1
|
Pipalović G, Filić Ž, Ćehić M, Paradžik T, Zahradka K, Crnolatac I, Vujaklija D. Impact of C-terminal domains of paralogous single-stranded DNA binding proteins from Streptomyces coelicolor on their biophysical properties and biological functions. Int J Biol Macromol 2024; 268:131544. [PMID: 38614173 DOI: 10.1016/j.ijbiomac.2024.131544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Single-stranded DNA-binding proteins (SSB) are crucial in DNA metabolism. While Escherichia coli SSB is extensively studied, the significance of its C-terminal domain has only recently emerged. This study explored the significance of C-domains of two paralogous Ssb proteins in S. coelicolor. Mutational analyses of C-domains uncovered a novel role of SsbA during sporulation-specific cell division and demonstrated that the C-tip is non-essential for survival. In vitro methods revealed altered biophysical and biochemical properties of Ssb proteins with modified C-domains. Determined hydrodynamic properties suggested that the C-domains of SsbA and SsbB occupy a globular position proposed to mediate cooperative binding. Only SsbA was found to form biomolecular condensates independent of the C-tip. Interestingly, the truncated C-domain of SsbA increased the molar enthalpy of unfolding. Additionally, calorimetric titrations revealed that C-domain mutations affected ssDNA binding. Moreover, this analysis showed that the SsbA C-tip aids binding most likely by regulating the position of the flexible C-domain. It also highlighted ssDNA-induced conformational mobility restrictions of all Ssb variants. Finally, the gel mobility shift assay confirmed that the intrinsically disordered linker is essential for cooperative binding of SsbA. These findings highlight the important role of the C-domain in the functioning of SsbA and SsbB proteins.
Collapse
Affiliation(s)
- Goran Pipalović
- Division of Physical Chemistry, Institute Ruđer Bošković, Zagreb, Croatia
| | - Želimira Filić
- Division of Physical Chemistry, Institute Ruđer Bošković, Zagreb, Croatia
| | - Mirsada Ćehić
- Division of Physical Chemistry, Institute Ruđer Bošković, Zagreb, Croatia
| | - Tina Paradžik
- Division of Physical Chemistry, Institute Ruđer Bošković, Zagreb, Croatia
| | - Ksenija Zahradka
- Division of Molecular Biology, Institute Ruđer Bošković, Zagreb, Croatia
| | - Ivo Crnolatac
- Division of Organic Chemistry and Biochemistry, Institute Ruđer Bošković, Zagreb, Croatia.
| | - Dušica Vujaklija
- Division of Physical Chemistry, Institute Ruđer Bošković, Zagreb, Croatia.
| |
Collapse
|
2
|
Perumal SK. A real-time fluorescent gp32 probe-based assay for monitoring single-stranded DNA-dependent DNA processing enzymes. Biochem Biophys Rep 2023; 35:101518. [PMID: 37534323 PMCID: PMC10391720 DOI: 10.1016/j.bbrep.2023.101518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/04/2023] Open
Abstract
Single-stranded DNA (ssDNA) generated during DNA replication, recombination and damage repair reactions is an important intermediate and ssDNA-binding proteins that binds these intermediates coordinate various DNA metabolic processes. Mechanistic details of these ssDNA-dependent processes can be explored by monitoring the generation and consumption of ssDNA in real time. In this work, a fluorescein-labeled gp32-based sensor was employed to continuously monitor various aspects of ssDNA-dependent DNA replication and recombination processes in real time. The gp32 protein probe displayed high sensitivity and specificity to a variety of ssDNA-dependent processes of T4 phage. Several applications of the probe are illustrated here: the solution dynamics of ssDNA-binding protein, protein-protein and protein-DNA interactions involving gp32 protein and its mode of interaction, ssDNA translocation and protein displacement activities of helicases, primer extension activity of DNA polymerase holoenzyme and nucleoprotein filament formation during DNA recombination. The assay has identified new protein-protein interactions of gp32 during T4 replication and recombination. The fluorescent probe described here can thus be used as a universal probe for monitoring in real time various ssDNA-dependent processes, which is based on a well-characterized and easy-to-express bacteriophage T4 gene 32 protein, gp32.
