1
|
Maltseva D, Gudbrandsdottir R, Kizilsavas G, Horinek D, Gonella G. Location and Conformation of the LKα14 Peptide in Water/Ethanol Mixtures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:469-477. [PMID: 33356282 PMCID: PMC7871320 DOI: 10.1021/acs.langmuir.0c03132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/14/2020] [Indexed: 06/12/2023]
Abstract
It is widely recognized that solvation is one of the major factors determining structure and functionality of proteins and long peptides, however it is a formidable challenge to address it both experimentally and computationally. For this reason, simple peptides are used to study fundamental aspects of solvation. It is well established that alcohols can change the peptide conformation and tuning of the alcohol content in solution can dramatically affect folding and, as a consequence, the function of the peptide. In this work, we focus on the leucine and lysine based LKα14 peptide designed to adopt an α-helical conformation at an apolar-polar interface. We investigate LKα14 peptide's bulk and interfacial behavior in water/ethanol mixtures combining a suite of experimental techniques (namely, circular dichroism and nuclear magnetic resonance spectroscopy for the bulk solution, surface pressure measurements and vibrational sum frequency generation spectroscopy for the air-solution interface) with molecular dynamics simulations. We observe that ethanol highly affects both the peptide location and conformation. At low ethanol content LKα14 lacks a clear secondary structure in bulk and shows a clear preference to reside at the air-solution interface. When the ethanol content in solution increases, the peptide's interfacial affinity is markedly reduced and the peptide approaches a stable α-helical conformation in bulk facilitated by the amphiphilic nature of the ethanol molecules.
Collapse
Affiliation(s)
- Daria Maltseva
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | | | - Gönül Kizilsavas
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Dominik Horinek
- Institute
for Physical and Theoretical Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Grazia Gonella
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
2
|
Brown MC, Abdine A, Chavez J, Schaffner A, Torres-Arancivia C, Lada B, JiJi RD, Osman R, Cooley JW, Ubarretxena-Belandia I. Unwinding of the Substrate Transmembrane Helix in Intramembrane Proteolysis. Biophys J 2019; 114:1579-1589. [PMID: 29642028 DOI: 10.1016/j.bpj.2018.01.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 12/19/2017] [Accepted: 01/08/2018] [Indexed: 10/17/2022] Open
Abstract
Intramembrane-cleaving proteases (I-CLiPs) activate pools of single-pass helical membrane protein signaling precursors that are key in the physiology of prokaryotic and eukaryotic cells. Proteases typically cleave peptide bonds within extended or flexible regions of their substrates, and thus the mechanism underlying the ability of I-CLiPs to hydrolyze the presumably α-helical transmembrane domain (TMD) of these membrane proteins is unclear. Using deep-ultraviolet resonance Raman spectroscopy in combination with isotopic labeling, we show that although predominantly in canonical α-helical conformation, the TMD of the established I-CLiP substrate Gurken displays 310-helical geometry. As measured by microscale thermophoresis, this substrate binds with high affinity to the I-CLiPs GlpG rhomboid and MCMJR1 presenilin homolog in detergent micelles. Binding results in deep-ultraviolet resonance Raman spectra, indicating conformational changes consistent with unwinding of the 310-helical region of the substrate's TMD. This 310-helical conformation is key for intramembrane proteolysis, as the substitution of a single proline residue in the TMD of Gurken by alanine suppresses 310-helical content in favor of α-helical geometry and abolishes cleavage without affecting binding to the I-CLiP. Complemented by molecular dynamics simulations of the TMD of Gurken, our vibrational spectroscopy data provide biophysical evidence in support of a model in which the transmembrane region of cleavable I-CLiP substrates displays local deviations in canonical α-helical conformation characterized by chain flexibility, and binding to the enzyme results in conformational changes that facilitate local unwinding of the transmembrane helix for cleavage.
Collapse
Affiliation(s)
- Mia C Brown
- Department of Chemistry, University of Missouri, Columbia, Missouri
| | - Alaa Abdine
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jose Chavez
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Adam Schaffner
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Celia Torres-Arancivia
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Brian Lada
- Department of Chemistry, University of Missouri, Columbia, Missouri
| | - Renee D JiJi
- Department of Chemistry, University of Missouri, Columbia, Missouri
| | - Roman Osman
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jason W Cooley
- Department of Chemistry, University of Missouri, Columbia, Missouri.
| | - Iban Ubarretxena-Belandia
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country, Leioa, Spain.
| |
Collapse
|
3
|
Kuffel A, Szałachowska M. The significance of the properties of water for the working cycle of the kinesin molecular motor. J Chem Phys 2018; 148:235101. [DOI: 10.1063/1.5020208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Anna Kuffel
- Faculty of Chemistry, Department of Physical Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Monika Szałachowska
- Faculty of Chemistry, Department of Physical Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
| |
Collapse
|
4
|
Nayar D, Chakravarty C. Free Energy Landscapes of Alanine Oligopeptides in Rigid-Body and Hybrid Water Models. J Phys Chem B 2015; 119:11106-20. [PMID: 26132437 DOI: 10.1021/acs.jpcb.5b02937] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Replica exchange molecular dynamics is used to study the effect of different rigid-body (mTIP3P, TIP4P, SPC/E) and hybrid (H1.56, H3.00) water models on the conformational free energy landscape of the alanine oligopeptides (acAnme and acA5nme), in conjunction with the CHARMM22 force field. The free energy landscape is mapped out as a function of the Ramachandran angles. In addition, various secondary structure metrics, solvation shell properties, and the number of peptide-solvent hydrogen bonds are monitored. Alanine dipeptide is found to have similar free energy landscapes in different solvent models, an insensitivity which may be due to the absence of possibilities for forming i-(i + 4) or i-(i + 3) intrapeptide hydrogen bonds. The pentapeptide, acA5nme, where there are three intrapeptide backbone hydrogen bonds, shows a conformational free energy landscape with a much greater degree of sensitivity to the choice of solvent model, though the three rigid-body water models differ only quantitatively. The pentapeptide prefers nonhelical, non-native PPII and β-sheet populations as the solvent is changed from SPC/E to the less tetrahedral liquid (H1.56) to an LJ-like liquid (H3.00). The pentapeptide conformational order metrics indicate a preference for open, solvent-exposed, non-native structures in hybrid solvent models at all temperatures of study. The possible correlations between the properties of solvent models and secondary structure preferences of alanine oligopeptides are discussed, and the competition between intrapeptide, peptide-solvent, and solvent-solvent hydrogen bonding is shown to be crucial in the relative free energies of different conformers.
