1
|
Kinch LN, Schaeffer RD, Zhang J, Cong Q, Orth K, Grishin N. Insights into virulence: structure classification of the Vibrio parahaemolyticus RIMD mobilome. mSystems 2023; 8:e0079623. [PMID: 38014954 PMCID: PMC10734457 DOI: 10.1128/msystems.00796-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/17/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE The pandemic Vpar strain RIMD causes seafood-borne illness worldwide. Previous comparative genomic studies have revealed pathogenicity islands in RIMD that contribute to the success of the strain in infection. However, not all virulence determinants have been identified, and many of the proteins encoded in known pathogenicity islands are of unknown function. Based on the EOCD database, we used evolution-based classification of structure models for the RIMD proteome to improve our functional understanding of virulence determinants acquired by the pandemic strain. We further identify and classify previously unknown mobile protein domains as well as fast evolving residue positions in structure models that contribute to virulence and adaptation with respect to a pre-pandemic strain. Our work highlights key contributions of phage in mediating seafood born illness, suggesting this strain balances its avoidance of phage predators with its successful colonization of human hosts.
Collapse
Affiliation(s)
- Lisa N. Kinch
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - R. Dustin Schaeffer
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jing Zhang
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Qian Cong
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kim Orth
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Nick Grishin
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
2
|
Shen R, Yu Y, Chen Z, Zhu M, Feng Y, Niu P, Yu S. Riemerella anatipestifer Endonuclease I displays enzymatic activity and is associated with bacterial virulence. Vet Microbiol 2023; 280:109700. [PMID: 36807978 DOI: 10.1016/j.vetmic.2023.109700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/24/2022] [Accepted: 02/15/2023] [Indexed: 02/18/2023]
Abstract
Riemerella anatipestifer is an important pathogen of waterfowl, causing septicemic and exudative diseases. We previously reported that the R. anatipestifer AS87_RS02625 is a secretory protein of the type IX secretion system (T9SS). In this study, R. anatipestifer T9SS protein AS87_RS02625 was determined to be a functional Endonuclease I (EndoI), which has DNase and RNase activities. Optimal temperature and pH of the recombinant R. anatipestifer EndoI (rEndoI) to cleave λDNA were determined as 55-60 °C and 7.5 respectively. The DNase activity of the rEndoI was dependent on the presence of divalent metal ions. Presence of Mg2+ at a concentration range of 7.5-15 mM in the rEndoI reaction buffer displayed the highest DNase activity. In addition, the rEndoI displayed RNase activity to cleave MS2-RNA (ssRNA), either in the absence or presence of divalent cations Mg2+, Mn2+, Ca2+, Zn2+ and Cu2+. The DNase activity of the rEndoI was significantly enhanced by Mg2+, Mn2+ and Ca2+ but not Zn2+ and Cu2+. Moreover, we indicated that R. anatipestifer EndoI functioned on the bacterial adherence, invasion, in vivo survival and inducing inflammatory cytokines. These results indicate that the R. anatipestifer T9SS protein AS87_RS02625 is a novel EndoI, displays endonuclease activity and plays an important role in bacterial virulence.
Collapse
Affiliation(s)
- Ruyu Shen
- Jiangsu Agri-Animal Husbandry Vocational College, Veterinary Bio-Pharmaceutical, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Taizhou, Jiangsu, China; Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225000, China
| | - Yang Yu
- Jiangsu Agri-Animal Husbandry Vocational College, Veterinary Bio-Pharmaceutical, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Taizhou, Jiangsu, China
| | - Zongchao Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Min Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Yating Feng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China; College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Pengfei Niu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Shengqing Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China.
