1
|
Gangadharappa BS, Rajashekarappa S, Sathe G. Proteomic profiling of Serratia marcescens by high-resolution mass spectrometry. ACTA ACUST UNITED AC 2020; 10:123-135. [PMID: 32363156 PMCID: PMC7186543 DOI: 10.34172/bi.2020.15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/07/2019] [Accepted: 09/03/2019] [Indexed: 11/09/2022]
Abstract
Introduction: Serratia marcescens, an opportunistic human pathogen, is reported as an important cause of nosocomial infection and outbreaks. Although the genome of S. marcescens (ATCC 13880) was completely sequenced by 2014, there are no studies on the proteomic profile of the organism. The objective of the present study is to analyze the protein profile of S. marcescens (ATCC 13880) using a high resolution mass spectrometry (MS). Methods: Serratia marcescens ATCC 13880 strain was grown in Luria-Bertani broth and the protein extracted was subjected to trypsin digestion, followed by basic reverse phase liquid chromatography fractionation. The peptide fractions were then analysed using Orbitrap Fusion Mass Spectrometry and the raw MS data were processed in Proteome Discoverer software. Results: The proteomic analysis identified 15 009 unique peptides mapping to 2541 unique protein groups, which corresponds to approximately 54% of the computationally predicted protein-coding genes. Bioinformatic analysis of these identified proteins showed their involvement in biological processes such as cell wall organization, chaperone-mediated protein folding and ATP binding. Pathway analysis revealed that some of these proteins are associated with bacterial chemotaxis and beta-lactam resistance pathway. Conclusion: To the best of our knowledge, this is the first high-throughput proteomics study of S. marcescens (ATCC 13880). These novel observations provide a crucial baseline molecular profile of the S. marcescens proteome which will prove to be helpful for the future research in understanding the host-pathogen interactions during infection, elucidating the mechanism of multidrug resistance, and developing novel diagnostic markers or vaccine for the disease.
Collapse
Affiliation(s)
- Bhavya Somalapura Gangadharappa
- Department of Biotechnology, M.S. Ramaiah Institute of Technology, Bengaluru-560054, Karnataka, India.,Visvesvaraya Technological University, Belagavi-590018, Karnataka, India
| | | | - Gajanan Sathe
- Institute of Bioinformatics, International Technology Park, Bangalore-560066, Karnataka, India.,Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore-560029, Karnataka, India
| |
Collapse
|
2
|
Bracher A, Paul SS, Wang H, Wischnewski N, Hartl FU, Hayer-Hartl M. Structure and conformational cycle of a bacteriophage-encoded chaperonin. PLoS One 2020; 15:e0230090. [PMID: 32339190 PMCID: PMC7185714 DOI: 10.1371/journal.pone.0230090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/07/2020] [Indexed: 11/19/2022] Open
Abstract
Chaperonins are ubiquitous molecular chaperones found in all domains of life. They form ring-shaped complexes that assist in the folding of substrate proteins in an ATP-dependent reaction cycle. Key to the folding cycle is the transient encapsulation of substrate proteins by the chaperonin. Here we present a structural and functional characterization of the chaperonin gp146 (ɸEL) from the phage EL of Pseudomonas aeruginosa. ɸEL, an evolutionarily distant homolog of bacterial GroEL, is active in ATP hydrolysis and prevents the aggregation of denatured protein in a nucleotide-dependent manner. However, ɸEL failed to refold the encapsulation-dependent model substrate rhodanese and did not interact with E. coli GroES, the lid-shaped co-chaperone of GroEL. ɸEL forms tetradecameric double-ring complexes, which dissociate into single rings in the presence of ATP. Crystal structures of ɸEL (at 3.54 and 4.03 Å) in presence of ATP•BeFx revealed two distinct single-ring conformational states, both with open access to the ring cavity. One state showed uniform ATP-bound subunit conformations (symmetric state), whereas the second combined distinct ATP- and ADP-bound subunit conformations (asymmetric state). Cryo-electron microscopy of apo-ɸEL revealed a double-ring structure composed of rings in the asymmetric state (3.45 Å resolution). We propose that the phage chaperonin undergoes nucleotide-dependent conformational switching between double- and single rings and functions in aggregation prevention without substrate protein encapsulation. Thus, ɸEL may represent an evolutionarily more ancient chaperonin prior to acquisition of the encapsulation mechanism.
