1
|
Fernandez de la Mora J, Almazán F, Rodríguez JM. Spontaneous Interconversion between Different Narrowly Defined Shapes of Rotavirus Double-Layered Particles Studied in Real Time by High-Resolution Mobility Analysis. Anal Chem 2023; 95:11483-11490. [PMID: 37463035 DOI: 10.1021/acs.analchem.3c01994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Rotavirus double-layered particles (DLPs) are studied in the gas phase with a high-resolution differential mobility analyzer (DMA). DLPs were transferred to 10 mM aqueous ammonium acetate, electrosprayed into the gas phase, converted into primarily singly charged particles, and DMA-analyzed. Up to seven slightly different conformations were resolved, whose apparently random, fast (minutes), and reversible interconversions were followed in real time. They sometimes evolved into just two distinct structures, with periods of one dominating over the other and vice versa. Differences between the DLP structures in solution and in the gas phase are clearly revealed by the smaller DLP diameter found here (60 versus 70 nm). Nevertheless, we argue that the multiple gas-phase conformers observed originate in as many conformations pre-existing in solution. We further hypothesize that these conformers correspond to incomplete DLPs having lost some of the VP6 trimer quintets surrounding each of the 12 5-fold axes. Instances of this peculiar loss have been previously documented by cryoelectron microscopy for the rotavirus Wa strain, as well as via charge detection mass spectrometry for five other rotavirus strains included in the RotaTec vaccine. Evidence of this loss systematically found for all 7 rotavirus types so far studied in aqueous ammonium acetate may be a special feature of this electrolyte.
Collapse
Affiliation(s)
- Juan Fernandez de la Mora
- Department of Mechanical Engineering and Materials Science, Yale University, 9 Hillhouse Avenue, New Haven, Connecticut 06520-8286, United States
| | - Fernando Almazán
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología (CNB), CSIC, Darwin 3, 28049 Madrid, Spain
| | - Javier M Rodríguez
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB), CSIC, Darwin 3, 28049 Madrid, Spain
| |
Collapse
|
2
|
Abstract
Charge detection mass spectrometry (CDMS) is a single-particle technique where the masses of individual ions are determined from simultaneous measurement of their mass-to-charge ratio (m/z) and charge. Masses are determined for thousands of individual ions, and then the results are binned to give a mass spectrum. Using this approach, accurate mass distributions can be measured for heterogeneous and high-molecular-weight samples that are usually not amenable to analysis by conventional mass spectrometry. Recent applications include heavily glycosylated proteins, protein complexes, protein aggregates such as amyloid fibers, infectious viruses, gene therapies, vaccines, and vesicles such as exosomes.
Collapse
Affiliation(s)
- Martin F Jarrold
- Chemistry Department, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47404, United States
| |
Collapse
|
3
|
Miller LM, Bond KM, Draper BE, Jarrold MF. Characterization of Classical Vaccines by Charge Detection Mass Spectrometry. Anal Chem 2021; 93:11965-11972. [PMID: 34435777 DOI: 10.1021/acs.analchem.1c01893] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vaccines induce immunity by presenting disease antigens through several platforms ranging from individual protein subunits to whole viruses. Due to the large difference in antigen size, the analytical techniques employed for vaccine characterization are often platform-specific. A single, robust analytical technique capable of widespread, cross-platform use would be of great benefit and allow for comparisons across manufacturing processes. One method that spans the antigen mass range is charge detection mass spectrometry (CDMS). CDMS is a single-ion approach where the mass-to-charge ratio (m/z) and charge are measured simultaneously, allowing accurate mass distributions to be measured for heterogeneous analytes over a broad size range. In this work, CDMS was used to characterize the antigens from three classical multivalent vaccines, inactivated poliomyelitis vaccine (IPOL), RotaTeq, and Gardasil-9, directly from commercial samples. For each vaccine, the antigen purity was inspected, and in the whole virus vaccines, empty virus particles were detected. For IPOL, information on the extent of formaldehyde cross-linking was obtained. RotaTeq shows a narrow peak at 61.06 MDa. This is at a slightly lower mass than expected for the double-layer particle, suggesting that around 10 pentonal trimers are missing. For Gardasil-9, buffer exchange of the vaccine resulted in very broad mass distributions. However, removal of the virus-like particles from the aluminum adjuvant using a displacement reaction generated a spectrum with narrow peaks.