Collapse
Affiliation(s)
- Divya Nayar
- Department of Chemistry, Indian Institute of Technology-Delhi , New Delhi 110016, India
| | - Charusita Chakravarty
- Department of Chemistry, Indian Institute of Technology-Delhi , New Delhi 110016, India
| |
Collapse
|
5
|
Muddana HS, Sapra NV, Fenley AT, Gilson MK. The electrostatic response of water to neutral polar solutes: implications for continuum solvent modeling. J Chem Phys 2013; 138:224504. [PMID: 23781802 PMCID: PMC3695974 DOI: 10.1063/1.4808376] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 05/10/2013] [Indexed: 12/20/2022] Open
Abstract
Continuum solvation models are widely used to estimate the hydration free energies of small molecules and proteins, in applications ranging from drug design to protein engineering, and most such models are based on the approximation of a linear dielectric response by the solvent. We used explicit-water molecular dynamics simulations with the TIP3P water model to probe this linear response approximation in the case of neutral polar molecules, using miniature cucurbituril and cyclodextrin receptors and protein side-chain analogs as model systems. We observe supralinear electrostatic solvent responses, and this nonlinearity is found to result primarily from waters' being drawn closer and closer to the solutes with increased solute-solvent electrostatic interactions; i.e., from solute electrostriction. Dielectric saturation and changes in the water-water hydrogen bonding network, on the other hand, play little role. Thus, accounting for solute electrostriction may be a productive approach to improving the accuracy of continuum solvation models.
Collapse
Affiliation(s)
- Hari S Muddana
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093-0736, USA
| | | | | | | |
Collapse
|
6
|
Lombardi A, Gianese G, Arcangeli C, Galeffi P, Sperandei M. Bacterial cytoplasm production of an EGFP-labeled single-chain Fv antibody specific for the HER2 human receptor. J Biomol Struct Dyn 2012; 29:425-39. [PMID: 22066531 DOI: 10.1080/07391102.2011.10507396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The human epidermal growth factor receptor 2 (HER2) is the main diagnostic marker of breast and ovary cancers. Here, to obtain a rapid and sensitive immunodiagnostic tool a single-chain antibody (scFv800E6) specific for the HER2 was fused to the N-terminus of the enhanced green fluorescent protein (EGFP) by a flexible linker. The soluble production of the novel scFv800E6-EGFP protein in the cytoplasm of Escherichia coli was investigated at different induction temperatures (25, 30 and 37°C); the intrinsic fluorescent properties and the binding activity to HER2 positive tumour cells of the fusion protein were analysed. Western blotting and fluorescence analysis of SDS-PAGE revealed the presence of two scFv800E6-EGFP forms, with different mobility and optical properties, their ratio depending on the induction temperature. The fluorescent form maintained the optical fluorescence properties of EGFP and exhibited a binding activity to the HER2-expressing cells comparable to that of the non-fused scFv800E6. In addition, to provide an insight into the effect of the induction temperature on the molecular structure, the folding of the fusion protein was assessed at atomic level by performing molecular dynamics simulations of the homology-derived model of scFv800E6-EGFP at 300 K and 310 K. The comparison of the data collected at these two temperatures revealed that the higher temperature affects specific structural elements. To improve the production of the soluble and functional scFv800E6-EGFP protein, "in silico" results could be utilised for ad hoc design of the molecular structure.
Collapse
Affiliation(s)
- Alessio Lombardi
- Institute of Biology and Agrarian Biotechnology (IBBA), National Research Council, via Bassini 15, 20133 Milan, Italy
| | | | | | | | | |
Collapse
|
7
|
Mirkin NG, Krimm S. Water interaction differences determine the relative energetic stability of the polyproline II conformation of the alanine dipeptide in aqueous environments. Biopolymers 2012; 97:789-94. [DOI: 10.1002/bip.22064] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
8
|
Crevenna A, Naredi-Rainer N, Lamb D, Wedlich-Söldner R, Dzubiella J. Effects of Hofmeister ions on the α-helical structure of proteins. Biophys J 2012; 102:907-15. [PMID: 22385862 PMCID: PMC3283803 DOI: 10.1016/j.bpj.2012.01.035] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 12/15/2011] [Accepted: 01/11/2012] [Indexed: 01/20/2023] Open
Abstract
The molecular conformation of proteins is sensitive to the nature of the aqueous environment. In particular, the presence of ions can stabilize or destabilize (denature) protein secondary structure. The underlying mechanisms of these actions are still not fully understood. Here, we combine circular dichroism (CD), single-molecule Förster resonance energy transfer, and atomistic computer simulations to elucidate salt-specific effects on the structure of three peptides with large α-helical propensity. CD indicates a complex ion-specific destabilization of the α-helix that can be rationalized by using a single salt-free computer simulation in combination with the recently introduced scheme of ion-partitioning between nonpolar and polar peptide surfaces. Simulations including salt provide a molecular underpinning of this partitioning concept. Furthermore, our single-molecule Förster resonance energy transfer measurements reveal highly compressed peptide conformations in molar concentrations of NaClO(4) in contrast to strong swelling in the presence of GdmCl. The compacted states observed in the presence of NaClO(4) originate from a tight ion-backbone network that leads to a highly heterogeneous secondary structure distribution and an overall lower α-helical content that would be estimated from CD. Thus, NaClO(4) denatures by inducing a molten globule-like structure that seems completely off-pathway between a fully folded helix and a coil state.
