA, AgroParisTech, Universite Paris-SaclayJouy-en-Josas, France
| | - María López-Sanz
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Alvaro Quevedo-Olmos
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Alexei Sorokin
- Micalis Institute, INRA, AgroParisTech, Universite Paris-SaclayJouy-en-Josas, France
| | - Silvia Ayora
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| |
Collapse
|
11
|
González-García VA, Pulido-Cid M, Garcia-Doval C, Bocanegra R, van Raaij MJ, Martín-Benito J, Cuervo A, Carrascosa JL. Conformational changes leading to T7 DNA delivery upon interaction with the bacterial receptor. J Biol Chem 2015; 290:10038-44. [PMID: 25697363 DOI: 10.1074/jbc.m114.614222] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Indexed: 01/31/2023] Open
Abstract
The majority of bacteriophages protect their genetic material by packaging the nucleic acid in concentric layers to an almost crystalline concentration inside protein shells (capsid). This highly condensed genome also has to be efficiently injected into the host bacterium in a process named ejection. Most phages use a specialized complex (often a tail) to deliver the genome without disrupting cell integrity. Bacteriophage T7 belongs to the Podoviridae family and has a short, non-contractile tail formed by a tubular structure surrounded by fibers. Here we characterize the kinetics and structure of bacteriophage T7 DNA delivery process. We show that T7 recognizes lipopolysaccharides (LPS) from Escherichia coli rough strains through the fibers. Rough LPS acts as the main phage receptor and drives DNA ejection in vitro. The structural characterization of the phage tail after ejection using cryo-electron microscopy (cryo-EM) and single particle reconstruction methods revealed the major conformational changes needed for DNA delivery at low resolution. Interaction with the receptor causes fiber tilting and opening of the internal tail channel by untwisting the nozzle domain, allowing release of DNA and probably of the internal head proteins.
Collapse
Affiliation(s)
- Verónica A González-García
- From the Structure of Macromolecules Department, Centro Nacional de Biotecnología (CSIC), Darwin 3, Cantoblanco, 28049 Madrid and
| | - Mar Pulido-Cid
- From the Structure of Macromolecules Department, Centro Nacional de Biotecnología (CSIC), Darwin 3, Cantoblanco, 28049 Madrid and
| | - Carmela Garcia-Doval
- From the Structure of Macromolecules Department, Centro Nacional de Biotecnología (CSIC), Darwin 3, Cantoblanco, 28049 Madrid and
| | - Rebeca Bocanegra
- From the Structure of Macromolecules Department, Centro Nacional de Biotecnología (CSIC), Darwin 3, Cantoblanco, 28049 Madrid and
| | - Mark J van Raaij
- From the Structure of Macromolecules Department, Centro Nacional de Biotecnología (CSIC), Darwin 3, Cantoblanco, 28049 Madrid and
| | - Jaime Martín-Benito
- From the Structure of Macromolecules Department, Centro Nacional de Biotecnología (CSIC), Darwin 3, Cantoblanco, 28049 Madrid and
| | - Ana Cuervo
- From the Structure of Macromolecules Department, Centro Nacional de Biotecnología (CSIC), Darwin 3, Cantoblanco, 28049 Madrid and
| | - José L Carrascosa
- From the Structure of Macromolecules Department, Centro Nacional de Biotecnología (CSIC), Darwin 3, Cantoblanco, 28049 Madrid and Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
12
|
Li S, Fan H, An X, Fan H, Jiang H, Chen Y, Tong Y. Scrutinizing virus genome termini by high-throughput sequencing. PLoS One 2014; 9:e85806. [PMID: 24465717 PMCID: PMC3896407 DOI: 10.1371/journal.pone.0085806] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 12/02/2013] [Indexed: 12/01/2022] Open
Abstract
Analysis of genomic terminal sequences has been a major step in studies on viral DNA replication and packaging mechanisms. However, traditional methods to study genome termini are challenging due to the time-consuming protocols and their inefficiency where critical details are lost easily. Recent advances in next generation sequencing (NGS) have enabled it to be a powerful tool to study genome termini. In this study, using NGS we sequenced one iridovirus genome and twenty phage genomes and confirmed for the first time that the high frequency sequences (HFSs) found in the NGS reads are indeed the terminal sequences of viral genomes. Further, we established a criterion to distinguish the type of termini and the viral packaging mode. We also obtained additional terminal details such as terminal repeats, multi-termini, asymmetric termini. With this approach, we were able to simultaneously detect details of the genome termini as well as obtain the complete sequence of bacteriophage genomes. Theoretically, this application can be further extended to analyze larger and more complicated genomes of plant and animal viruses. This study proposed a novel and efficient method for research on viral replication, packaging, terminase activity, transcription regulation, and metabolism of the host cell.