| |
Collapse
|
3
|
Abstract
Colicins are protein antibiotics deployed by Escherichia coli to eliminate competing strains. Colicins frequently exploit outer membrane (OM) nutrient transporters to penetrate the selectively permeable bacterial cell envelope. Here, by applying live-cell fluorescence imaging, we were able to monitor the entry of the pore-forming toxin colicin B (ColB) into E. coli and localize it within the periplasm. We further demonstrate that single-stranded DNA coupled to ColB can also be transported to the periplasm, emphasizing that the import routes of colicins can be exploited to carry large cargo molecules into bacteria. Moreover, we characterize the molecular mechanism of ColB association with its OM receptor FepA by applying a combination of photoactivated cross-linking, mass spectrometry, and structural modeling. We demonstrate that complex formation is coincident with large-scale conformational changes in the colicin. Thereafter, active transport of ColB through FepA involves the colicin taking the place of the N-terminal half of the plug domain that normally occludes this iron transporter. IMPORTANCE Decades of excessive use of readily available antibiotics has generated a global problem of antibiotic resistance and, hence, an urgent need for novel antibiotic solutions. Bacteriocins are protein-based antibiotics produced by bacteria to eliminate closely related competing bacterial strains. Bacteriocin toxins have evolved to bypass the complex cell envelope in order to kill bacterial cells. Here, we uncover the cellular penetration mechanism of a well-known but poorly understood bacteriocin called colicin B that is active against Escherichia coli. Moreover, we demonstrate that the colicin B-import pathway can be exploited to deliver conjugated DNA cargo into bacterial cells. Our work leads to a better understanding of the way bacteriocins, as potential alternative antibiotics, execute their mode of action as well as highlighting how they might even be exploited in the genomic manipulation of Gram-negative bacteria.
Collapse
|
4
|
Shushan A, Kosloff M. Structural design principles for specific ultra-high affinity interactions between colicins/pyocins and immunity proteins. Sci Rep 2021; 11:3789. [PMID: 33589691 PMCID: PMC7884437 DOI: 10.1038/s41598-021-83265-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/28/2021] [Indexed: 12/13/2022] Open
Abstract
The interactions of the antibiotic proteins colicins/pyocins with immunity proteins is a seminal model system for studying protein–protein interactions and specificity. Yet, a precise and quantitative determination of which structural elements and residues determine their binding affinity and specificity is still lacking. Here, we used comparative structure-based energy calculations to map residues that substantially contribute to interactions across native and engineered complexes of colicins/pyocins and immunity proteins. We show that the immunity protein α1–α2 motif is a unique structurally-dissimilar element that restricts interaction specificity towards all colicins/pyocins, in both engineered and native complexes. This motif combines with a diverse and extensive array of electrostatic/polar interactions that enable the exquisite specificity that characterizes these interactions while achieving ultra-high affinity. Surprisingly, the divergence of these contributing colicin residues is reciprocal to residue conservation in immunity proteins. The structurally-dissimilar immunity protein α1–α2 motif is recognized by divergent colicins similarly, while the conserved immunity protein α3 helix interacts with diverse colicin residues. Electrostatics thus plays a key role in setting interaction specificity across all colicins and immunity proteins. Our analysis and resulting residue-level maps illuminate the molecular basis for these protein–protein interactions, with implications for drug development and rational engineering of these interfaces.
Collapse
Affiliation(s)
- Avital Shushan
- The Department of Human Biology, Faculty of Natural Sciences, University of Haifa, 199 Aba Khoushy Ave., Mt. Carmel, 3498838, Haifa, Israel
| | - Mickey Kosloff
- The Department of Human Biology, Faculty of Natural Sciences, University of Haifa, 199 Aba Khoushy Ave., Mt. Carmel, 3498838, Haifa, Israel.
| |
Collapse
|
5
|
Chang JW, Sato Y, Ogawa T, Arakawa T, Fukai S, Fushinobu S, Masaki H. Crystal structure of the central and the C-terminal RNase domains of colicin D implicated its translocation pathway through inner membrane of target cell. J Biochem 2018; 164:329-339. [PMID: 29905832 DOI: 10.1093/jb/mvy056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 06/10/2018] [Indexed: 12/18/2022] Open
Abstract
Colicins are protein toxins produced by and toxic to Escherichia coli strains. Colicin D consists of an N-terminal domain (NTD), central domain (CD) and C-terminal RNase domain (CRD). The cognate immunity protein, ImmD, is co-synthesized in producer cells to block the toxic tRNase activity of the CRD. Previous studies have reported the crystal structure of CRD/ImmD complex. Colicin D hijacks the surface receptor FepA and the energy transducer TonB system using the NTD for translocation across the outer membrane of the target cells. The CD is required for endoproteolytic processing and the translocation of CRD across the inner membrane, and the membrane-associated protease FtsH and the signal peptidase LepB are exploited in this process. Although several regions of the CD have been identified in interactions with the hijacked inner membrane system or immunity protein, the structural basis of the CD is unknown. In this study, we determined the crystal structure of colicin D, containing both the CD and CRD. The full-length colicin D/ImmD heterodimer structure was built by superimposing the CD-CRD structure with the previously determined partial structures. The overall translocation process of colicin D, including the interaction between CD and LepB, is discussed.