Collapse
Affiliation(s)
- Lohra M Miller
- Chemistry Department, Indiana University, 800 E Kirkwood Ave., Bloomington, Indiana 47405, United States
| | - Kevin M Bond
- Chemistry Department, Indiana University, 800 E Kirkwood Ave., Bloomington, Indiana 47405, United States
| | - Benjamin E Draper
- Megadalton Solutions, 3750 E Bluebird Lane, Bloomington, Indiana 47401, United States
| | - Martin F Jarrold
- Chemistry Department, Indiana University, 800 E Kirkwood Ave., Bloomington, Indiana 47405, United States
| |
Collapse
|
4
|
Rotavirus NSP4 Triggers Secretion of Proinflammatory Cytokines from Macrophages via Toll-Like Receptor 2. J Virol 2013; 87:11160-7. [PMID: 23926349 DOI: 10.1128/jvi.03099-12] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Nonstructural protein 4 (NSP4), encoded by rotavirus, exhibits various properties linked to viral pathogenesis, including enterotoxic activity. A recent study (O. V. Kavanagh et al., Vaccine 28:3106-3111, 2010) indicated that NSP4 also has adjuvant properties, suggesting a possible role in the innate immune response to rotavirus infection. We report here that NSP4 purified from the medium of rotavirus-infected Caco-2 cells triggers the secretion of proinflammatory cytokines from macrophage-like THP-1 cells and nitric oxide from murine RAW 264.7 cells. Secretion is accompanied by the stimulation of p38 and JNK mitogen-activated protein kinases (MAPKs) and nuclear factor NF-κB. NSP4 triggered the secretion of cytokines from murine macrophages derived from wild-type but not MyD88(-/-) or Toll-like receptor 2 (TLR2(-/-)) mice and induced secretion of interleukin-8 (IL-8) from human embryonic kidney cells transfected with TLR2 but not TLR4. Our studies identify NSP4 as a pathogen-associated molecular pattern (PAMP) encoded by rotavirus and provide a mechanism for the production of proinflammatory cytokines associated with the clinical symptoms of infection in humans and animals.
Collapse
|
5
|
Bucardo F, Rippinger CM, Svensson L, Patton JT. Vaccine-derived NSP2 segment in rotaviruses from vaccinated children with gastroenteritis in Nicaragua. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2012; 12:1282-94. [PMID: 22487061 PMCID: PMC3372771 DOI: 10.1016/j.meegid.2012.03.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 03/09/2012] [Accepted: 03/10/2012] [Indexed: 10/28/2022]
Abstract
Rotavirus (RV) vaccination programs have been established in several countries using the human-attenuated G1P[8] monovalent vaccine Rotarix (GlaxoSmithKline) and/or the human-bovine reassortant G1, G2, G3, G4, P[8] pentavalent vaccine RotaTeq (Merck). The efficacy of both vaccines is high (∼90%) in developed countries, but can be remarkably lower in developing countries. For example, a vaccine efficacy against severe diarrhea of only 58% was observed in a 2007-2009 Nicaraguan study using RotaTeq. To gain insight into the significant level of vaccine failure in this country, we sequenced the genomes of RVs recovered from vaccinated Nicaraguan children with gastroenteritis. The results revealed that all had genotype specificities typical for human RVs (11 G1P[8], 1 G3P[8]) and that the sequences and antigenic epitopes of the outer capsid proteins (VP4 and VP7) of these viruses were similar to those reported for RVs isolated elsewhere in the world. As expected, nine of the G1P[8] viruses and the single G3P[8] virus had genome constellations typical of human G1P[8] and G3P[8] RVs: G1/3-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1. However, two of the G1P[8] viruses had atypical constellations, G1-P[8]-I1-R1-C1-M1-A1-N2-T1-E1-H1, due to the presence of a genotype-2 NSP2 (N2) gene. The sequence of the N2 NSP2 gene was identical to the bovine N2 NSP2 gene of RotaTeq, indicating that the two atypical viruses originated via reassortment of human G1P[8] RVs with RotaTeq viruses. Together, our data suggest that the high level of vaccine failure in Nicaraguan is probably not due to antigenic drift of commonly circulating virus strains nor the emergence of new antigenetically distinct virus strains. Furthermore, our data suggest that the widespread use of the RotaTeq vaccine has led to the introduction of vaccine genes into circulating human RVs.