Collapse
Affiliation(s)
- Alvaro H. Crevenna
- Cellular Dynamics and Cell Patterning, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Nikolaus Naredi-Rainer
- Physical Chemistry, Department for Chemistry and Biochemistry and Center for Nano Science (CeNS), Ludwig-Maximilians-Universität München, Munich, Germany
- Center for Integrated Protein Science Munich, Munich, Germany
| | - Don C. Lamb
- Physical Chemistry, Department for Chemistry and Biochemistry and Center for Nano Science (CeNS), Ludwig-Maximilians-Universität München, Munich, Germany
- Center for Integrated Protein Science Munich, Munich, Germany
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Roland Wedlich-Söldner
- Cellular Dynamics and Cell Patterning, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Joachim Dzubiella
- Physics Department T37, Technische Universität München, Garching, Germany
- Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin, Berlin, Germany
- Institut für Physik, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
9
|
Kuffel A, Zielkiewicz J. The importance of the shape of the protein–water interface of a kinesin motor domain for dynamics of the surface atoms of the protein. Phys Chem Chem Phys 2012; 14:5561-9. [DOI: 10.1039/c2cp40105c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
10
|
Effects of different force fields and temperatures on the structural character of Abeta (12-28) peptide in aqueous solution. Int J Mol Sci 2011; 12:8259-74. [PMID: 22174662 PMCID: PMC3233468 DOI: 10.3390/ijms12118259] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 10/12/2011] [Accepted: 11/07/2011] [Indexed: 01/13/2023] Open
Abstract
The aim of this work is to investigate the effects of different force fields and temperatures on the structural character of Aβ (12-28) peptide in aqueous solution. Moreover, the structural character of Aβ (12-28) peptide is compared with other amyloid peptides (such as H1 and α-syn12 peptide). The two independent temperature replica exchange molecular dynamics (T-REMD) simulations were completed by using two different models (OPLS-AA/TIP4P and GROMOS 43A1/SPC). We compared the models by analyzing the distributions of backbone dihedral angles, the secondary structure propensity, the free energy surface and the formation of β-hairpin. The results show that the mostly populated conformation state is random coil for both models. The population of β-hairpin is below 8 percent for both models. However, the peptide modeled by GROMOS 43A1 form β-hairpin with turn located at residues F19-E22, while the peptide modeled by OPLS-AA form β-hairpin with turn located at residues L17-F20.
Collapse
|
11
|
Structural insights into the oligomerization and architecture of eukaryotic membrane pore-forming toxins. Structure 2011; 19:181-91. [PMID: 21300287 DOI: 10.1016/j.str.2010.11.013] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 11/01/2010] [Accepted: 11/06/2010] [Indexed: 01/27/2023]
Abstract
Pore-forming toxins (PFTs) are proteins that are secreted as soluble molecules and are inserted into membranes to form oligomeric transmembrane pores. In this paper, we report the crystal structure of Fragaceatoxin C (FraC), a PFT isolated from the sea anemone Actinia fragacea, at 1.8 Å resolution. It consists of a crown-shaped nonamer with an external diameter of about 11.0 nm and an internal diameter of approximately 5.0 nm. Cryoelectron microscopy studies of FraC in lipid bilayers reveal the pore structure that traverses the membrane. The shape and dimensions of the crystallographic oligomer are fully consistent with the membrane pore. The FraC structure provides insight into the interactions governing the assembly process and suggests the structural changes that allow for membrane insertion. We propose a nonameric pore model that spans the membrane by forming a lipid-free α-helical bundle pore.
Collapse
|
12
|
Abstract
Helix formation is an elementary process in protein folding, influencing both the rate and mechanism of the global folding reaction. Yet, because helix formation is less cooperative than protein folding, the kinetics are often multiexponential, and the observed relaxation times are not straightforwardly related to the microscopic rates for helix nucleation and elongation. Recent ultrafast spectroscopic measurements on the peptide Ac-WAAAH(+)-NH(2) were best fit by two relaxation modes on the ∼0.1-1 ns time scale, (1) apparently much faster than had previously been experimentally inferred for helix nucleation. Here, we use replica-exchange molecular dynamics simulations with an optimized all-atom protein force field (Amber ff03w) and an accurate water model (TIP4P/2005) to study the kinetics of helix formation in this peptide. We calculate temperature-dependent microscopic rate coefficients from the simulations by treating the dynamics between helical states as a Markov process using a recently developed formalism. The fluorescence relaxation curves obtained from simulated temperature jumps are in excellent agreement with the experimentally determined results. We find that the kinetics are multiphasic but can be approximated well by a double-exponential function. The major processes contributing to the relaxation are the shrinking of helical states at the C-terminal end and a faster re-equilibration among coil states. Despite the fast observed relaxation, the helix nucleation time is estimated from our model to be 20-70 ns at 300 K, with a dependence on temperature well described by Arrhenius kinetics.
Collapse
Affiliation(s)
- David De Sancho
- Department of Chemistry, Cambridge University, Lensfield Road, Cambridge CB2 1EW, UK
| | | |
Collapse
|
13
|
Xiong K, Asher SA. Circular dichroism and UV resonance raman study of the impact of alcohols on the Gibbs free energy landscape of an alpha-helical peptide. Biochemistry 2010; 49:3336-42. [PMID: 20225890 DOI: 10.1021/bi100176a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We used CD and UV resonance Raman spectroscopy to study the impact of alcohols on the conformational equilibria and relative Gibbs free energy landscapes along the Ramachandran Psi-coordinate of a mainly poly-Ala peptide, AP with an AAAAA(AAARA)(3)A sequence. 2,2,2-Trifluoroethanol (TFE) most stabilizes the alpha-helix-like conformations, followed by ethanol, methanol, and pure water. The pi-bulge conformation is stabilized more than the alpha-helix, while the 3(10)-helix is destabilized due to the alcohol-increased hydrophobicity. Turns are also stabilized by alcohols. We also found that while TFE induces more alpha-helices, it favors multiple, shorter helix segments.