Collapse
Affiliation(s)
- Jung-Wei Chang
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Yusuke Sato
- Synchrotron Radiation Research Organization, The University of Tokyo, Tokyo, Japan.,Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, Japan
| | - Tetsuhiro Ogawa
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Takatoshi Arakawa
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Shuya Fukai
- Synchrotron Radiation Research Organization, The University of Tokyo, Tokyo, Japan.,Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, Japan
| | - Shinya Fushinobu
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Haruhiko Masaki
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, Japan
| |
Collapse
|
6
|
Németh E, Balogh RK, Borsos K, Czene A, Thulstrup PW, Gyurcsik B. Intrinsic protein disorder could be overlooked in cocrystallization conditions: An SRCD case study. Protein Sci 2016; 25:1977-1988. [PMID: 27508941 DOI: 10.1002/pro.3010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 08/08/2016] [Indexed: 12/21/2022]
Abstract
X-ray diffractometry dominates protein studies, as it can provide 3D structures of these diverse macromolecules or their molecular complexes with interacting partners: substrates, inhibitors, and/or cofactors. Here, we show that under cocrystallization conditions the results could reflect induced protein folds instead of the (partially) disordered original structures. The analysis of synchrotron radiation circular dichroism spectra revealed that the Im7 immunity protein stabilizes the native-like solution structure of unfolded NColE7 nuclease mutants via complex formation. This is consistent with the fact that among the several available crystal structures with its inhibitor or substrate, all NColE7 structures are virtually the same. Our results draw attention to the possible structural consequence of protein modifications, which is often hidden by compensational effects of intermolecular interactions. The growing evidence on the importance of protein intrinsic disorder thus, demands more extensive complementary experiments in solution phase with the unligated form of the protein of interest.
Collapse
Affiliation(s)
- Eszter Németh
- Department of Inorganic and Analytical Chemistry, University of Szeged, Szeged, 6720, Hungary.,MTA-SZTE, Bioinorganic Chemistry Research Group, Hungarian Academy of Sciences, Szeged, 6720, Hungary
| | - Ria K Balogh
- Department of Inorganic and Analytical Chemistry, University of Szeged, Szeged, 6720, Hungary
| | - Katalin Borsos
- Department of Inorganic and Analytical Chemistry, University of Szeged, Szeged, 6720, Hungary
| | - Anikó Czene
- MTA-SZTE, Bioinorganic Chemistry Research Group, Hungarian Academy of Sciences, Szeged, 6720, Hungary
| | - Peter W Thulstrup
- Department of Chemistry, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Béla Gyurcsik
- Department of Inorganic and Analytical Chemistry, University of Szeged, Szeged, 6720, Hungary. .,MTA-SZTE, Bioinorganic Chemistry Research Group, Hungarian Academy of Sciences, Szeged, 6720, Hungary.