Collapse
|
3
|
Kong L, Gan Y, Wang T, Sun X, Ma C, Wang X, Wan H, Wang P. Single-stranded DNA binding protein coupled aptasensor with carbon-gold nanoparticle amplification for marine toxins detection assisted by a miniaturized absorbance reader. JOURNAL OF HAZARDOUS MATERIALS 2023; 450:131023. [PMID: 36857823 DOI: 10.1016/j.jhazmat.2023.131023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Okadaic acid (OA), one of the most widely distributed marine toxins worldwide poses a severe threat to human health. Previous sensing methods for OA detection are usually based on antigen-antibody binding mechanism. However, the drawbacks of antibodies especially the enzyme-labeled antibodies, such as the harsh storage condition and high cost, lead to significant challenges to OA detection in biological samples. To overcome these limitations, a single-stranded DNA binding protein (SSB) coupled aptasensor was developed for OA detection. SSB was incubated on the microplate as a substitute for conventional OA-protein conjugations. Carbon-gold nanoparticles were synthesized and labeled with horseradish peroxidase and thiol-modified aptamers to obtain a capture probe (CGNs@HRP-Apt) instead of the enzyme-labeled antibody for signal amplification. OA and SSB competed to bind with limited aptamers on CGNs@HRP-Apt probes followed by colorimetric assay to obtain the optical signals correlated to OA concentration. To achieve on-site detection, a miniaturized and multichannel absorbance reader (Smart-plate reader) was self-designed with full automation for OA detection. Utilizing the SSB coupled aptasensor and the Smart-plate reader, our approach enables cost-effective and on-site OA sensing with a detection range of 2.5-80 ppb and an ultra-low limit of detection of 0.68 ppb. Moreover, novel OA detection kits based on the SSB coupled aptasensor were prepared which can effectively reduce the cost by 15 times lower than that of commercial ELISA kits. Therefore, the developed platform provides a favorable and promising avenue for marine toxin detection in aquaculture and food safety.
Collapse
Affiliation(s)
- Liubing Kong
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; Innovation Center for Smart Medical Technologies & Devices, Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| | - Ying Gan
- School of Biomedical Engineering, Tianjin Medical University, Tianjin 300070, China
| | - Tianxing Wang
- Zhejiang, e-Linkcare Meditech co., LTD, No.30 Baita Tongjiang Road, Taizhou, Zhejiang 310011, China
| | - Xianyou Sun
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; Innovation Center for Smart Medical Technologies & Devices, Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| | - Chiyu Ma
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xinyi Wang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hao Wan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; Innovation Center for Smart Medical Technologies & Devices, Binjiang Institute of Zhejiang University, Hangzhou 310053, China.
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; Innovation Center for Smart Medical Technologies & Devices, Binjiang Institute of Zhejiang University, Hangzhou 310053, China.
| |
Collapse
|
4
|
Xu L, Halma MTJ, Wuite GJL. Unravelling How Single-Stranded DNA Binding Protein Coordinates DNA Metabolism Using Single-Molecule Approaches. Int J Mol Sci 2023; 24:ijms24032806. [PMID: 36769124 PMCID: PMC9917605 DOI: 10.3390/ijms24032806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Single-stranded DNA-binding proteins (SSBs) play vital roles in DNA metabolism. Proteins of the SSB family exclusively and transiently bind to ssDNA, preventing the DNA double helix from re-annealing and maintaining genome integrity. In the meantime, they interact and coordinate with various proteins vital for DNA replication, recombination, and repair. Although SSB is essential for DNA metabolism, proteins of the SSB family have been long described as accessory players, primarily due to their unclear dynamics and mechanistic interaction with DNA and its partners. Recently-developed single-molecule tools, together with biochemical ensemble techniques and structural methods, have enhanced our understanding of the different coordination roles that SSB plays during DNA metabolism. In this review, we discuss how single-molecule assays, such as optical tweezers, magnetic tweezers, Förster resonance energy transfer, and their combinations, have advanced our understanding of the binding dynamics of SSBs to ssDNA and their interaction with other proteins partners. We highlight the central coordination role that the SSB protein plays by directly modulating other proteins' activities, rather than as an accessory player. Many possible modes of SSB interaction with protein partners are discussed, which together provide a bigger picture of the interaction network shaped by SSB.