Collapse
Affiliation(s)
- Filemón Bucardo
- Department of Microbiology, University of León, UNAN-León, Nicaragua
| | - Christine M. Rippinger
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Lennart Svensson
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Sweden
| | - John T. Patton
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
6
|
X-ray crystal structure of the rotavirus inner capsid particle at 3.8 A resolution. J Mol Biol 2010; 397:587-99. [PMID: 20122940 DOI: 10.1016/j.jmb.2010.01.055] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 01/19/2010] [Accepted: 01/22/2010] [Indexed: 12/15/2022]
Abstract
The rotavirus inner capsid particle, known as the "double-layered particle" (DLP), is the "payload" delivered into a cell in the process of viral infection. Its inner and outer protein layers, composed of viral protein (VP) 2 and VP6, respectively, package the 11 segments of the double-stranded RNA (dsRNA) of the viral genome, as well as about the same number of polymerase molecules (VP1) and capping-enzyme molecules (VP3). We have determined the crystal structure of the bovine rotavirus DLP. There is one full particle (outer diameter approximately 700 A) in the asymmetric unit of the P2(1)2(1)2(1) unit cell of dimensions a=740 A, b=1198 A, and c=1345 A. A three-dimensional reconstruction from electron cryomicroscopy was used as a molecular replacement model for initial phase determination to about 18.5 A resolution, and the 60-fold redundancy of icosahedral particle symmetry allowed phases to be extended stepwise to the limiting resolution of the data (3.8 A). The structure of a VP6 trimer (determined previously by others) fits the outer layer density with very little adjustment. The T=13 triangulation number of that layer implies that there are four and one-third VP6 trimers per icosahedral asymmetric unit. The inner layer has 120 copies of VP2 and thus 2 copies per icosahedral asymmetric unit, designated VP2A and VP2B. Residues 101-880 fold into a relatively thin principal domain, comma-like in outline, shaped such that only rather modest distortions (concentrated at two "subdomain" boundaries) allow VP2A and VP2B to form a uniform layer with essentially no gaps at the subunit boundaries, except for a modest pore along the 5-fold axis. The VP2 principal domain resembles those of the corresponding shells and homologous proteins in other dsRNA viruses: lambda1 in orthoreoviruses and VP3 in orbiviruses. Residues 1-80 of VP2A and VP2B fold together with four other such pairs into a "5-fold hub" that projects into the DLP interior along the 5-fold axis; residues 81-100 link the 10 polypeptide chains emerging from a 5-fold hub to the N-termini of their corresponding principal domains, clustered into a decameric assembly unit. The 5-fold hub appears to have several distinct functions. One function is to recruit a copy of VP1 (or of a VP1-VP3 complex), potentially along with a segment of plus-strand RNA, as a decamer of VP2 assembles. The second function is to serve as a shaft around which can coil a segment of dsRNA. The third function is to guide nascent mRNA, synthesized in the DLP interior by VP1 and 5'-capped by the action of VP3, out through a 5-fold exit channel. We propose a model for rotavirus particle assembly, based on known requirements for virion formation, together with the structure of the DLP and that of VP1, determined earlier.
Collapse
|
7
|
Chitambar SD, Arora R, Chhabra P. Molecular characterization of a rare G1P[19] rotavirus strain from India: evidence of reassortment between human and porcine rotavirus strains. J Med Microbiol 2009; 58:1611-1615. [PMID: 19679684 DOI: 10.1099/jmm.0.012856-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This study pertains to the characterization of a human rotavirus strain (NIV929893) with a rare specificity of G1P[19]. Three structural genes (VP4, VP6 and VP7) and one non-structural gene (NSP4) of strain NIV929893 were subjected to RT-PCR for amplification of entire coding regions. All of the amplicons were sequenced to carry out phylogenetic analysis. The complete amino acid sequences of the VP7 and VP4 gene products showed clustering of the VP7 gene with G1 strains of human origin and the VP4 gene with P[19] strains of porcine origin. The two viral proteins VP6 and NSP4, described previously as genetically linked proteins, were shown to be subgroup II and genotype B of human and porcine origins, respectively. The findings of this study provide evidence of reassortment between VP7/VP6 genes of humans and VP4/NSP4 genes of porcine species and an independent segregation of VP6 and NSP4 genes in a group A human rotavirus strain with G1P[19] specificity.