Collapse
Affiliation(s)
- Shasha Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Hang Fan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiaoping An
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Huahao Fan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Huanhuan Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yubao Chen
- Beijing Computing Center, Beijing, China
- * E-mail: (YC); (YT)
| | - Yigang Tong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- * E-mail: (YC); (YT)
| |
Collapse
|
13
|
Oliveira L, Tavares P, Alonso JC. Headful DNA packaging: Bacteriophage SPP1 as a model system. Virus Res 2013; 173:247-59. [DOI: 10.1016/j.virusres.2013.01.021] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 01/28/2013] [Accepted: 01/30/2013] [Indexed: 01/15/2023]
|
14
|
Leavitt JC, Gilcrease EB, Wilson K, Casjens SR. Function and horizontal transfer of the small terminase subunit of the tailed bacteriophage Sf6 DNA packaging nanomotor. Virology 2013; 440:117-33. [PMID: 23562538 DOI: 10.1016/j.virol.2013.02.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 02/22/2013] [Accepted: 02/26/2013] [Indexed: 11/27/2022]
Abstract
Bacteriophage Sf6 DNA packaging series initiate at many locations across a 2kbp region. Our in vivo studies show that Sf6 small terminase subunit (TerS) protein recognizes a specific packaging (pac) site near the center of this region, that this site lies within the portion of the Sf6 gene that encodes the DNA-binding domain of TerS protein, that this domain of the TerS protein is responsible for the imprecision in Sf6 packaging initiation, and that the DNA-binding domain of TerS must be covalently attached to the domain that interacts with the rest of the packaging motor. The TerS DNA-binding domain is self-contained in that it apparently does not interact closely with the rest of the motor and it binds to a recognition site that lies within the DNA that encodes the domain. This arrangement has allowed the horizontal exchange of terS genes among phages to be very successful.
Collapse
Affiliation(s)
- Justin C Leavitt
- Biology Department, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | |
Collapse
|
15
|
Andrews BT, Catalano CE. The enzymology of a viral genome packaging motor is influenced by the assembly state of the motor subunits. Biochemistry 2012; 51:9342-53. [PMID: 23134123 DOI: 10.1021/bi300890y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Terminase enzymes are responsible for the excision of a single genome from a concatemeric precursor (genome maturation) and concomitant packaging of DNA into the capsid shell. Here, we demonstrate that lambda terminase can be purified as a homogeneous "protomer" species, and we present a kinetic analysis of the genome maturation and packaging activities of the protomeric enzyme. The protomer assembles into a distinct maturation complex at the cos sequence of a concatemer. This complex rapidly nicks the duplex to form the mature left end of the viral genome, which is followed by procapsid binding, activation of the packaging ATPase, and translocation of the duplex into the capsid interior by the terminase motor complex. Genome packaging by the protomer shows high fidelity with only the mature left end of the duplex inserted into the capsid shell. In sum, the data show that the terminase protomer exhibits catalytic activity commensurate with that expected of a bone fide genome maturation and packaging complex in vivo and that both catalytically competent complexes are composed of four terminase protomers assembled into a ringlike structure that encircles duplex DNA. This work provides mechanistic insight into the coordinated catalytic activities of terminase enzymes in virus assembly that can be generalized to all of the double-stranded DNA viruses.
Collapse
Affiliation(s)
- Benjamin T Andrews
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, Washington 98195-7610, United States
| | | |
Collapse
|
16
|
Cornilleau C, Atmane N, Jacquet E, Smits C, Alonso JC, Tavares P, Oliveira L. The nuclease domain of the SPP1 packaging motor coordinates DNA cleavage and encapsidation. Nucleic Acids Res 2012; 41:340-54. [PMID: 23118480 PMCID: PMC3592435 DOI: 10.1093/nar/gks974] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The large terminase subunit is a central component of the genome packaging motor from tailed bacteriophages and herpes viruses. This two-domain enzyme has an N-terminal ATPase activity that fuels DNA translocation during packaging and a C-terminal nuclease activity required for initiation and termination of the packaging cycle. Here, we report that bacteriophage SPP1 large terminase (gp2) is a metal-dependent nuclease whose stability and activity are strongly and preferentially enhanced by Mn(2+) ions. Mutation of conserved residues that coordinate Mn(2+) ions in the nuclease catalytic site affect the metal-induced gp2 stabilization and impair both gp2-specific cleavage at the packaging initiation site pac and unspecific nuclease activity. Several of these mutations block also DNA encapsidation without affecting ATP hydrolysis or gp2 C-terminus binding to the procapsid portal vertex. The data are consistent with a mechanism in which the nuclease domain bound to the portal switches between nuclease activity and a coordinated action with the ATPase domain for DNA translocation. This switch of activities of the nuclease domain is critical to achieve the viral chromosome packaging cycle.