Collapse
|
5
|
Villaluenga JPG, Brunete D, Cao-García FJ. Competitive ligand binding kinetics to linear polymers. Phys Rev E 2023; 107:024401. [PMID: 36932540 DOI: 10.1103/physreve.107.024401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 01/10/2023] [Indexed: 02/04/2023]
Abstract
Different types of ligands compete in binding to polymers with different consequences for the physical and chemical properties of the resulting complex. Here, we derive a general kinetic model for the competitive binding kinetics of different types of ligands to a linear polymer, using the McGhee and von Hippel detailed binding-site counting procedure. The derived model allows the description of the competitive binding process in terms of the size of the ligand, binding, and release rates, and cooperativity parameters. We illustrate the implications of the general theory showing the equations for the competitive binding of two ligands. The size of the ligand, given by the number of monomers occluded, is shown to have a great impact on competitive binding. Ligands requiring a large available gap for binding are strongly inhibited by smaller ligands. Ligand size then has a leading role compared to binding affinity or cooperativity. For ligands that can bind in different modes (i.e., different number of monomers), this implies that they are more effective in covering or passivating the polymer in lower modes, if the different modes have similar binding energies.
Collapse
Affiliation(s)
- Juan P G Villaluenga
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, Plaza de Ciencias, 1, 28040 Madrid, Spain
| | - David Brunete
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, Plaza de Ciencias, 1, 28040 Madrid, Spain
| | - Francisco Javier Cao-García
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, Plaza de Ciencias, 1, 28040 Madrid, Spain.,Instituto Madrileño de Estudios Avanzados en Nanociencia, IMDEA Nanociencia, Calle Faraday, 9, 28049 Madrid, Spain
| |
Collapse
|
6
|
Yang T, Villois A, Kunka A, Grigolato F, Arosio P, Prokop Z, deMello A, Stavrakis S. Droplet-Based Microfluidic Temperature-Jump Platform for the Rapid Assessment of Biomolecular Kinetics. Anal Chem 2022; 94:16675-16684. [DOI: 10.1021/acs.analchem.2c03009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Tianjin Yang
- Institute for Chemical and Bioengineering, ETH Zürich, Vladimir Prelog Weg 1, 8093Zürich, Switzerland
| | - Alessia Villois
- Institute for Chemical and Bioengineering, ETH Zürich, Vladimir Prelog Weg 1, 8093Zürich, Switzerland
| | - Antonín Kunka
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Pekarska 53, 656 91Brno, Czech Republic
| | - Fulvio Grigolato
- Institute for Chemical and Bioengineering, ETH Zürich, Vladimir Prelog Weg 1, 8093Zürich, Switzerland
| | - Paolo Arosio
- Institute for Chemical and Bioengineering, ETH Zürich, Vladimir Prelog Weg 1, 8093Zürich, Switzerland
| | - Zbynek Prokop
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00Brno, Czech Republic
| | - Andrew deMello
- Institute for Chemical and Bioengineering, ETH Zürich, Vladimir Prelog Weg 1, 8093Zürich, Switzerland
| | - Stavros Stavrakis
- Institute for Chemical and Bioengineering, ETH Zürich, Vladimir Prelog Weg 1, 8093Zürich, Switzerland
| |
Collapse
|
7
|
The Biochemical Mechanism of Fork Regression in Prokaryotes and Eukaryotes—A Single Molecule Comparison. Int J Mol Sci 2022; 23:ijms23158613. [PMID: 35955746 PMCID: PMC9368896 DOI: 10.3390/ijms23158613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 02/04/2023] Open
Abstract