Collapse
Affiliation(s)
- Kan Xiong
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | |
Collapse
|
14
|
Thompson EJ, DePaul AJ, Patel SS, Sorin EJ. Evaluating molecular mechanical potentials for helical peptides and proteins. PLoS One 2010; 5:e10056. [PMID: 20418937 PMCID: PMC2850926 DOI: 10.1371/journal.pone.0010056] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 03/16/2010] [Indexed: 11/19/2022] Open
Abstract
Multiple variants of the AMBER all-atom force field were quantitatively evaluated with respect to their ability to accurately characterize helix-coil equilibria in explicit solvent simulations. Using a global distributed computing network, absolute conformational convergence was achieved for large ensembles of the capped A21 and Fs helical peptides. Further assessment of these AMBER variants was conducted via simulations of a flexible 164-residue five-helix-bundle protein, apolipophorin-III, on the 100 ns timescale. Of the contemporary potentials that had not been assessed previously, the AMBER-99SB force field showed significant helix-destabilizing tendencies, with beta bridge formation occurring in helical peptides, and unfolding of apolipophorin-III occurring on the tens of nanoseconds timescale. The AMBER-03 force field, while showing adequate helical propensities for both peptides and stabilizing apolipophorin-III, (i) predicts an unexpected decrease in helicity with ALA→ARG+ substitution, (ii) lacks experimentally observed 310 helical content, and (iii) deviates strongly from average apolipophorin-III NMR structural properties. As is observed for AMBER-99SB, AMBER-03 significantly overweighs the contribution of extended and polyproline backbone configurations to the conformational equilibrium. In contrast, the AMBER-99φ force field, which was previously shown to best reproduce experimental measurements of the helix-coil transition in model helical peptides, adequately stabilizes apolipophorin-III and yields both an average gyration radius and polar solvent exposed surface area that are in excellent agreement with the NMR ensemble.
Collapse
Affiliation(s)
- Erik J. Thompson
- Department of Chemical Engineering, California State University Long Beach, Long Beach, California, United States of America
| | - Allison J. DePaul
- Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, California, United States of America
| | - Sarav S. Patel
- Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, California, United States of America
| | - Eric J. Sorin
- Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, California, United States of America
- * E-mail:
| |
Collapse
|
15
|
Czapiewski D, Zielkiewicz J. Structural Properties of Hydration Shell Around Various Conformations of Simple Polypeptides. J Phys Chem B 2010; 114:4536-50. [DOI: 10.1021/jp9086199] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Dariusz Czapiewski
- Gdańsk University of Technology, Department of Chemistry Narutowicza 11/12, 80-952 Gdańsk, Poland
| | - Jan Zielkiewicz
- Gdańsk University of Technology, Department of Chemistry Narutowicza 11/12, 80-952 Gdańsk, Poland
| |
Collapse
|
16
|
Zuo G, Wang J, Qin M, Xue B, Wang W. Effect of solvation-related interaction on the low-temperature dynamics of proteins. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 81:031917. [PMID: 20365780 DOI: 10.1103/physreve.81.031917] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 12/06/2009] [Indexed: 05/29/2023]
Abstract
The effect of solvation-related interaction on the low-temperature dynamics of proteins is studied by taking into account the desolvation barriers in the interactions of native contacts. It is found out that about the folding transition temperature, the protein folds in a cooperative manner, and the water molecules are expelled from the hydrophobic core at the final stage in the folding process. At low temperature, however, the protein would generally be trapped in many metastable conformations with some water molecules frozen inside the protein. The desolvation takes an important role in these processes. The number of frozen water molecules and that of frozen states of proteins are further analyzed with the methods based on principal component analysis (PCA) and the clustering of conformations. It is found out that both the numbers of frozen water molecules and the frozen states of the protein increase quickly below a certain temperature. Especially, the number of frozen states of the protein increases exponentially following the decrease in the temperature, which resembles the basic features of glassy dynamics. Interestingly, it is observed that the freezing of water molecules and that of protein conformations happen at almost the same temperature. This suggests that the solvation-related interaction performs an important role for the low-temperature dynamics of the model protein.
Collapse
Affiliation(s)
- Guanghong Zuo
- Nanjing National Laboratory of Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | | | | | | | | |
Collapse
|
17
|
Menaa B, Miyagawa Y, Takahashi M, Herrero M, Rives V, Menaa F, Eggers DK. Bioencapsulation of apomyoglobin in nanoporous organosilica sol-gel glasses: influence of the siloxane network on the conformation and stability of a model protein. Biopolymers 2009; 91:895-906. [PMID: 19585561 DOI: 10.1002/bip.21274] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Nanoporous sol-gel glasses were used as host materials for the encapsulation of apomyoglobin, a model protein employed to probe in a rational manner the important factors that influence the protein conformation and stability in silica-based materials. The transparent glasses were prepared from tetramethoxysilane (TMOS) and modified with a series of mono-, di- and tri-substituted alkoxysilanes, R(n)Si(OCH(3))(4-n) (R = methyl-, n = 1; 2; 3) of different molar content (5, 10, 15%) to obtain the decrease of the siloxane linkage (-Si-O-Si-). The conformation and thermal stability of apomyoglobin characterized by circular dichroism spectroscopy (CD) was related to the structure of the silica host matrix characterized by (29)Si MAS NMR and N(2) adsorption. We observed that the protein transits from an unfolded state in unmodified glass (TMOS) to a native-like helical state in the organically modified glasses, but also that the secondary structure of the protein was enhanced by the decrease of the siloxane network with the methyl modification (n = 0 < n = 1 < n = 2 < n = 3; 0 < 5 < 10 < 15 mol %). In 15% trimethyl-modified glass, the protein even reached a maximum molar helicity (-24,000 deg. cm(2) mol(-1)) comparable to the stable folded heme-bound holoprotein in solution. The protein conformation and stability induced by the change of its microlocal environment (surface hydration, crowding effects, microstructure of the host matrix) were discussed owing to this trend dependency. These results can have an important impact for the design of new efficient biomaterials (sensors or implanted devices) in which properly folded protein is necessary.
Collapse
Affiliation(s)
- Bouzid Menaa
- Department of Chemistry, Duncan Hall, San José State University, San José, CA 95112-0101, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Xiong K, Asciutto EK, Madura JD, Asher SA. Salt dependence of an alpha-helical peptide folding energy landscapes. Biochemistry 2009; 48:10818-26. [PMID: 19845367 DOI: 10.1021/bi9014709] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We used CD, UV resonance Raman spectroscopy, and molecular dynamics simulation to examine the impact of salts on the conformational equilibria and the Ramachandran Psi angle (un)folding Gibbs free energy landscape coordinate of a mainly polyalanine alpha-helical peptide, AP of sequence AAAAA(AAARA)(3)A. NaClO(4) stabilizes alpha-helical-like conformations more than does NaCl, which stabilizes more than Na(2)SO(4) at identical ionic strengths. This alpha-helix stabilization ordering is the reverse of the Hofmeister series of anions in their ability to disorder water hydrogen bonding. Much of the NaClO(4) alpha-helix stabilization results from ClO(4)(-) association with the AP terminal -NH(3)(+) groups and Arg side chains. ClO(4)(-) stabilizes 3(10)-helix conformations but destabilizes turn conformations. The decreased Cl(-) and SO(4)(2-) AP alpha-helix stabilization probably results from a decreased association with the Arg and terminal -NH(3)(+) groups. Cl(-) is expected to have a smaller binding affinity and thus stabilizes alpha-helical conformations intermediately between NaClO(4) and Na(2)SO(4). Electrostatic screening stabilizes pi-bulge conformations.