Collapse
Affiliation(s)
- Andreas Bracher
- Department of Cellular Biochemistry, Max-Planck-Institute of Biochemistry, Martinsried, Germany
- * E-mail: (AB); (MH-H)
| | - Simanta S. Paul
- Department of Cellular Biochemistry, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Huping Wang
- Department of Cellular Biochemistry, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Nadine Wischnewski
- Department of Cellular Biochemistry, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - F. Ulrich Hartl
- Department of Cellular Biochemistry, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Manajit Hayer-Hartl
- Department of Cellular Biochemistry, Max-Planck-Institute of Biochemistry, Martinsried, Germany
- * E-mail: (AB); (MH-H)
| |
Collapse
|
3
|
Yurkova MS, Sharapova OA, Zenin VA, Fedorov AN. Versatile format of minichaperone-based protein fusion system. Sci Rep 2019; 9:15063. [PMID: 31636289 PMCID: PMC6803692 DOI: 10.1038/s41598-019-51015-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/17/2019] [Indexed: 11/23/2022] Open
Abstract
Hydrophobic recombinant proteins often tend to aggregate upon expression into inclusion bodies and are difficult to refold. Producing them in soluble forms constitutes a common bottleneck problem. A fusion system for production of insoluble hydrophobic proteins in soluble stable forms with thermophilic minichaperone, GroEL apical domain (GrAD) as a carrier, has recently been developed. To provide the utmost flexibility of the system for interactions between the carrier and various target protein moieties a strategy of making permutated protein variants by gene engineering has been applied: the original N- and C-termini of the minichaperone were linked together by a polypeptide linker and new N- and C-termini were made at desired parts of the protein surface. Two permutated GrAD forms were created and analyzed. Constructs of GrAD and both of its permutated forms fused with the initially insoluble N-terminal fragment of hepatitis C virus' E2 protein were tested. Expressed fusions formed inclusion bodies. After denaturation, all fusions were completely renatured in stable soluble forms. A variety of permutated GrAD variants can be created. The versatile format of the system provides opportunities for choosing an optimal pair between particular target protein moiety and the best-suited original or specific permutated carrier.
Collapse
Affiliation(s)
- Maria S Yurkova
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russian Federation
- Tropogen Inc, Moscow, Russia
| | - Olga A Sharapova
- Alder BioPharmaceuticals, Inc., 11804 N Creek Pkwy S, Bothell, WA, 98011, USA
| | - Vladimir A Zenin
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russian Federation
| | - Alexey N Fedorov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russian Federation.
- Tropogen Inc, Moscow, Russia.
| |
Collapse
|
4
|
Mizobata T, Kawata Y. The versatile mutational "repertoire" of Escherichia coli GroEL, a multidomain chaperonin nanomachine. Biophys Rev 2017; 10:631-640. [PMID: 29181744 DOI: 10.1007/s12551-017-0332-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/05/2017] [Indexed: 12/14/2022] Open
Abstract
The bacterial chaperonins are highly sophisticated molecular nanomachines, controlled by the hydrolysis of ATP to dynamically trap and remove from the environment unstable protein molecules that are susceptible to denaturation and aggregation. Chaperonins also act to assist in the refolding of these unstable proteins, providing a means by which these proteins may return in active form to the complex environment of the cell. The Escherichia coli GroE chaperonin system is one of the largest protein supramolecular complexes known, whose quaternary structure is required for segregating aggregation-prone proteins. Over the course of more than two decades of research on GroE, it has become accepted that GroE, more specifically the GroEL subunit, is a "high-tolerance" molecular system, capable of accommodating numerous mutations, while retaining its molecular integrity. In some cases, a given site of mutation was revealed to be absolutely required for GroEL function, providing hints regarding the network of signals and triggers that propel this unique system. In other instances, however, a mutation has produced a more delicate response, altering only part of, or in some cases, only a single facet of, the molecular mechanism, and these mutants have often provided invaluable hints on the extent of the complexity underlying chaperonin-assisted protein folding. In this review, we highlight some examples of the latter type of GroEL mutants which compose the unique "mutational repertoire" of GroEL and touch upon the important clues that each mutant provided to the overall effort to elucidate the details of GroE action.