The rescue of stalled DNA replication forks is essential for cell viability. Impeded but still intact forks can be rescued by atypical DNA helicases in a reaction known as fork regression. This reaction has been studied at the single-molecule level using the Escherichia coli DNA helicase RecG and, separately, using the eukaryotic SMARCAL1 enzyme. Both nanomachines possess the necessary activities to regress forks: they simultaneously couple DNA unwinding to duplex rewinding and the displacement of bound proteins. Furthermore, they can regress a fork into a Holliday junction structure, the central intermediate of many fork regression models. However, there are key differences between these two enzymes. RecG is monomeric and unidirectional, catalyzing an efficient and processive fork regression reaction and, in the process, generating a significant amount of force that is used to displace the tightly-bound E. coli SSB protein. In contrast, the inefficient SMARCAL1 is not unidirectional, displays limited processivity, and likely uses fork rewinding to facilitate RPA displacement. Like many other eukaryotic enzymes, SMARCAL1 may require additional factors and/or post-translational modifications to enhance its catalytic activity, whereas RecG can drive fork regression on its own.
Collapse
|
8
|
Bianco PR. OB-fold Families of Genome Guardians: A Universal Theme Constructed From the Small β-barrel Building Block. Front Mol Biosci 2022; 9:784451. [PMID: 35223988 PMCID: PMC8881015 DOI: 10.3389/fmolb.2022.784451] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
The maintenance of genome stability requires the coordinated actions of multiple proteins and protein complexes, that are collectively known as genome guardians. Within this broadly defined family is a subset of proteins that contain oligonucleotide/oligosaccharide-binding folds (OB-fold). While OB-folds are widely associated with binding to single-stranded DNA this view is no longer an accurate depiction of how these domains are utilized. Instead, the core of the OB-fold is modified and adapted to facilitate binding to a variety of DNA substrates (both single- and double-stranded), phospholipids, and proteins, as well as enabling catalytic function to a multi-subunit complex. The flexibility accompanied by distinctive oligomerization states and quaternary structures enables OB-fold genome guardians to maintain the integrity of the genome via a myriad of complex and dynamic, protein-protein; protein-DNA, and protein-lipid interactions in both prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Piero R. Bianco
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
9
|
Bianco PR. The mechanism of action of the SSB interactome reveals it is the first OB-fold family of genome guardians in prokaryotes. Protein Sci 2021; 30:1757-1775. [PMID: 34089559 PMCID: PMC8376408 DOI: 10.1002/pro.4140] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 12/28/2022]
Abstract
The single-stranded DNA binding protein (SSB) is essential to all aspects of DNA metabolism in bacteria. This protein performs two distinct, but closely intertwined and indispensable functions in the cell. SSB binds to single-stranded DNA (ssDNA) and at least 20 partner proteins resulting in their regulation. These partners comprise a family of genome guardians known as the SSB interactome. Essential to interactome regulation is the linker/OB-fold network of interactions. This network of interactions forms when one or more PXXP motifs in the linker of SSB bind to an OB-fold in a partner, with interactome members involved in competitive binding between the linker and ssDNA to their OB-fold. Consequently, when linker-binding occurs to an OB-fold in an interactome partner, proteins are loaded onto the DNA. When linker/OB-fold interactions occur between SSB tetramers, cooperative ssDNA-binding results, producing a multi-tetrameric complex that rapidly protects the ssDNA. Within this SSB-ssDNA complex, there is an extensive and dynamic network of linker/OB-fold interactions that involves multiple tetramers bound contiguously along the ssDNA lattice. The dynamic behavior of these tetramers which includes binding mode changes, sliding as well as DNA wrapping/unwrapping events, are likely coupled to the formation and disruption of linker/OB-fold interactions. This behavior is essential to facilitating downstream DNA processing events. As OB-folds are critical to the essence of the linker/OB-fold network of interactions, and they are found in multiple interactome partners, the SSB interactome is classified as the first family of prokaryotic, oligosaccharide/oligonucleotide binding fold (OB-fold) genome guardians.