Collapse
Affiliation(s)
- Charlène Cornilleau
- Unité de Virologie Moléculaire et Structurale, UPR 3296 CNRS, 91190 Gif-sur-Yvette, France
| | | | | | | | | | | | | |
Collapse
|
17
|
Zhang H, Schwartz C, De Donatis GM, Guo P. "Push through one-way valve" mechanism of viral DNA packaging. Adv Virus Res 2012; 83:415-65. [PMID: 22748815 DOI: 10.1016/b978-0-12-394438-2.00009-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Double-stranded (ds)DNA viruses package their genomic DNA into a procapsid using a force-generating nanomotor powered by ATP hydrolysis. Viral DNA packaging motors are mainly composed of the connector channel and two DNA packaging enzymes. In 1998, it was proposed that viral DNA packaging motors exercise a mechanism similar to the action of AAA+ ATPases that assemble into ring-shaped oligomers, often hexamers, with a central channel (Guo et al. Molecular Cell, 2:149). This chapter focuses on the most recent findings in the bacteriophage ϕ29 DNA packaging nanomotor to address this intriguing notion. Almost all dsDNA viruses are composed entirely of protein, but in the unique case of ϕ29, packaging RNA (pRNA) plays an intermediate role in the packaging process. Evidence revealed that DNA packaging is accomplished via a "push through one-way valve" mechanism. The ATPase gp16 pushes dsDNA through the connector channel section by section into the procapsid. The dodecameric connector channel functions as a one-way valve that only allows dsDNA to enter but not exit the procapsid during DNA packaging. Although the roles of the ATPase gp16 and the motor connector channel are separate and independent, pRNA bridges these two components to ensure the coordination of an integrated motor. ATP induces a conformational change in gp16, leading to its stronger binding to dsDNA. Furthermore, ATP hydrolysis led to the departure of dsDNA from the ATPase/dsDNA complex, an action used to push dsDNA through the connector channel. It was found unexpectedly that by mutating the basic lysine rings of the connector channel or by changing the pH did not measurably impair DNA translocation or affect the one-way traffic property of the channel, suggesting that the positive charges in the lysine ring are not essential in gearing the dsDNA. The motor channel exercises three discrete, reversible, and controllable steps of gating, with each step altering the channel size by 31% to control the direction of translocation of dsDNA. Many DNA packaging models have been contingent upon the number of base pairs packaged per ATP relative to helical turns for B-type DNA. Both 2 and 2.5 bp per ATP have been used to argue for four, five, or six discrete steps of DNA translocation. The "push through one-way valve" mechanism renews the perception of dsDNA packaging energy calculations and provides insight into the discrepancy between 2 and 2.5 bp per ATP. Application of the DNA packaging motor in nanotechnology and nanomedicine is also addressed. Comparison with nine other DNA packaging models revealed that the "push through one-way valve" is the most agreeable mechanism to interpret most of the findings that led to historical models. The application of viral DNA packaging motors is also discussed.
Collapse
Affiliation(s)
- Hui Zhang
- Nanobiotechnology Center, Department of Pharmaceutical Sciences, and Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | | | | | | |
Collapse
|
18
|
Abstract
The bacteriophage vB_YecM-ϕR1-37 (ϕR1-37) is a lytic yersiniophage that can propagate naturally in different Yersinia species carrying the correct lipopolysaccharide receptor. This large-tailed phage has deoxyuridine (dU) instead of thymidine in its DNA. In this study, we determined the genomic sequence of phage ϕR1-37, mapped parts of the phage transcriptome, characterized the phage particle proteome, and characterized the virion structure by cryo-electron microscopy and image reconstruction. The 262,391-bp genome of ϕR1-37 is one of the largest sequenced phage genomes, and it contains 367 putative open reading frames (ORFs) and 5 tRNA genes. Mass-spectrometric analysis identified 69 phage particle structural proteins with the genes scattered throughout the genome. A total of 269 of the ORFs (73%) lack homologues in sequence databases. Based on terminator and promoter sequences identified from the intergenic regions, the phage genome was predicted to consist of 40 to 60 transcriptional units. Image reconstruction revealed that the ϕR1-37 capsid consists of hexameric capsomers arranged on a T=27 lattice similar to the bacteriophage ϕKZ. The tail of ϕR1-37 has a contractile sheath. We conclude that phage ϕR1-37 is a representative of a novel phage type that carries the dU-containing genome in a ϕKZ-like head.
Collapse
|
19
|
Capsid structure and its stability at the late stages of bacteriophage SPP1 assembly. J Virol 2012; 86:6768-77. [PMID: 22514336 DOI: 10.1128/jvi.00412-12] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The structure of the bacteriophage SPP1 capsid was determined at subnanometer resolution by cryo-electron microscopy and single-particle analysis. The icosahedral capsid is composed of the major capsid protein gp13 and the auxiliary protein gp12, which are organized in a T=7 lattice. DNA is arranged in layers with a distance of ~24.5 Å. gp12 forms spikes that are anchored at the center of gp13 hexamers. In a gp12-deficient mutant, the centers of hexamers are closed by loops of gp13 coming together to protect the SPP1 genome from the outside environment. The HK97-like fold was used to build a pseudoatomic model of gp13. Its structural organization remains unchanged upon tail binding and following DNA release. gp13 exhibits enhanced thermostability in the DNA-filled capsid. A remarkable convergence between the thermostability of the capsid and those of the other virion components was found, revealing that the overall architecture of the SPP1 infectious particle coevolved toward high robustness.
Collapse
|
20
|
Abstract
Tailed bacteriophages use nanomotors, or molecular machines that convert chemical energy into physical movement of molecules, to insert their double-stranded DNA genomes into virus particles. These viral nanomotors are powered by ATP hydrolysis and pump the DNA into a preformed protein container called a procapsid. As a result, the virions contain very highly compacted chromosomes. Here, I review recent progress in obtaining structural information for virions, procapsids and the individual motor protein components, and discuss single-molecule in vitro packaging reactions, which have yielded important new information about the mechanism by which these powerful molecular machines translocate DNA.
Collapse
|
21
|
Abstract
Bacteriophages have been a model system to study assembly processes for over half a century. Formation of infectious phage particles involves specific protein-protein and protein-nucleic acid interactions, as well as large conformational changes of assembly precursors. The sequence and molecular mechanisms of phage assembly have been elucidated by a variety of methods. Differences and similarities of assembly processes in several different groups of bacteriophages are discussed in this review. The general principles of phage assembly are applicable to many macromolecular complexes.