Collapse
Affiliation(s)
- Tomohiro Mizobata
- Graduate School of Engineering and Graduate School of Medical Sciences, Tottori University, Tottori, 680-8552, Japan.
| | - Yasushi Kawata
- Graduate School of Engineering and Graduate School of Medical Sciences, Tottori University, Tottori, 680-8552, Japan.
| |
Collapse
|
5
|
Mack KL, Shorter J. Engineering and Evolution of Molecular Chaperones and Protein Disaggregases with Enhanced Activity. Front Mol Biosci 2016; 3:8. [PMID: 27014702 PMCID: PMC4791398 DOI: 10.3389/fmolb.2016.00008] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 02/29/2016] [Indexed: 11/17/2022] Open
Abstract
Cells have evolved a sophisticated proteostasis network to ensure that proteins acquire and retain their native structure and function. Critical components of this network include molecular chaperones and protein disaggregases, which function to prevent and reverse deleterious protein misfolding. Nevertheless, proteostasis networks have limits, which when exceeded can have fatal consequences as in various neurodegenerative disorders, including Parkinson's disease and amyotrophic lateral sclerosis. A promising strategy is to engineer proteostasis networks to counter challenges presented by specific diseases or specific proteins. Here, we review efforts to enhance the activity of individual molecular chaperones or protein disaggregases via engineering and directed evolution. Remarkably, enhanced global activity or altered substrate specificity of various molecular chaperones, including GroEL, Hsp70, ClpX, and Spy, can be achieved by minor changes in primary sequence and often a single missense mutation. Likewise, small changes in the primary sequence of Hsp104 yield potentiated protein disaggregases that reverse the aggregation and buffer toxicity of various neurodegenerative disease proteins, including α-synuclein, TDP-43, and FUS. Collectively, these advances have revealed key mechanistic and functional insights into chaperone and disaggregase biology. They also suggest that enhanced chaperones and disaggregases could have important applications in treating human disease as well as in the purification of valuable proteins in the pharmaceutical sector.
Collapse
Affiliation(s)
- Korrie L Mack
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of PennsylvaniaPhiladelphia, PA, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine at the University of PennsylvaniaPhiladelphia, PA, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of PennsylvaniaPhiladelphia, PA, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine at the University of PennsylvaniaPhiladelphia, PA, USA
| |
Collapse
|
6
|
Abstract
Chaperonins are nanomachines that facilitate protein folding by undergoing energy (ATP)-dependent movements that are coordinated in time and space owing to complex allosteric regulation. They consist of two back-to-back stacked oligomeric rings with a cavity at each end where protein substrate folding can take place. Here, we focus on the GroEL/GroES chaperonin system from Escherichia coli and, to a lesser extent, on the more poorly characterized eukaryotic chaperonin CCT/TRiC. We describe their various functional (allosteric) states and how they are affected by substrates and allosteric effectors that include ATP, ADP, nonfolded protein substrates, potassium ions, and GroES (in the case of GroEL). We also discuss the pathways of intra- and inter-ring allosteric communication by which they interconvert and the coupling between allosteric transitions and protein folding reactions.
Collapse
Affiliation(s)
- Ranit Gruber
- Department of Structural Biology, Weizmann Institute of Science , Rehovot 76100, Israel
| | - Amnon Horovitz
- Department of Structural Biology, Weizmann Institute of Science , Rehovot 76100, Israel
| |
Collapse
|
7
|
Durand TC, Sergeant K, Carpin S, Label P, Morabito D, Hausman JF, Renaut J. Screening for changes in leaf and cambial proteome of Populus tremula × P. alba under different heat constraints. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:1698-718. [PMID: 22883629 DOI: 10.1016/j.jplph.2012.06.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 06/29/2012] [Indexed: 05/13/2023]
Abstract
Young poplar plants were exposed to different heat regimes, a rapid heat constraint at 42°C (heat shock HS) alone or preceded by a stepwise increase in temperature (heat gradient HG). Proteomics analyses were carried out on both leaf and cambial tissues. The responses of both tissues were compared and linked to morphological and physiological observations. Both heat treatments negatively affected the photosynthetic rate while increasing the stomatal conductance. In the leaf, the HS impacted some photosynthetic proteins, and particularly induced an increase in abundance of proteins of the oxygen evolving complexes. On the other hand, the HG reduced carbohydrate metabolism and induced mainly an increase in germin-like proteins. In the cambial zone, the HS caused a decrease in sucrose synthase content and in enzymes related to protein synthesis. The main effect of HG was the accumulation of thaumatin-like proteins as well as an increase in the abundance of proteins involved in carbohydrate metabolism. Further, both tissues underwent changes in the content of heat shock proteins, but more importantly, of peroxiredoxins. The results show more sustainable changes in leaf and cambial proteomes in response to HS compared to HG.