Collapse
MESH Headings
- Amino Acid Motifs
- Bacterial Proteins/chemistry
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Binding, Competitive
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- DNA, Single-Stranded/chemistry
- DNA, Single-Stranded/genetics
- DNA, Single-Stranded/metabolism
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Escherichia coli/chemistry
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Gene Expression Regulation, Bacterial
- Gene Regulatory Networks
- Genome, Bacterial
- Klebsiella pneumoniae/chemistry
- Klebsiella pneumoniae/genetics
- Klebsiella pneumoniae/metabolism
- Models, Molecular
- Oligonucleotides/chemistry
- Oligonucleotides/metabolism
- Oligosaccharides/chemistry
- Oligosaccharides/metabolism
- Protein Binding
- Protein Conformation
- Protein Interaction Mapping
- Protein Multimerization
Collapse
Affiliation(s)
- Piero R. Bianco
- Department of Pharmaceutical Sciences, College of PharmacyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| |
Collapse
|
10
|
Bianco PR, Lu Y. Single-molecule insight into stalled replication fork rescue in Escherichia coli. Nucleic Acids Res 2021; 49:4220-4238. [PMID: 33744948 PMCID: PMC8096234 DOI: 10.1093/nar/gkab142] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/15/2021] [Accepted: 02/22/2021] [Indexed: 01/05/2023] Open
Abstract
DNA replication forks stall at least once per cell cycle in Escherichia coli. DNA replication must be restarted if the cell is to survive. Restart is a multi-step process requiring the sequential action of several proteins whose actions are dictated by the nature of the impediment to fork progression. When fork progress is impeded, the sequential actions of SSB, RecG and the RuvABC complex are required for rescue. In contrast, when a template discontinuity results in the forked DNA breaking apart, the actions of the RecBCD pathway enzymes are required to resurrect the fork so that replication can resume. In this review, we focus primarily on the significant insight gained from single-molecule studies of individual proteins, protein complexes, and also, partially reconstituted regression and RecBCD pathways. This insight is related to the bulk-phase biochemical data to provide a comprehensive review of each protein or protein complex as it relates to stalled DNA replication fork rescue.
Collapse
Affiliation(s)
- Piero R Bianco
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6025, USA
| | - Yue Lu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6025, USA
| |
Collapse
|
11
|
Naufer MN, Morse M, Möller GB, McIsaac J, Rouzina I, Beuning PJ, Williams MC. Multiprotein E. coli SSB-ssDNA complex shows both stable binding and rapid dissociation due to interprotein interactions. Nucleic Acids Res 2021; 49:1532-1549. [PMID: 33434279 PMCID: PMC7897507 DOI: 10.1093/nar/gkaa1267] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/10/2020] [Accepted: 12/21/2020] [Indexed: 11/14/2022] Open
Abstract
Escherichia coli SSB (EcSSB) is a model single-stranded DNA (ssDNA) binding protein critical in genome maintenance. EcSSB forms homotetramers that wrap ssDNA in multiple conformations to facilitate DNA replication and repair. Here we measure the binding and wrapping of many EcSSB proteins to a single long ssDNA substrate held at fixed tensions. We show EcSSB binds in a biphasic manner, where initial wrapping events are followed by unwrapping events as ssDNA-bound protein density passes critical saturation and high free protein concentration increases the fraction of EcSSBs in less-wrapped conformations. By destabilizing EcSSB wrapping through increased substrate tension, decreased substrate length, and protein mutation, we also directly observe an unstable bound but unwrapped state in which ∼8 nucleotides of ssDNA are bound by a single domain, which could act as a transition state through which rapid reorganization of the EcSSB-ssDNA complex occurs. When ssDNA is over-saturated, stimulated dissociation rapidly removes excess EcSSB, leaving an array of stably-wrapped complexes. These results provide a mechanism through which otherwise stably bound and wrapped EcSSB tetramers are rapidly removed from ssDNA to allow for DNA maintenance and replication functions, while still fully protecting ssDNA over a wide range of protein concentrations.