Collapse
|
22
|
Serwer P. A hypothesis for bacteriophage DNA packaging motors. Viruses 2010; 2:1821-1843. [PMID: 21994710 PMCID: PMC3185743 DOI: 10.3390/v2091821] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 08/12/2010] [Accepted: 08/18/2010] [Indexed: 12/29/2022] Open
Abstract
The hypothesis is presented that bacteriophage DNA packaging motors have a cycle comprised of bind/release thermal ratcheting with release-associated DNA pushing via ATP-dependent protein folding. The proposed protein folding occurs in crystallographically observed peptide segments that project into an axial channel of a protein 12-mer (connector) that serves, together with a coaxial ATPase multimer, as the entry portal. The proposed cycle begins when reverse thermal motion causes the connector’s peptide segments to signal the ATPase multimer to bind both ATP and the DNA molecule, thereby producing a dwell phase recently demonstrated by single-molecule procedures. The connector-associated peptide segments activate by transfer of energy from ATP during the dwell. The proposed function of connector/ATPase symmetry mismatches is to reduce thermal noise-induced signaling errors. After a dwell, ATP is cleaved and the DNA molecule released. The activated peptide segments push the released DNA molecule, thereby producing a burst phase recently shown to consist of four mini-bursts. The constraint of four mini-bursts is met by proposing that each mini-burst occurs via pushing by three of the 12 subunits of the connector. If all four mini-bursts occur, the cycle repeats. If the mini-bursts are not completed, a second cycle is superimposed on the first cycle. The existence of the second cycle is based on data recently obtained with bacteriophage T3. When both cycles stall, energy is diverted to expose the DNA molecule to maturation cleavage.
Collapse
Affiliation(s)
- Philip Serwer
- Department of Biochemistry, The University of Texas Health Science Center, San Antonio, Texas 78229-3900, USA
| |
Collapse
|
23
|
Oliveira L, Cuervo A, Tavares P. Direct interaction of the bacteriophage SPP1 packaging ATPase with the portal protein. J Biol Chem 2010; 285:7366-73. [PMID: 20056615 DOI: 10.1074/jbc.m109.061010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA packaging in tailed bacteriophages and other viruses requires assembly of a complex molecular machine at a specific vertex of the procapsid. This machine is composed of the portal protein that provides a tunnel for DNA entry, an ATPase that fuels DNA translocation (large terminase subunit), and most frequently, a small terminase subunit. Here we characterized the interaction between the terminase ATPase subunit of bacteriophage SPP1 (gp2) and the procapsid portal vertex. We found, by affinity pulldown assays with purified proteins, that gp2 interacts with the portal protein, gp6, independently of the terminase small subunit gp1, DNA, or ATP. The gp2-procapsid interaction via the portal protein depends on gp2 concentration and requires the presence of divalent cations. Competition experiments showed that isolated gp6 can only inhibit gp2-procapsid interactions and DNA packaging at gp6:procapsid molar ratios above 10-fold. Assays with gp6 carrying mutations in distinct regions of its structure that affect the portal-induced stimulation of ATPase and DNA packaging revealed that none of these mutations impedes gp2-gp6 binding. Our results demonstrate that the SPP1 packaging ATPase binds directly to the portal and that the interaction is stronger with the portal embedded in procapsids. Identification of mutations in gp6 that allow for assembly of the ATPase-portal complex but impair DNA packaging support an intricate cross-talk between the two proteins for activity of the DNA translocation motor.
Collapse
Affiliation(s)
- Leonor Oliveira
- Unité de Virologie Moléculaire et Structurale, Unité Mixte de Recherche, CNRS 2472, Institut Fédératif de Recherche 1157, and IFR 115, Bâtiment 14B, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France.
| | | | | |
Collapse
|
24
|
Scientific Opinion on the maintenance of the list of QPS microorganisms intentionally added to food or feed (2009 update). EFSA J 2009. [DOI: 10.2903/j.efsa.2009.1431] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
25
|
Yang Q, Catalano CE, Maluf NK. Kinetic analysis of the genome packaging reaction in bacteriophage lambda. Biochemistry 2009; 48:10705-15. [PMID: 19788336 DOI: 10.1021/bi901016n] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacteriophage lambda is a double-stranded DNA virus that infects the Escherichia coli bacterium. lambda genomic DNA is replicated via rolling circle replication, resulting in multiple genomes linked head to tail at the cos site. To insert a single lambda genome into the viral capsid, the lambda terminase enzyme introduces symmetric nicks, 12 bp apart, at the cos site, and then promotes a strand separation reaction, releasing the tail end of the previous genome and leaving a binary complex consisting of lambda terminase bound to the head end of the adjacent genome. Next, the genome is translocated into the interior of the capsid particle, in a process that requires ATP hydrolysis by lambda terminase. Even though DNA packaging has been studied extensively, currently no bulk assays are available that have been optimized to report directly on DNA translocation. Rather, these assays are sensitive to assembly steps reflecting formation of the active, DNA packaging machine. In this work, we have modified the DNase protection assay commonly used to study DNA packaging in several bacteriophage systems, such that it reports directly on the kinetics of the DNA packaging reaction. We have analyzed our DNA packaging data according to an N-step sequential minimal kinetic model and have estimated an overall packaging rate of 119 +/- 8 bp/s, at 4 degrees C and 1 mM ATP. Furthermore, we have measured an apparent step size for the this reaction (m(obs)) of 410 +/- 150 bp. The magnitude of this value indicates that our assay is most likely sensitive to both mechanical steps associated with DNA insertion as well as occasional slow steps that are repeated every >410 bp. These slow steps may be reflective of the pausing events observed in recent single-molecule studies of DNA packaging in bacteriophage lambda [Fuller, D. N., et al. (2007) J. Mol. Biol. 373, 1113-1122]. Finally, we show that either ATP or ADP is required for terminase cutting at cos, to generate the active, DNA packaging complex.