Collapse
Affiliation(s)
- Kan Xiong
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | |
Collapse
|
19
|
Matthes D, de Groot BL. Secondary structure propensities in peptide folding simulations: a systematic comparison of molecular mechanics interaction schemes. Biophys J 2009; 97:599-608. [PMID: 19619475 DOI: 10.1016/j.bpj.2009.04.061] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 04/16/2009] [Accepted: 04/28/2009] [Indexed: 12/22/2022] Open
Abstract
We present a systematic study directed toward the secondary structure propensity and sampling behavior in peptide folding simulations with eight different molecular dynamics force-field variants in explicit solvent. We report on the combinational result of force field, water model, and electrostatic interaction schemes and compare to available experimental characterization of five studied model peptides in terms of reproduced structure and dynamics. The total simulation time exceeded 18 mus and included simulations that started from both folded and extended conformations. Despite remaining sampling issues, a number of distinct trends in the folding behavior of the peptides emerged. Pronounced differences in the propensity of finding prominent secondary structure motifs in the different applied force fields suggest that problems point in particular to the balance of the relative stabilities of helical and extended conformations.
Collapse
Affiliation(s)
- Dirk Matthes
- Department of Theoretical and Computational Biophysics, Computational Biomolecular Dynamics Group, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | | |
Collapse
|
20
|
Lignell M, Tegler LT, Becker HC. Hydrated and dehydrated tertiary interactions--opening and closing--of a four-helix bundle peptide. Biophys J 2009; 97:572-80. [PMID: 19619472 DOI: 10.1016/j.bpj.2009.04.055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 03/26/2009] [Accepted: 04/01/2009] [Indexed: 11/15/2022] Open
Abstract
The structural heterogeneity and thermal denaturation of a dansyl-labeled four-helix bundle homodimeric peptide was studied with steady-state and time-resolved fluorescence spectroscopy and with circular dichroism (CD). At room temperature the fluorescence decay of the polarity-sensitive dansyl, located in the hydrophobic core region, can be described by a broad distribution of fluorescence lifetimes, reflecting the heterogeneous microenvironment. However, the lifetime distribution is nearly bimodal, which we ascribe to the presence of two major conformational subgroups. Since the fluorescence lifetime reflects the water content of the four-helix bundle conformations, we can use the lifetime analysis to monitor the change in hydration state of the hydrophobic core of the four-helix bundle. Increasing the temperature from 9 degrees C to 23 degrees C leads to an increased population of molten-globule-like conformations with a less ordered helical backbone structure. The fluorescence emission maximum remains constant in this temperature interval, and the hydrophobic core is not strongly affected. Above 30 degrees C the structural dynamics involve transient openings of the four-helix bundle structure, as evidenced by the emergence of a water-quenched component and less negative CD. Above 60 degrees C the homodimer starts to dissociate, as shown by the increasing loss of CD and narrow, short-lived fluorescence lifetime distributions.
Collapse
Affiliation(s)
- Martin Lignell
- Department of Photochemistry and Molecular Sciences, Uppsala University, Uppsala, Sweden
| | | | | |
Collapse
|
21
|
Lucent D, England J, Pande V. Inside the chaperonin toolbox: theoretical and computational models for chaperonin mechanism. Phys Biol 2009; 6:015003. [DOI: 10.1088/1478-3975/6/1/015003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
22
|
Rodinger T, Howell PL, Pomès R. Calculation of absolute protein-ligand binding free energy using distributed replica sampling. J Chem Phys 2009; 129:155102. [PMID: 19045232 DOI: 10.1063/1.2989800] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Distributed replica sampling [T. Rodinger et al., J. Chem. Theory Comput. 2, 725 (2006)] is a simple and general scheme for Boltzmann sampling of conformational space by computer simulation in which multiple replicas of the system undergo a random walk in reaction coordinate or temperature space. Individual replicas are linked through a generalized Hamiltonian containing an extra potential energy term or bias which depends on the distribution of all replicas, thus enforcing the desired sampling distribution along the coordinate or parameter of interest regardless of free energy barriers. In contrast to replica exchange methods, efficient implementation of the algorithm does not require synchronicity of the individual simulations. The algorithm is inherently suited for large-scale simulations using shared or heterogeneous computing platforms such as a distributed network. In this work, we build on our original algorithm by introducing Boltzmann-weighted jumping, which allows moves of a larger magnitude and thus enhances sampling efficiency along the reaction coordinate. The approach is demonstrated using a realistic and biologically relevant application; we calculate the standard binding free energy of benzene to the L99A mutant of T4 lysozyme. Distributed replica sampling is used in conjunction with thermodynamic integration to compute the potential of mean force for extracting the ligand from protein and solvent along a nonphysical spatial coordinate. Dynamic treatment of the reaction coordinate leads to faster statistical convergence of the potential of mean force than a conventional static coordinate, which suffers from slow transitions on a rugged potential energy surface.