Collapse
Affiliation(s)
- Shobha D Chitambar
- Enteric Viruses Department, National Institute of Virology, Pune 411001, India
| | - Ritu Arora
- Enteric Viruses Department, National Institute of Virology, Pune 411001, India
| | - Preeti Chhabra
- Enteric Viruses Department, National Institute of Virology, Pune 411001, India
| |
Collapse
|
8
|
VP6 capsid protein of chicken rotavirus strain CH2: Sequence, Phylogeny and In Silico antigenic analyses. Virus Res 2008; 137:173-8. [DOI: 10.1016/j.virusres.2008.07.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 07/01/2008] [Accepted: 07/03/2008] [Indexed: 11/17/2022]
|
9
|
Tavares TDM, de Brito WMED, Fiaccadori FS, Parente JA, da Costa PSS, Giugliano LG, Andreasi MSA, Soares CMA, Cardoso DDDDP. Molecular characterization of VP6-encoding gene of group A human rotavirus samples from central west region of Brazil. J Med Virol 2008; 80:2034-9. [DOI: 10.1002/jmv.21306] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Group A human rotavirus genomics: evidence that gene constellations are influenced by viral protein interactions. J Virol 2008; 82:11106-16. [PMID: 18786998 DOI: 10.1128/jvi.01402-08] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Group A human rotaviruses (HRVs) are the major cause of severe viral gastroenteritis in infants and young children. To gain insight into the level of genetic variation among HRVs, we determined the genome sequences for 10 strains belonging to different VP7 serotypes (G types). The HRVs chosen for this study, D, DS-1, P, ST3, IAL28, Se584, 69M, WI61, A64, and L26, were isolated from infected persons and adapted to cell culture to use as serotype references. Our sequencing results revealed that most of the individual proteins from each HRV belong to one of three genotypes (1, 2, or 3) based on their similarities to proteins of genogroup strains (Wa, DS-1, or AU-1, respectively). Strains D, P, ST3, IAL28, and WI61 encode genotype 1 (Wa-like) proteins, whereas strains DS-1 and 69M encode genotype 2 (DS-1-like) proteins. Of the 10 HRVs sequenced, 3 of them (Se584, A64, and L26) encode proteins belonging to more than one genotype, indicating that they are intergenogroup reassortants. We used amino acid sequence alignments to identify residues that distinguish proteins belonging to HRV genotype 1, 2, or 3. These genotype-specific changes cluster in definitive regions within each viral protein, many of which are sites of known protein-protein interactions. For the intermediate viral capsid protein (VP6), the changes map onto the atomic structure at the VP2-VP6, VP4-VP6, and VP7-VP6 interfaces. The results of this study provide evidence that group A HRV gene constellations exist and may be influenced by interactions among viral proteins during replication.
Collapse
|
11
|
Molecular characterization of a subgroup specificity associated with the rotavirus inner capsid protein VP2. J Virol 2008; 82:2752-64. [PMID: 18216104 DOI: 10.1128/jvi.02492-07] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Group A rotaviruses are classified into serotypes, based on the reactivity pattern of neutralizing antibodies to VP4 and VP7, as well as into subgroups (SGs), based on non-neutralizing antibodies directed against VP6. The inner capsid protein (VP2) has also been described as a SG antigen; however, little is known regarding the molecular determinants of VP2 SG specificity. In this study, we characterize VP2 SGs by correlating genetic markers with the immunoreactivity of the SG-specific monoclonal antibody (YO-60). Our results show that VP2 proteins similar in sequence to that of the prototypic human strain Wa are recognized by YO-60, classifying them as VP2 SG-II. In contrast, proteins not bound by YO-60 are similar to those of human strains DS-1 or AU-1 and represent VP2 SG-I. Using a mutagenesis approach, we identified residues that determine recognition by either YO-60 or the group A-specific VP2 monoclonal antibody (6E8). We found that YO-60 binds to a conformationally dependent epitope that includes Wa VP2 residue M328. The epitope for 6E8 is also contingent upon VP2 conformation and resides within a single region of the protein (Wa VP2 residues A440 to T530). Using a high-resolution structure of bovine rotavirus double-layered particles, we predicted these epitopes to be spatially distinct from each other and located on opposite surfaces of VP2. This study reveals the extent of genetic variation among group A rotavirus VP2 proteins and illuminates the molecular basis for a previously described SG specificity associated with the rotavirus inner capsid protein.
Collapse
|
12
|
Geometric mismatches within the concentric layers of rotavirus particles: a potential regulatory switch of viral particle transcription activity. J Virol 2008; 82:2844-52. [PMID: 18184711 DOI: 10.1128/jvi.02268-07] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rotaviruses are prototypical double-stranded RNA viruses whose triple-layered icosahedral capsid constitutes transcriptional machinery activated by the release of the external layer. To understand the molecular basis of this activation, we studied the structural interplay between the three capsid layers by electron cryo-microscopy and digital image processing. Two viral particles and four virus-like particles containing various combinations of inner (VP2)-, middle (VP6)-, and outer (VP7)-layer proteins were studied. We observed that the absence of the VP2 layer increases the particle diameter and changes the type of quasi-equivalent icosahedral symmetry, as described by the shift in triangulation number (T) of the VP6 layer (from T = 13 to T = 19 or more). By fitting X-ray models of VP6 into each reconstruction, we determined the quasi-atomic structures of the middle layers. These models showed that the VP6 lattices, i.e., curvature and trimer contacts, are characteristic of the particle composition. The different functional states of VP6 thus appear as being characterized by trimers having similar conformations but establishing different intertrimeric contacts. Remarkably, the external protein VP7 reorients the VP6 trimers located around the fivefold axes of the icosahedral capsid, thereby shrinking the channel through which mRNA exits the transcribing rotavirus particle. We conclude that the constraints arising from the different geometries imposed by the external and internal layers of the rotavirus capsid constitute a potential switch regulating the transcription activity of the viral particles.
Collapse
|