Collapse
Affiliation(s)
- Qin Yang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Denver, C238-P15, 12700 East 19th Avenue, Aurora, Colorado 80045, USA
| | | | | |
Collapse
|
26
|
Lee TJ, Zhang H, Chang CL, Savran C, Guo P. Engineering of the fluorescent-energy-conversion arm of phi29 DNA packaging motor for single-molecule studies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2009; 5:2453-9. [PMID: 19743427 PMCID: PMC2837281 DOI: 10.1002/smll.200900467] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The bacteriophage phi29 DNA packaging motor contains a protein core with a central channel comprising twelve copies of re-engineered gp10 protein geared by six copies of packaging RNA (pRNA) and a DNA packaging protein gp16 with unknown copies. Incorporation of this nanomotor into a nanodevice would be beneficial for many applications. To this end, extension and modification of the motor components are necessary for the linkage of this motor to other nanomachines. Here the re-engineering of the motor DNA packaging protein gp16 by extending its length and doubling its size using a fusion protein technique is reported. The modified motor integrated with the eGFP-gp16 maintains the ability to convert the chemical energy from adenosine triphosphate (ATP) hydrolysis to mechanical motion and package DNA. The resulting DNA-filled capsid is subsequently converted into an infectious virion. The extended part of the gp16 arm is a fluorescent protein eGFP, which serves as a marker for tracking the motor in single-molecule studies. The activity of the re-engineered motor with eGFP-gp16 is also observed directly with a bright-field microscope via its ability to transport a 2-microm-sized cargo bound to the DNA.
Collapse
Affiliation(s)
- Tae Jin Lee
- Department of Biomedical Engineering, The Vontz Center for Molecular Studies, 3125 Eden Avenue, Room 1301, College of Engineering and College of Medicine, University of Cincinnati, Cincinnati, OH 45267 (USA)
| | - Hui Zhang
- Department of Biomedical Engineering, The Vontz Center for Molecular Studies, 3125 Eden Avenue, Room 1301, College of Engineering and College of Medicine, University of Cincinnati, Cincinnati, OH 45267 (USA)
| | - Chun-Li Chang
- School of Electrical and Computer Engineering, School of Mechanical Engineering, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907 (USA)
| | - Cagri Savran
- School of Electrical and Computer Engineering, School of Mechanical Engineering, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907 (USA)
| | - Peixuan Guo
- Department of Biomedical Engineering, The Vontz Center for Molecular Studies, 3125 Eden Avenue, Room 1301, College of Engineering and College of Medicine, University of Cincinnati, Cincinnati, OH 45267 (USA)
| |
Collapse
|
27
|
Lander GC, Khayat R, Li R, Prevelige PE, Potter CS, Carragher B, Johnson JE. The P22 tail machine at subnanometer resolution reveals the architecture of an infection conduit. Structure 2009; 17:789-99. [PMID: 19523897 DOI: 10.1016/j.str.2009.04.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 04/07/2009] [Accepted: 04/11/2009] [Indexed: 01/03/2023]
Abstract
The portal channel is a key component in the life cycle of bacteriophages and herpesviruses. The bacteriophage P22 portal is a 1 megadalton dodecameric oligomer of gp1 that plays key roles in capsid assembly, DNA packaging, assembly of the infection machinery, and DNA ejection. The portal is the nucleation site for the assembly of 39 additional subunits generated from multiple copies of four gene products (gp4, gp10, gp9, and gp26), which together form the multifunctional tail machine. These components are organized with a combination of 12-fold (gp1, gp4), 6-fold (gp10, trimers of gp9), and 3-fold (gp26, gp9) symmetry. Here we present the 3-dimensional structures of the P22 assembly-naive portal formed from expressed subunits (gp1) and the intact tail machine purified from infectious virions. The assembly-naive portal structure exhibits a striking structural similarity to the structures of the portal proteins of SPP1 and phi29 derived from X-ray crystallography.
Collapse
Affiliation(s)
- Gabriel C Lander
- National Resource for Automated Molecular Microscopy, The Scripps Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Recent development of nonviral gene delivery systems with virus-like structures and mechanisms. Eur J Pharm Biopharm 2009; 71:475-83. [DOI: 10.1016/j.ejpb.2008.09.019] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 07/17/2008] [Accepted: 09/02/2008] [Indexed: 01/29/2023]
|
29
|
Abstract
An ATP-powered DNA translocation machine encapsidates the viral genome in the large dsDNA bacteriophages. The essential components include the empty shell, prohead, and the packaging enzyme, terminase. During translocation, terminase is docked on the prohead's portal protein. The translocation ATPase and the concatemer-cutting endonuclease reside in terminase. Remarkably, terminases, portal proteins, and shells of tailed bacteriophages and herpes viruses show conserved features. These DNA viruses may have descended from a common ancestor. Terminase's ATPase consists of a classic nucleotide binding fold, most closely resembling that of monomeric helicases. Intriguing models have been proposed for the mechanism of dsDNA translocation, invoking ATP hydrolysis-driven conformational changes of portal or terminase powering DNA motion. Single-molecule studies show that the packaging motor is fast and powerful. Recent advances permit experiments that can critically test the packaging models. The viral genome translocation mechanism is of general interest, given the parallels between terminases, helicases, and other motor proteins.