Collapse
Affiliation(s)
- Tomas Rodinger
- Molecular Structure and Function, The Hospital for Sick Children, 555 University Ave., Toronto, Ontario M5G 1X8, Canada
| | | | | |
Collapse
|
23
|
Stumpe MC, Grubmüller H. Polar or apolar--the role of polarity for urea-induced protein denaturation. PLoS Comput Biol 2008; 4:e1000221. [PMID: 19008937 PMCID: PMC2570617 DOI: 10.1371/journal.pcbi.1000221] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Accepted: 09/30/2008] [Indexed: 12/03/2022] Open
Abstract
Urea-induced protein denaturation is widely used to study protein folding and stability; however, the molecular mechanism and driving forces of this process are not yet fully understood. In particular, it is unclear whether either hydrophobic or polar interactions between urea molecules and residues at the protein surface drive denaturation. To address this question, here, many molecular dynamics simulations totalling ca. 7 µs of the CI2 protein in aqueous solution served to perform a computational thought experiment, in which we varied the polarity of urea. For apolar driving forces, hypopolar urea should show increased denaturation power; for polar driving forces, hyperpolar urea should be the stronger denaturant. Indeed, protein unfolding was observed in all simulations with decreased urea polarity. Hyperpolar urea, in contrast, turned out to stabilize the native state. Moreover, the differential interaction preferences between urea and the 20 amino acids turned out to be enhanced for hypopolar urea and suppressed (or even inverted) for hyperpolar urea. These results strongly suggest that apolar urea–protein interactions, and not polar interactions, are the dominant driving force for denaturation. Further, the observed interactions provide a detailed picture of the underlying molecular driving forces. Our simulations finally allowed characterization of CI2 unfolding pathways. Unfolding proceeds sequentially with alternating loss of secondary or tertiary structure. After the transition state, unfolding pathways show large structural heterogeneity. To perform their physiological function, proteins have to fold into their characteristic three-dimensional structure. While the folded state is stable under physiological conditions, changes in the solvent can destabilize the folded state and even induce denaturation. One of the most commonly used denaturants is urea. Despite its widespread use to study protein folding and stability, however, the molecular mechanism and particularly the driving forces of urea-induced protein denaturation are not yet understood. Two mechanisms have been suggested, according to which denaturation is driven either by polar interactions via hydrogen bonds or by hydrophobic interactions with apolar amino acids. By systematically varying urea polarity and quantifying the interactions of the solvent molecules with all amino acids of the protein, the present simulation study reveals that it is mainly the apolar interactions that drive denaturation. Our results suggest a coherent microscopic picture for urea-induced denaturation and bear more general implications for protein stability in other environments, e.g., in chaperone-assisted folding.
Collapse
Affiliation(s)
- Martin C. Stumpe
- Department of Theoretical and Computational Biophysics, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Helmut Grubmüller
- Department of Theoretical and Computational Biophysics, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
- * E-mail:
| |
Collapse
|
24
|
Kuffel A, Zielkiewicz J. Structural and Dynamic Properties of Water within the Solvation Layer around Various Conformations of the Glycine-based Polypeptide. J Phys Chem B 2008; 112:15503-12. [DOI: 10.1021/jp805440n] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Anna Kuffel
- Gdańsk University of Technology, Department of Chemistry, Narutowicza 11/12, 80-952 Gdańsk, Poland
| | - Jan Zielkiewicz
- Gdańsk University of Technology, Department of Chemistry, Narutowicza 11/12, 80-952 Gdańsk, Poland
| |
Collapse
|
25
|
Scott JN, Nucci NV, Vanderkooi JM. Changes in water structure induced by the guanidinium cation and implications for protein denaturation. J Phys Chem A 2008; 112:10939-48. [PMID: 18839935 PMCID: PMC2646201 DOI: 10.1021/jp8058239] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effect of the guanidinium cation on the hydrogen bonding strength of water was analyzed using temperature-excursion Fourier transform infrared spectra of the OH stretching vibration in 5% H 2O/95% D 2O solutions containing a range of different guanidine-HCl and guanidine-HBr concentrations. Our findings indicate that the guanidinium cation causes the water H-bonds in solution to become more linear than those found in bulk water, and that it also inhibits the response of the H-bond network to increased temperature. Quantum chemical calculations also reveal that guanidinium affects both the charge distribution on water molecules directly H-bonded to it as well as the OH stretch frequency of H-bonds in which that water molecule is the donor. The implications of our findings to hydrophobic solvation and protein denaturation are discussed.
Collapse
Affiliation(s)
- J Nathan Scott
- Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovak Republic.
| | | | | |
Collapse
|
26
|
Sharma B, Bykov SV, Asher SA. UV resonance raman investigation of electronic transitions in alpha-helical and polyproline II-like conformations. J Phys Chem B 2008; 112:11762-9. [PMID: 18712913 PMCID: PMC2958432 DOI: 10.1021/jp801110q] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
UV resonance Raman (UVRR) excitation profiles and Raman depolarization ratios were measured for a 21-residue predominantly alanine peptide, AAAAA(AAARA) 3A (AP), excited between 194 and 218 nm. Excitation within the pi-->pi* electronic transitions of the amide group results in UVRR spectra dominated by amide vibrations. The Raman cross sections and excitation profiles provide information about the nature of the electronic transitions of the alpha-helix and polyproline II (PPII)-like peptide conformations. AP is known to be predominantly alpha-helical at low temperatures and to take on a PPII helix-like conformation at high temperatures. The PPII-like and alpha-helix conformations show distinctly different Raman excitation profiles. The PPII-like conformation cross sections are approximately twice those of the alpha-helix. This is due to hypochromism that results from excitonic interactions between the NV 1 transition of one amide group with higher energy electronic transitions of other amide groups, which decreases the alpha-helical NV 1 (pi-->pi*) oscillator strengths. Excitation profiles of the alpha-helix and PPII-like conformations indicate that the highest signal-to-noise Raman spectra of alpha-helix and PPII-like conformations are obtained at excitation wavelengths of 194 and 198 nm, respectively. We also see evidence of at least two electronic transitions underlying the Raman excitation profiles of both the alpha-helical and the PPII-like conformations. In addition to the well-known approximately 190 nm pi-->pi* transitions, the Raman excitation profiles and Raman depolarization ratio measurements show features between 205-207 nm, which in the alpha-helix likely results from the parallel excitonic component. The PPII-like helix appears to also undergo excitonic splitting of its pi-->pi* transition which leads to a 207 nm feature.