| |
Collapse
|
7
|
Structural and biophysical analysis of nuclease protein antibiotics. Biochem J 2016; 473:2799-812. [PMID: 27402794 PMCID: PMC5264503 DOI: 10.1042/bcj20160544] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 07/07/2016] [Indexed: 01/28/2023]
Abstract
Protein antibiotics (bacteriocins) are a large and diverse family of multidomain toxins that kill specific Gram-negative bacteria during intraspecies competition for resources. Our understanding of the mechanism of import of such potent toxins has increased significantly in recent years, especially with the reporting of several structures of bacteriocin domains. Less well understood is the structural biochemistry of intact bacteriocins and how these compare across bacterial species. Here, we focus on endonuclease (DNase) bacteriocins that target the genomes of Escherichia coli and Pseudomonas aeruginosa, known as E-type colicins and S-type pyocins, respectively, bound to their specific immunity (Im) proteins. First, we report the 3.2 Å structure of the DNase colicin ColE9 in complex with its ultra-high affinity Im protein, Im9. In contrast with Im3, which when bound to the ribonuclease domain of the homologous colicin ColE3 makes contact with the translocation (T) domain of the toxin, we find that Im9 makes no such contact and only interactions with the ColE9 cytotoxic domain are observed. Second, we report small-angle X-ray scattering data for two S-type DNase pyocins, S2 and AP41, into which are fitted recently determined X-ray structures for isolated domains. We find that DNase pyocins and colicins are both highly elongated molecules, even though the order of their constituent domains differs. We discuss the implications of these architectural similarities and differences in the context of the translocation mechanism of protein antibiotics through the cell envelope of Gram-negative bacteria.
Collapse
|
8
|
Kouvatsos N, Niarchos A, Zisimopoulou P, Eliopoulos E, Poulas K, Tzartos S. Purification and functional characterization of a truncated human α4β2 nicotinic acetylcholine receptor. Int J Biol Macromol 2014; 70:320-6. [PMID: 25014634 DOI: 10.1016/j.ijbiomac.2014.06.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 06/18/2014] [Accepted: 06/19/2014] [Indexed: 10/25/2022]
Abstract
Nicotinic acetylcholine receptors (nAChR) are abundant in the brain and are essential in cognitive function, learning and memory. Previous efforts on α4β2 nAChR had been focused on functional and pharmacological characterization, where high expression yield is not essential. For structural studies though, large amounts of pure protein is important but heterologous overexpression of membrane proteins can be a burdensome task, especially if high amounts are required. In the current study, a truncated mutant of the human α4β2 nAChR was designed in order to improve expression and solubility and to obtain material suitable for high resolution structural studies. We showed that the wild type α4β2 nAChR presented low expression and solubilization yield both of which were improved with the truncated construct. The truncated nAChR showed similar binding profile to the wild type, was purified by a two-step chromatography and isolated in high purity and adequate quantity.
Collapse
Affiliation(s)
- Nikolaos Kouvatsos
- Department of Neurobiology, Hellenic Pasteur Institute, 127 Vass. Sofias Avenue, GR11521 Athens, Greece
| | | | - Paraskevi Zisimopoulou
- Department of Neurobiology, Hellenic Pasteur Institute, 127 Vass. Sofias Avenue, GR11521 Athens, Greece
| | - Elias Eliopoulos
- Department of Agricultural Biotechnology, Agricultural University of Athens, Holy Street 75, GR11855 Athens, Greece
| | | | - Socrates Tzartos
- Department of Neurobiology, Hellenic Pasteur Institute, 127 Vass. Sofias Avenue, GR11521 Athens, Greece; Department of Pharmacy, University of Patras, GR26500 Patras, Greece.
| |
Collapse
|
9
|
Németh E, Körtvélyesi T, Thulstrup PW, Christensen HEM, Kožíšek M, Nagata K, Czene A, Gyurcsik B. Fine tuning of the catalytic activity of colicin E7 nuclease domain by systematic N-terminal mutations. Protein Sci 2014; 23:1113-22. [PMID: 24895333 DOI: 10.1002/pro.2497] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/20/2014] [Accepted: 05/29/2014] [Indexed: 11/11/2022]
Abstract
The nuclease domain of colicin E7 (NColE7) promotes the nonspecific cleavage of nucleic acids at its C-terminal HNH motif. Interestingly, the deletion of four N-terminal residues (446-449 NColE7 = KRNK) resulted in complete loss of the enzyme activity. R447A mutation was reported to decrease the nuclease activity, but a detailed analysis of the role of the highly positive and flexible N-terminus is still missing. Here, we present the study of four mutants, with a decreased activity in the following order: NColE7 >> KGNK > KGNG ∼ GGNK > GGNG. At the same time, the folding, the metal-ion, and the DNA-binding affinity were unaffected by the mutations as revealed by linear and circular dichroism spectroscopy, isothermal calorimetric titrations, and gel mobility shift experiments. Semiempirical quantum chemical calculations and molecular dynamics simulations revealed that K446, K449, and/or the N-terminal amino group are able to approach the active centre in the absence of the other positively charged residues. The results suggested a complex role of the N-terminus in the catalytic process that could be exploited in the design of a controlled nuclease.