Collapse
Affiliation(s)
- Thomas C Durand
- CRP-Gabriel Lippmann, Department Environment and Agro-biotechnologies, Luxembourg, France
| | | | | | | | | | | | | |
Collapse
|
8
|
Entzminger KC, Chang C, Myhre RO, McCallum KC, Maynard JA. The Skp chaperone helps fold soluble proteins in vitro by inhibiting aggregation. Biochemistry 2012; 51:4822-34. [PMID: 22650963 DOI: 10.1021/bi300412y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The periplasmic seventeen kilodalton protein (Skp) chaperone has been characterized primarily for its role in outer membrane protein (OMP) biogenesis, during which the jellyfish-like trimeric protein encapsulates partially folded OMPs, protecting them from the aqueous environment until delivery to the BAM outer membrane protein insertion complex. However, Skp is increasingly recognized as a chaperone that also assists in folding soluble proteins in the bacterial periplasm. In this capacity, Skp coexpression increases the active yields of many recombinant proteins and bacterial virulence factors. Using a panel of single-chain antibodies and a single-chain T-cell receptor (collectively termed scFvs) possessing varying stabilities and biophysical characteristics, we performed in vivo expression and in vitro folding and aggregation assays in the presence or absence of Skp. For Skp-sensitive scFvs, the presence of Skp during in vitro refolding assays reduced aggregation but did not alter the observed folding rates, resulting in a higher overall yield of active protein. Of the proteins analyzed, Skp sensitivity in all assays correlated with the presence of folding intermediates, as observed with urea denaturation studies. These results are consistent with Skp acting as a holdase, sequestering partially folded intermediates and thereby preventing aggregation. Because not all soluble proteins are sensitive to Skp coexpression, we hypothesize that the presence of a long-lived protein folding intermediate renders a protein sensitive to Skp. Improved understanding of the bacterial periplasmic protein folding machinery may assist in high-level recombinant protein expression and may help identify novel approaches to block bacterial virulence.
Collapse
Affiliation(s)
- Kevin C Entzminger
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA
| | | | | | | | | |
Collapse
|
9
|
Genoud N, Ott D, Braun N, Prinz M, Schwarz P, Suter U, Trono D, Aguzzi A. Antiprion prophylaxis by gene transfer of a soluble prion antagonist. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:1287-96. [PMID: 18372425 DOI: 10.2353/ajpath.2008.070836] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Prion diseases are untreatable neurodegenerative disorders characterized by accumulation of PrP(Sc), an aggregated isoform of the normal prion protein PrP(C). Here, we delivered the soluble prion antagonist PrP-Fc(2) to the brains of mice by lentiviral gene transfer. Although naïve mice developed scrapie at 175 +/- 5 days postintracerebral prion inoculation (dpi), gene transfer before inoculation delayed disease onset by 72 +/- 4 days. At 170 days postintracerebral prion inoculation, PrP(Sc) accumulation and prion infectivity in PrPFc-treated brains were reduced by 3.6 and 4.2 logs, respectively. When PrP-Fc(2) was delivered 30 days after prion inoculation, survival of the treated animals was extended by 25 days. We then used tissue-specific recombination to express PrP-Fc(2) in the entire central nervous system, in only astrocytes, or in only oligodendrocytes. Oligodendrocyte-restricted PrP-Fc(2) expression impaired PrP(Sc) deposition and delayed disease even though oligodendrocytes are completely resistant to prion infection, suggesting that PrP-Fc(2) affords protection via noncell autonomous mechanisms. These results suggest that somatic gene transfer of prion antagonists may be effective for postexposure prophylaxis of prion diseases.