Collapse
Affiliation(s)
- Bhavya Sharma
- Department of Chemistry, University of Pittsburgh, 219 Parkman Ave, Pittsburgh, Pennsylvania 15260
| | - Sergei V. Bykov
- Department of Chemistry, University of Pittsburgh, 219 Parkman Ave, Pittsburgh, Pennsylvania 15260
| | - Sanford A. Asher
- Department of Chemistry, University of Pittsburgh, 219 Parkman Ave, Pittsburgh, Pennsylvania 15260
| |
Collapse
|
27
|
Penev E, Ireta J, Shea JE. Energetics of Infinite Homopolypeptide Chains: A New Look at Commonly Used Force Fields. J Phys Chem B 2008; 112:6872-7. [DOI: 10.1021/jp800058f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Evgeni Penev
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, and Departamento de Química, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, A.P. 55-534, México D.F. 09340
| | - Joel Ireta
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, and Departamento de Química, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, A.P. 55-534, México D.F. 09340
| | - Joan-Emma Shea
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, and Departamento de Química, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, A.P. 55-534, México D.F. 09340
| |
Collapse
|
28
|
Chapman R, Kulp JL, Patgiri A, Kallenbach NR, Bracken C, Arora PS. Trapping a folding intermediate of the alpha-helix: stabilization of the pi-helix. Biochemistry 2008; 47:4189-95. [PMID: 18335996 DOI: 10.1021/bi800136m] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the design, synthesis, and characterization of a short peptide trapped in a pi-helix configuration. This high-energy conformation was nucleated by a preorganized pi-turn, which was obtained by replacing an N-terminal intramolecular main chain i and i + 5 hydrogen bond with a carbon-carbon bond. Our studies highlight the nucleation parameter as a key factor contributing to the relative instability of the pi-helix and allow us to estimate fundamental helix-coil transition parameters for this conformation.
Collapse
Affiliation(s)
- Ross Chapman
- Department of Chemistry, New York University, New York, New York 10003, USA
| | | | | | | | | | | |
Collapse
|
29
|
Folding myoglobin within a sol-gel glass: protein folding constrained to a small volume. Biophys J 2008; 95:322-32. [PMID: 18339762 DOI: 10.1529/biophysj.106.097428] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The unfolding and refolding reaction of myoglobin was examined in solution and within a porous silica sol-gel glass. The sol-gel pores constrain the protein to a volume that is the same size and shape as the folded native state accompanied by a few layers of water solvation. Denaturants such as low pH buffers can be diffused through the gel pores to the protein to initiate unfolding and refolding. Acid-induced unfolding was hindered by the steric constraints imposed by the gel pores such that more denaturing conditions were required within the gel than in solution to create the unfolded state. No new folding intermediates were observed. Refolding of myoglobin was not complete in millimolar pH 7 buffer alone. Addition of 25% glycerol to the pH 7 buffer resulted in nearly complete refolding, and the use of 1 M phosphate buffer resulted in complete refolding. The role of this cosolvent and salt in disrupting the ordered water surrounding the protein within the gel is discussed in light of the Hofmeister series and entropic trapping via a diminished hydrophobic effect within the gel. These results are consistent with the premises of folding models in which secondary and tertiary structures are considered to form within a compact conformation of the protein backbone.
Collapse
|
30
|
Abstract
I illustrate the use of the replica exchange molecular dynamics (REMD) algorithm to study the folding of a small (57 amino acids) protein that folds into a three-helix bundle, protein A. The REMD is a trivially parallel method that uses multiple copies of the system of interest to study the canonical ensemble equilibrium properties. Each replica represents a different thermodynamic state, usually at different temperatures. This method enhances the configurational sampling of proteins and allows us to study folding in simulations that are much shorter than the folding timescale for the system at ambient temperature. I show that using REMD and the Amber force field, I can obtain stable configurations of protein A whose backbone root mean square distance (RMSD) is within 0.17 nm of the nuclear magnetic resonance (NMR)-determined structure without biasing the system toward the folded structure. The simulations are done in explicit solvent and starting from nearly extended configurations. This calculation shows that currently available force fields and enhanced sampling methods perform reasonably well in describing the folded structure of small proteins.
Collapse
Affiliation(s)
- Angel E Garcia
- Department of Physics, Appled Physics and Astronomy, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
31
|
Mikhonin AV, Asher SA. Direct UV Raman monitoring of 3(10)-helix and pi-bulge premelting during alpha-helix unfolding. J Am Chem Soc 2007; 128:13789-95. [PMID: 17044707 DOI: 10.1021/ja062269+] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We used UV resonance Raman (UVRR) spectroscopy exciting at approximately 200 nm within the peptide bond pi --> pi* transitions to selectively study the amide vibrations of peptide bonds during alpha-helix melting. The dependence of the amide frequencies on their Psi Ramachandran angles and hydrogen bonding enables us, for the first time, to experimentally determine the temperature dependence of the peptide bond Psi Ramachandran angle population distribution of a 21-residue mainly alanine peptide. These Psi distributions allow us to easily discriminate between alpha-helix, 3(10)-helix and pi-helix/bulge conformations, obtain their individual melting curves, and estimate the corresponding Zimm and Bragg parameters. A striking finding is that alpha-helix melting is more cooperative and shows a higher melting temperature than previously erroneously observed. These Psi distributions also enable the experimental determination of the Gibbs free energy landscape along the Psi reaction coordinate, which further allows us to estimate the free energy barriers along the AP melting pathway. These results will serve as a benchmark for the numerous untested theoretical studies of protein and peptide folding.
Collapse
Affiliation(s)
- Aleksandr V Mikhonin
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | |
Collapse
|
32
|
Chatterjee C, Martinez D, Gerig JT. Interactions of Trifluoroethanol with [val5]angiotensin II. J Phys Chem B 2007; 111:9355-62. [PMID: 17630790 DOI: 10.1021/jp0711343] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Intermolecular 1H{19F} NOE experiments have been used to explore the interactions of trifluoroethanol (TFE) with the octapeptide hormone [val5]angiotensin II at temperatures from 5 to 25 degrees C. Circular dichroism spectra indicate that 40% trifluoroethanol has an influence on the conformations of the peptide, probably leading to beta-structures. Diffusion experiments show that the mean hydrodynamic radius of the peptide in 40% trifluoroethanol-water is about 8 A, consistent with significant folding of the peptide in this medium. Distance constraints derived from intramolecular NOESY data along with observed vicinal coupling constants (3JCalphaHNH) were used to develop conformations consistent with available data. Assuming that intermolecular 1H{19F} NOEs are the result of diffusive encounters of TFE and peptide molecules, it is shown that no single conformation is consistent with the experimental values of the sigmaHF cross-relaxation parameters. It is argued that the disagreements between observed and expected values of sigmaHF are the result of formation of long-lived (approximately 0.5 ns) fluoroalcohol-peptide complexes, a conclusion consonant with similar studies of other peptide-fluoroalcohol systems. Complex formation appears to be especially prevalent near the charged amino acid side chains of the hormone.