Collapse
Affiliation(s)
- Venigalla B Rao
- Department of Biology, The Catholic University of America, Washington, D.C. 20064, USA.
| | | |
Collapse
|
30
|
Ziedaite G, Kivelä HM, Bamford JKH, Bamford DH. Purified membrane-containing procapsids of bacteriophage PRD1 package the viral genome. J Mol Biol 2009; 386:637-47. [PMID: 19150363 DOI: 10.1016/j.jmb.2008.12.068] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 12/17/2008] [Accepted: 12/22/2008] [Indexed: 11/29/2022]
Abstract
Icosahedral-tailed double-stranded DNA (dsDNA) bacteriophages and herpesviruses translocate viral DNA into a preformed procapsid in an ATP-driven reaction by a packaging complex that operates at a portal vertex. A similar packaging system operates in the tailless dsDNA phage PRD1 (Tectiviridae family), except that there is an internal membrane vesicle in the procapsid. The unit-length linear dsDNA genome with covalently linked 5'-terminal proteins enters the procapsid through a unique vertex. Two small integral membrane proteins, P20 and P22, provide a conduit for DNA translocation. The packaging machinery also contains the packaging ATPase P9 and the packaging efficiency factor P6. Here we describe a method used to obtain purified packaging-competent PRD1 procapsids. The optimized in vitro packaging system allowed efficient packaging of defined DNA substrates. We determined that the genome terminal protein P8 is necessary for packaging and provided an estimation of the packaging rate.
Collapse
Affiliation(s)
- Gabija Ziedaite
- Department of Biological and Environmental Sciences and Institute of Biotechnology, University of Helsinki, PO Box 56, FIN-00014 Helsinki, Finland
| | | | | | | |
Collapse
|
31
|
Abstract
In this review, we discuss recent advances in biophysical virology, presenting experimental and theoretical studies on the physical properties of viruses. We focus on the double-stranded (ds) DNA bacteriophages as model systems for all of the dsDNA viruses both prokaryotic and eukaryotic. Recent studies demonstrate that the DNA packaged into a viral capsid is highly pressurized, which provides a force for the first step of passive injection of viral DNA into a bacterial cell. Moreover, specific studies on capsid strength show a strong correlation between genome length, and capsid size and robustness. The implications of these newly appreciated physical properties of a viral particle with respect to the infection process are discussed.
Collapse
|
32
|
Cai Y, Xiao F, Guo P. The effect of N- or C-terminal alterations of the connector of bacteriophage phi29 DNA packaging motor on procapsid assembly, pRNA binding, and DNA packaging. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2008; 4:8-18. [PMID: 18201942 DOI: 10.1016/j.nano.2007.10.084] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 09/27/2007] [Accepted: 10/11/2007] [Indexed: 01/13/2023]
Abstract
Double-stranded DNA viruses package their genomes into procapsids via an ATP-driven nanomotor. This ingenious motor configuration has inspired the development of biomimetics in nanotechnology. Bacteriophage varphi29 DNA-packaging motor has been a popular tool in nanomedicine. To provide information for further motor modification, conjugation, labeling, and manufacturing, the connector protein gp10 of the varphi29 DNA packaging motor was truncated, mutated, and extended. A 25-residue deletion or a 14-residue extension at the C terminus of gp10 did not affect procapsid assembly. A 42-amino acid extension at the N terminus did not interfere with the procapsid assembly but significantly decreased the DNA-packaging efficiency. DNA-packaging activity was restored upon protease cleavage of the extended region. Replacing the N-terminal peptide containing arginine and lysine with a histidine-rich peptide did not affect procapsid assembly but completely inhibited the packaging RNA (pRNA) binding to the connector and hindered subsequent DNA packaging. These results indicate that (1) the N-terminal arginine-lysine residues play a critical role in pRNA binding but are not essential for procapsid assembly; (2) the connector core, but not the flexible N- or C-terminal domains, is responsible for signaling the procapsid assembly; (3) pRNA binds to the connector as a result of electrostatic interactions between the polyanionic nature of nucleic acids and the cationic side groups of the amino acids, similar to RNA binding to Tat or polyArg.
Collapse
Affiliation(s)
- Ying Cai
- Department of Biomedical Engineering, The Vontz Center for Molecular Studies, College of Engineering and College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | | | | |
Collapse
|
33
|
Abstract
While capsid proteins are assembled around single-stranded genomic DNA or RNA in rod-shaped viruses, the lengthy double-stranded genome of other viruses is packaged forcefully within a preformed protein shell. This entropically unfavourable DNA or RNA packaging is accomplished by an ATP-driven viral nanomotor, which is mainly composed of two components, the oligomerized channel and the packaging enzymes. This intriguing DNA or RNA packaging process has provoked interest among virologists, bacteriologists, biochemists, biophysicists, chemists, structural biologists and computational scientists alike, especially those interested in nanotechnology, nanomedicine, AAA+ family proteins, energy conversion, cell membrane transport, DNA or RNA replication and antiviral therapy. This review mainly focuses on the motors of double-stranded DNA viruses, but double-stranded RNA viral motors are also discussed due to interesting similarities. The novel and ingenious configuration of these nanomotors has inspired the development of biomimetics for nanodevices. Advances in structural and functional studies have increased our understanding of the molecular basis of biological movement to the point where we can begin thinking about possible applications of the viral DNA packaging motor in nanotechnology and medical applications.