Collapse
Affiliation(s)
- M Nabuan Naufer
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| | - Michael Morse
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| | | | - James McIsaac
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Ioulia Rouzina
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH 43210, USA
| | - Penny J Beuning
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Mark C Williams
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
12
|
Villaluenga JPG, Vidal J, Cao-García FJ. Noncooperative thermodynamics and kinetic models of ligand binding to polymers: Connecting McGhee-von Hippel model with the Tonks gas model. Phys Rev E 2020; 102:012407. [PMID: 32795076 DOI: 10.1103/physreve.102.012407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 06/18/2020] [Indexed: 11/07/2022]
Abstract
Ligand binding to polymers modifies the physical and chemical properties of the polymers, leading to physical, chemical, and biological implications. McGhee and von Hippel obtained the equilibrium coverage as a function of the ligand affinity, through the computation of the possible binding sites for the ligand. Here, we complete this theory deriving the kinetic model for the ligand-binding dynamics and the associated equilibrium chemical potential, which turns out to be of the Tonks gas model type. At low coverage, the Tonks chemical potential becomes the Fermi chemical potential and even the ideal gas chemical potential. We also discuss kinetic models associated with these chemical potentials. These results clarify the kinetic models of ligand binding, their relations with the chemical potentials, and their range of validity. Our results highlight the inaccuracy of ideal and simplified kinetic approaches for medium and high coverages.
Collapse
Affiliation(s)
- Juan P G Villaluenga
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, Pza. de Ciencias, 1, 28040 Madrid, Spain
| | - Jules Vidal
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, Pza. de Ciencias, 1, 28040 Madrid, Spain
| | - Francisco Javier Cao-García
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, Pza. de Ciencias, 1, 28040 Madrid, Spain.,Instituto Madrileño de Estudios Avanzados en Nanociencia, IMDEA Nanociencia, C/Faraday, 9, 28049 Madrid, Spain
| |
Collapse
|
13
|
Bianco PR. DNA Helicase-SSB Interactions Critical to the Regression and Restart of Stalled DNA Replication forks in Escherichia coli. Genes (Basel) 2020; 11:E471. [PMID: 32357475 PMCID: PMC7290993 DOI: 10.3390/genes11050471] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 01/25/2023] Open
Abstract
In Escherichia coli, DNA replication forks stall on average once per cell cycle. When this occurs, replisome components disengage from the DNA, exposing an intact, or nearly intact fork. Consequently, the fork structure must be regressed away from the initial impediment so that repair can occur. Regression is catalyzed by the powerful, monomeric DNA helicase, RecG. During this reaction, the enzyme couples unwinding of fork arms to rewinding of duplex DNA resulting in the formation of a Holliday junction. RecG works against large opposing forces enabling it to clear the fork of bound proteins. Following subsequent processing of the extruded junction, the PriA helicase mediates reloading of the replicative helicase DnaB leading to the resumption of DNA replication. The single-strand binding protein (SSB) plays a key role in mediating PriA and RecG functions at forks. It binds to each enzyme via linker/OB-fold interactions and controls helicase-fork loading sites in a substrate-dependent manner that involves helicase remodeling. Finally, it is displaced by RecG during fork regression. The intimate and dynamic SSB-helicase interactions play key roles in ensuring fork regression and DNA replication restart.