Collapse
Affiliation(s)
- Eszter Németh
- Department of Inorganic and Analytical Chemistry, University of Szeged, 6720, Szeged, Hungary; Department of Physical Chemistry and Material Sciences, University of Szeged, 6720, Szeged, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Czene A, Németh E, Zóka IG, Jakab-Simon NI, Körtvélyesi T, Nagata K, Christensen HEM, Gyurcsik B. The role of the N-terminal loop in the function of the colicin E7 nuclease domain. J Biol Inorg Chem 2013; 18:309-21. [DOI: 10.1007/s00775-013-0975-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 12/31/2012] [Indexed: 01/10/2023]
|
11
|
Arnold T, Zeth K, Linke D. Structure and function of colicin S4, a colicin with a duplicated receptor-binding domain. J Biol Chem 2008; 284:6403-13. [PMID: 19056731 PMCID: PMC2649078 DOI: 10.1074/jbc.m808504200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Colicins are plasmid-encoded toxic proteins produced by Escherichia coli strains to kill other E. coli strains that lack the corresponding immunity protein. Colicins intrude into the host cell by exploiting existing transport, diffusion, or efflux systems. We have traced the way colicin S4 takes to execute its function and show that it interacts specifically with OmpW, OmpF, and the Tol system before it inserts its pore-forming domain into the cytoplasmic membrane. The common structural architecture of colicins comprises a translocation, a receptor-binding, and an activity domain. We have solved the crystal structure of colicin S4 to a resolution of 2.5 A, which shows a remarkably compact domain arrangement of four independent domains, including a unique domain duplication of the receptor-binding domain. Finally, we have determined the residues responsible for binding to the receptor OmpW by mutating exposed charged residues in one or both receptor-binding domains.
Collapse
Affiliation(s)
- Thomas Arnold
- Department I, Protein Evolution, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | | | | |
Collapse
|
12
|
Cascales E, Buchanan SK, Duché D, Kleanthous C, Lloubès R, Postle K, Riley M, Slatin S, Cavard D. Colicin biology. Microbiol Mol Biol Rev 2007; 71:158-229. [PMID: 17347522 PMCID: PMC1847374 DOI: 10.1128/mmbr.00036-06] [Citation(s) in RCA: 784] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Colicins are proteins produced by and toxic for some strains of Escherichia coli. They are produced by strains of E. coli carrying a colicinogenic plasmid that bears the genetic determinants for colicin synthesis, immunity, and release. Insights gained into each fundamental aspect of their biology are presented: their synthesis, which is under SOS regulation; their release into the extracellular medium, which involves the colicin lysis protein; and their uptake mechanisms and modes of action. Colicins are organized into three domains, each one involved in a different step of the process of killing sensitive bacteria. The structures of some colicins are known at the atomic level and are discussed. Colicins exert their lethal action by first binding to specific receptors, which are outer membrane proteins used for the entry of specific nutrients. They are then translocated through the outer membrane and transit through the periplasm by either the Tol or the TonB system. The components of each system are known, and their implication in the functioning of the system is described. Colicins then reach their lethal target and act either by forming a voltage-dependent channel into the inner membrane or by using their endonuclease activity on DNA, rRNA, or tRNA. The mechanisms of inhibition by specific and cognate immunity proteins are presented. Finally, the use of colicins as laboratory or biotechnological tools and their mode of evolution are discussed.
Collapse
Affiliation(s)
- Eric Cascales
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires,Institut de Biologie Structurale et Microbiologie, Centre National de la Recherche Scientifique, UPR 9027, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France.
| | | | | | | | | | | | | | | | | |
Collapse
|