Collapse
Affiliation(s)
- Peixuan Guo
- Department of Comparative Pathobiology and Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | | |
Collapse
|
34
|
Cuervo A, Vaney MC, Antson AA, Tavares P, Oliveira L. Structural rearrangements between portal protein subunits are essential for viral DNA translocation. J Biol Chem 2007; 282:18907-13. [PMID: 17446176 DOI: 10.1074/jbc.m701808200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transport of DNA into preformed procapsids is a general strategy for genome packing inside virus particles. In most viruses, this task is accomplished by a complex of the viral packaging ATPase with the portal protein assembled at a specialized vertex of the procapsid. Such molecular motor translocates DNA through the central tunnel of the portal protein. A central question to understand this mechanism is whether the portal is a mere conduit for DNA or whether it participates actively on DNA translocation. The most constricted part of the bacteriophage SPP1 portal tunnel is formed by twelve loops, each contributed from one individual subunit. The position of each loop is stabilized by interactions with helix alpha-5, which extends into the portal putative ATPase docking interface. Here, we have engineered intersubunit disulfide bridges between alpha-5s of adjacent portal ring subunits. Such covalent constraint blocked DNA packaging, whereas reduction of the disulfide bridges restored normal packaging activity. DNA exit through the portal in SPP1 virions was unaffected. The data demonstrate that mobility between alpha-5 helices is essential for the mechanism of viral DNA translocation. We propose that the alpha-5 structural rearrangements serve to coordinate ATPase activity with the positions of portal tunnel loops relative to the DNA double helix.
Collapse
Affiliation(s)
- Ana Cuervo
- Unité de Virologie Moléculaire et Structurale, Unité Mixte de Recherche (UMR) CNRS 2472, UMR Institut National de la Recherche Agronomique (INRA) 1157 and Institut Fédératif de Recherche 115, 91198 Gif-sur-Yvette Cedex, France
| | | | | | | | | |
Collapse
|
35
|
Lebedev AA, Krause MH, Isidro AL, Vagin AA, Orlova EV, Turner J, Dodson EJ, Tavares P, Antson AA. Structural framework for DNA translocation via the viral portal protein. EMBO J 2007; 26:1984-94. [PMID: 17363899 PMCID: PMC1847669 DOI: 10.1038/sj.emboj.7601643] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Accepted: 02/13/2007] [Indexed: 11/09/2022] Open
Abstract
Tailed bacteriophages and herpesviruses load their capsids with DNA through a tunnel formed by the portal protein assembly. Here we describe the X-ray structure of the bacteriophage SPP1 portal protein in its isolated 13-subunit form and the pseudoatomic structure of a 12-subunit assembly. The first defines the DNA-interacting segments (tunnel loops) that pack tightly against each other forming the most constricted part of the tunnel; the second shows that the functional dodecameric state must induce variability in the loop positions. Structural observations together with geometrical constraints dictate that in the portal-DNA complex, the loops form an undulating belt that fits and tightly embraces the helical DNA, suggesting that DNA translocation is accompanied by a 'mexican wave' of positional and conformational changes propagating sequentially along this belt.
Collapse
Affiliation(s)
- Andrey A Lebedev
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, UK
| | | | - Anabela L Isidro
- Unité de Virologie Moléculaire et Structurale, UMR CNRS 2472, UMR INRA 1157 and IFR 115, Gif-sur-Yvette, France
- Instituto de Tecnologia Química e Biológica, Oeiras, Portugal
| | - Alexei A Vagin
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, UK
| | - Elena V Orlova
- Department of Crystallography, Birkbeck College, University of London, London, UK
| | - Joanne Turner
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, UK
| | - Eleanor J Dodson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, UK
| | - Paulo Tavares
- Unité de Virologie Moléculaire et Structurale, UMR CNRS 2472, UMR INRA 1157 and IFR 115, Gif-sur-Yvette, France
| | - Alfred A Antson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, UK
- York Structural Biology Laboratory, Department of Chemistry, University of York, York Y010 5YW, UK. Tel.: +44 1904 328255; Fax: +44 1904 328266; E-mail:
| |
Collapse
|
36
|
Kondabagil KR, Zhang Z, Rao VB. The DNA translocating ATPase of bacteriophage T4 packaging motor. J Mol Biol 2006; 363:786-99. [PMID: 16987527 DOI: 10.1016/j.jmb.2006.08.054] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 08/20/2006] [Accepted: 08/21/2006] [Indexed: 10/24/2022]
Abstract
In double-stranded DNA bacteriophages the viral DNA is translocated into an empty prohead shell by a powerful ATP-driven motor assembled at the unique portal vertex. Terminases consisting of two to three packaging-related ATPase sites are central to the packaging mechanism. But the nature of the key translocating ATPase, stoichiometry of packaging motor, and basic mechanism of DNA encapsidation are poorly understood. A defined phage T4 packaging system consisting of only two components, proheads and large terminase protein (gp17; 70 kDa), is constructed. Using the large expanded prohead, this system packages any linear double-stranded DNA, including the 171 kb T4 DNA. The small terminase protein, gp16 (18 kDa), is not only not required but also strongly inhibitory. An ATPase activity is stimulated when proheads, gp17, and DNA are actively engaged in the DNA packaging mode. No packaging ATPase was stimulated by the N-terminal gp17-ATPase mutants, K166G (Walker A), D255E (Walker B), E256Q (catalytic carboxylate), D255E-E256D and D255E-E256Q (Walker B and catalytic carboxylate), nor could these sponsor DNA encapsidation. Experiments with the two gp17 domains, N-terminal ATPase domain and C-terminal nuclease domain, suggest that terminase association with the prohead portal and communication between the domains are essential for ATPase stimulation. These data for the first time established an energetic linkage between packaging stimulation of N-terminal ATPase and DNA translocation. A core pathway for the assembly of functional DNA translocating motor is proposed. Since the catalytic motifs of the N-terminal ATPase are highly conserved among >200 large terminase sequences analyzed, these may represent common themes in phage and herpes viral DNA translocation.