Collapse
Affiliation(s)
- Chiradip Chatterjee
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, USA
| | | | | |
Collapse
|
33
|
Park J, Kurosawa S, Takai M, Ishihara K. Antibody immobilization to phospholipid polymer layer on gold substrate of quartz crystal microbalance immunosensor. Colloids Surf B Biointerfaces 2007; 55:164-72. [PMID: 17207978 DOI: 10.1016/j.colsurfb.2006.11.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 11/06/2006] [Accepted: 11/29/2006] [Indexed: 11/29/2022]
Abstract
To modify gold electrode for immunosensor to construct an artificial cell membrane structure, water-soluble amphiphilic phospholipid polymer, poly[2-methacryloyloxyehtyl phosphorylcholine-co-n-butyl methacrylate-co-p-nitrophenyloxycarbonyl poly(ethylene glycol) methacrylate (PMBN)] was applied. The polymer had active ester groups for immobilization of biomolecules and it was converted partially to thiol groups for binding to gold substrates. The partially thiolated PMBN was adsorbed on a gold electrode of quartz crystal microbalance (QCM). Surface characterization of adsorbed PMBN layers was thoroughly investigated with reflectance anisotropy spectroscopy, ellipsometry spectroscopy, dynamic contact angle and X-ray photoelectron spectroscopy measurements. Among several PMBN, having different degree of thiolation, it was concluded that 21.5% thiolated PMBN layer had the most well-ordered phosphorylcholine groups in its outer surface. The proteins adsorption test revealed that the phosphorylcholine group on the outer side of PMBN layers, which was substituted their active ester groups by glycine, showed suppress the non-specific adsorption of proteins, such as bovine serum albumin and gamma-globulin. Also, through antigen-antibody binding evaluation, the anti-C-reactive protein antibody immobilized on the PMBN surface worked well and it was confirmed that denaturation of the antibody on the PMBN layers was hardly occurred in spite of 60 days storage at 4 degrees C. The antibody conjugated phospholipid polymer layer with well-ordered phosphorylcholine group could be outstanding functional membrane for biomedical diagnostic devices without non-specific binding and reduction of immunologic activity of immobilized antibody.
Collapse
Affiliation(s)
- Jongwon Park
- Department of Materials Engineering, School of Engineering, Center for NanoBio Integration, The University of Tokyo, Tokyo 113-8656, Japan
| | | | | | | |
Collapse
|
34
|
Mikhonin AV, Asher SA, Bykov SV, Murza A. UV Raman spatially resolved melting dynamics of isotopically labeled polyalanyl peptide: slow alpha-helix melting follows 3(10)-helices and pi-bulges premelting. J Phys Chem B 2007; 111:3280-92. [PMID: 17388440 DOI: 10.1021/jp0654009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We used UV resonance Raman (UVRR) to examine the spatial dependence of the T-jump secondary structure relaxation of an isotopically labeled 21-residue mainly Ala peptide, AdP. The AdP penultimate Ala residues were perdeuterated, leaving the central residues hydrogenated, to allow separate monitoring of melting of the middle versus the end peptide bonds. For 5 to 30 degrees C T-jumps, the central peptide bonds show a approximately 2-fold slower relaxation time (189 +/- 31 ns) than do the exterior peptide bonds (97 +/- 15 ns). In contrast, for a 20 to 40 degrees C T-jump, the central peptide bond relaxation appears to be faster (56 +/- 6 ns) than that of the penultimate peptide bonds (131 +/- 46 ns). We show that, if the data are modeled as a two-state transition, we find that only exterior peptide bonds show anti-Arrhenius folding behavior; the middle peptide bonds show both normal Arrhenius-like folding and unfolding. This anti-Arrhenius behavior results from the involvement of pi-bulges/helices and 3(10)-helix states in the melting. The unusual temperature dependence of the (un)folding rates of the interior and exterior peptide bonds is due to the different relative (un)folding rates of 3(10)-helices, alpha-helices, and pi-bulges/helices. Pure alpha-helix unfolding rates are approximately 12-fold slower (approximately 1 micros) than that of pi-bulges and 3(10)-helices. In addition, we also find that the alpha-helix is most stable at the AdP N-terminus where eight consecutive Ala occur, whereas the three hydrophilic Arg located in the middle and at the C-terminus destabilize the alpha-helix in these regions and induce defects such as pi-bulges and 3(10)-helices.
Collapse
Affiliation(s)
- Aleksandr V Mikhonin
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | |
Collapse
|
35
|
Pliego-Pastrana P, Carbajal-Tinoco MD. Two-Component Polypeptides Modeled with Effective Pair Potentials. J Phys Chem B 2006; 110:24728-33. [PMID: 17134236 DOI: 10.1021/jp0638179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present Monte Carlo simulations performed within a model based on a set of distance-dependent effective potentials which are used to describe the interactions between a pair of distinct amino acids. These effective potentials are extracted from experimental correlation functions through the Ornstein-Zernike equations and adequate closure approximations. We focus our attention on the sequences of two specific residues, namely, alanine and glycine. The studied sequences are (a) (Ala)(12)-(Gly)(4)-(Ala)(12) and (b) three interacting chains of alternating alanines and glycines (with five residues per chain). The resulting structures are combinations of known secondary structures. More importantly, we verify that our simulated structures are in thermodynamic equilibrium by means of an estimation of the density of states.
Collapse
Affiliation(s)
- P Pliego-Pastrana
- Departamento de Física, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 14-740, 07000 México D.F., Mexico
| | | |
Collapse
|
36
|
Abstract
In striking contrast to simple polymer physics theory, which does not account for solvent effects, we find that physical confinement of solvated biopolymers decreases solvent entropy, which in turn leads to a reduction in the organized structural content of the polymer. Since our theory is based on a fundamental property of water-protein statistical mechanics, we expect it to have broad implications in many biological and material science contexts.
Collapse
Affiliation(s)
- Eric J Sorin
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, USA
| | | |
Collapse
|