Collapse
Affiliation(s)
- Nicolas Genoud
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Farr GW, Fenton WA, Horwich AL. Perturbed ATPase activity and not "close confinement" of substrate in the cis cavity affects rates of folding by tail-multiplied GroEL. Proc Natl Acad Sci U S A 2007; 104:5342-7. [PMID: 17372195 PMCID: PMC1828711 DOI: 10.1073/pnas.0700820104] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Folding of substrate proteins inside the sequestered and hydrophilic GroEL-GroES cis cavity favors production of the native state. Recent studies of GroEL molecules containing volume-occupying multiplications of the flexible C-terminal tail segments have been interpreted to indicate that close confinement of substrate proteins in the cavity optimizes the rate of folding: the rate of folding of a larger protein, Rubisco (51 kDa), was compromised by multiplication, whereas that of a smaller protein, rhodanese (33 kDa), was increased by tail duplication. Here, we report that this latter effect does not extend to the subunit of malate dehydrogenase (MDH), also 33 kDa. In addition, single-ring versions of tail-duplicated and triplicated molecules, comprising stable cis complexes, did not produce any acceleration of folding of rhodanese or MDH, nor did they show significant retardation of the folding of Rubisco. Tail quadruplication produced major reduction in recovery of native protein with both systems, the result of strongly reduced binding of all three substrates. When steady-state ATPase of the tail-multiplied double-ring GroELs was examined, it scaled directly with the number of tail segments, with more than double the normal ATPase rate upon tail triplication. As previously observed, disturbance of ATPase activity of the cycling double-ring system, and thus of "dwell time" for the folding protein in the cis cavity, produces effects on folding rates. We conclude that, within the limits of the approximately 10% decrease of cavity volume produced by tail triplication, there does not appear to be an effect of "close confinement" on folding in the cis cavity.
Collapse
Affiliation(s)
- George W. Farr
- *Department of Genetics and Howard Hughes Medical Institute, Yale School of Medicine, Boyer Center, 295 Congress Avenue, New Haven, CT 06510; and
| | - Wayne A. Fenton
- Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - Arthur L. Horwich
- *Department of Genetics and Howard Hughes Medical Institute, Yale School of Medicine, Boyer Center, 295 Congress Avenue, New Haven, CT 06510; and
- Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
11
|
Spiess C, Miller EJ, McClellan AJ, Frydman J. Identification of the TRiC/CCT substrate binding sites uncovers the function of subunit diversity in eukaryotic chaperonins. Mol Cell 2006; 24:25-37. [PMID: 17018290 PMCID: PMC3339573 DOI: 10.1016/j.molcel.2006.09.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Revised: 08/11/2006] [Accepted: 09/12/2006] [Indexed: 10/24/2022]
Abstract
The ring-shaped hetero-oligomeric chaperonin TRiC/CCT uses ATP to fold a diverse subset of eukaryotic proteins. To define the basis of TRiC/CCT substrate recognition, we mapped the chaperonin interactions with the VHL tumor suppressor. VHL has two well-defined TRiC binding determinants. Each determinant contacts a specific subset of chaperonin subunits, indicating that TRiC paralogs exhibit distinct but overlapping specificities. The substrate binding site in these subunits localizes to a helical region in the apical domains that is structurally equivalent to that of bacterial chaperonins. Transferring the distal portion of helix 11 between TRiC subunits suffices to transfer specificity for a given substrate motif. We conclude that the architecture of the substrate binding domain is evolutionarily conserved among eukaryotic and bacterial chaperonins. The unique combination of specificity and plasticity in TRiC substrate binding may diversify the range of motifs recognized by this chaperonin and contribute to its unique ability to fold eukaryotic proteins.
Collapse
Affiliation(s)
- Christoph Spiess
- Department of Biological Sciences and BioX Program, Stanford University, Stanford, California 94305
| | - Erik J. Miller
- Department of Biological Sciences and BioX Program, Stanford University, Stanford, California 94305
| | - Amie J. McClellan
- Department of Biological Sciences and BioX Program, Stanford University, Stanford, California 94305
| | - Judith Frydman
- Department of Biological Sciences and BioX Program, Stanford University, Stanford, California 94305
- Correspondence:
| |
Collapse
|