Collapse
Affiliation(s)
- Kiran R Kondabagil
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| | | | | |
Collapse
|
37
|
Oliveira L, Henriques AO, Tavares P. Modulation of the viral ATPase activity by the portal protein correlates with DNA packaging efficiency. J Biol Chem 2006; 281:21914-21923. [PMID: 16735502 DOI: 10.1074/jbc.m603314200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA packaging in tailed bacteriophages and herpesviruses requires assembly of a complex molecular machine at a specific vertex of a preformed procapsid. As in all these viruses, the DNA translocation motor of bacteriophage SPP1 is composed of the portal protein (gp6) that provides a tunnel for DNA entry into the procapsid and of the viral ATPase (gp1-gp2 complex) that fuels DNA translocation. Here we studied the cross-talk between the components of the motor to control its ATP consumption and DNA encapsidation. We showed that gp6 embedded in the procapsid structure stimulated more than 10-fold the gp2 ATPase activity. This stimulation, which was significantly higher than the one conferred by isolated gp6, depended on the presence of gp1. Mutations in different regions of gp6 abolished or decreased the gp6-induced stimulation of the ATPase. This effect on gp2 activity was observed both in the presence and in the absence of DNA and showed a strict correlation with the efficiency of DNA packaging into procapsids containing the mutant portals. Our results demonstrated that the portal protein has an active control over the viral ATPase activity that correlates with the performance of the DNA packaging motor.
Collapse
Affiliation(s)
- Leonor Oliveira
- Unité de Virologie Moléculaire et Structurale, Unité Mixte de Recherche (UMR) CNRS 2472, UMR INRA 1157 and Institut Fédératif de Recherche 115, Bâtiment 14B, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France.
| | - Adriano O Henriques
- Laboratory for Microbial Development, Instituto de Tecnologia Química e Biológica, Apartado 127, 2781-901 Oeiras, Portugal
| | - Paulo Tavares
- Unité de Virologie Moléculaire et Structurale, Unité Mixte de Recherche (UMR) CNRS 2472, UMR INRA 1157 and Institut Fédératif de Recherche 115, Bâtiment 14B, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| |
Collapse
|
38
|
Kondabagil KR, Rao VB. A critical coiled coil motif in the small terminase, gp16, from bacteriophage T4: insights into DNA packaging initiation and assembly of packaging motor. J Mol Biol 2006; 358:67-82. [PMID: 16513134 DOI: 10.1016/j.jmb.2006.01.078] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Revised: 01/13/2006] [Accepted: 01/20/2006] [Indexed: 11/25/2022]
Abstract
Double-stranded DNA packaging in bacteriophages is driven by one of the most powerful force-generating molecular motors reported to date. The phage T4 motor is composed of the small terminase protein, gpl6 (18kDa), the large terminase protein, gp17 (70kDa), and the dodecameric portal protein gp20 (61kDa). gp16, which exists as an oligomer in solution, is involved in the recognition of the viral DNA substrate, the very first step in the DNA packaging pathway, and stimulates the ATPase and packaging activities associated with gp17. Sequence analyses using COILS2 revealed the presence of coiled coil motifs (CCMs) in gp16. Sixteen T4-family and numerous phage small terminases show CCMs in the corresponding region of the protein, suggesting a common structural and functional theme. Biochemical properties such as reversible thermal denaturation and analytical gel filtration data suggest that the central CCM-1 is critical for oligomerization of gp16. Mutations in CCM-1 that change the hydrophobicity of key residues, or pH 6.0, destabilized coiled coil interactions, resulting in a loss of gp16 oligomerization. The gp16 oligomers are in a dynamic equilibrium with lower M(r) intermediate species and monomer. Monomeric gp16 is unable to stimulate gp17-ATPase, an activity essential for DNA packaging, while conversion back into oligomeric form restored the activity. These data for the first time defined a CCM that is critical for structure and function of the small terminase. We postulate a packaging model in which the gp16 CCM is implicated in the regulation of packaging initiation and assembly of a supramolecular DNA packaging machine on the viral concatemer.
Collapse
Affiliation(s)
- Kiran R Kondabagil
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| | | |
Collapse
|