Collapse
Affiliation(s)
- Piero R Bianco
- Center for Single Molecule Biophysics, University at Buffalo, SUNY, Buffalo, NY 14221, USA
| |
Collapse
|
14
|
Mishra G, Bigman LS, Levy Y. ssDNA diffuses along replication protein A via a reptation mechanism. Nucleic Acids Res 2020; 48:1701-1714. [PMID: 31919510 PMCID: PMC7038930 DOI: 10.1093/nar/gkz1202] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/23/2019] [Accepted: 01/08/2020] [Indexed: 01/30/2023] Open
Abstract
Replication protein A (RPA) plays a critical role in all eukaryotic DNA processing involving single-stranded DNA (ssDNA). Contrary to the notion that RPA provides solely inert protection to transiently formed ssDNA, the RPA-ssDNA complex acts as a dynamic DNA processing unit. Here, we studied the diffusion of RPA along 60 nt ssDNA using a coarse-grained model in which the ssDNA-RPA interface was modeled by both aromatic and electrostatic interactions. Our study provides direct evidence of bulge formation during the diffusion of ssDNA along RPA. Bulges can form at a few sites along the interface and store 1-7 nt of ssDNA whose release, upon bulge dissolution, leads to propagation of ssDNA diffusion. These findings thus support the reptation mechanism, which involves bulge formation linked to the aromatic interactions, whose short range nature reduces cooperativity in ssDNA diffusion. Greater cooperativity and a larger diffusion coefficient for ssDNA diffusion along RPA are observed for RPA variants with weaker aromatic interactions and for interfaces homogenously stabilized by electrostatic interactions. ssDNA propagation in the latter instance is characterized by lower probabilities of bulge formation; thus, it may fit the sliding-without-bulge model better than the reptation model. Thus, the reptation mechanism allows ssDNA mobility despite the extensive and high affinity interface of RPA with ssDNA. The short-range aromatic interactions support bulge formation while the long-range electrostatic interactions support the release of the stored excess ssDNA in the bulge and thus the overall diffusion.
Collapse
Affiliation(s)
- Garima Mishra
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel.,Department of Physics, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Lavi S Bigman
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yaakov Levy
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
15
|
Sarangi MK, Zvoda V, Holte MN, Becker NA, Peters JP, Maher LJ, Ansari A. Evidence for a bind-then-bend mechanism for architectural DNA binding protein yNhp6A. Nucleic Acids Res 2019; 47:2871-2883. [PMID: 30698746 PMCID: PMC6451137 DOI: 10.1093/nar/gkz022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 12/18/2018] [Accepted: 01/18/2019] [Indexed: 01/17/2023] Open
Abstract
The yeast Nhp6A protein (yNhp6A) is a member of the eukaryotic HMGB family of chromatin factors that enhance apparent DNA flexibility. yNhp6A binds DNA nonspecifically with nM affinity, sharply bending DNA by >60°. It is not known whether the protein binds to unbent DNA and then deforms it, or if bent DNA conformations are ‘captured’ by protein binding. The former mechanism would be supported by discovery of conditions where unbent DNA is bound by yNhp6A. Here, we employed an array of conformational probes (FRET, fluorescence anisotropy, and circular dichroism) to reveal solution conditions in which an 18-base-pair DNA oligomer indeed remains bound to yNhp6A while unbent. In 100 mM NaCl, yNhp6A-bound DNA unbends as the temperature is raised, with no significant dissociation of the complex detected up to ∼45°C. In 200 mM NaCl, DNA unbending in the intact yNhp6A complex is again detected up to ∼35°C. Microseconds-resolved laser temperature-jump perturbation of the yNhp6a–DNA complex revealed relaxation kinetics that yielded unimolecular DNA bending/unbending rates on timescales of 500 μs−1 ms. These data provide the first direct observation of bending/unbending dynamics of DNA in complex with yNhp6A, suggesting a bind-then-bend mechanism for this protein.
Collapse
Affiliation(s)
- Manas Kumar Sarangi
- Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Viktoriya Zvoda
- Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Molly Nelson Holte
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Nicole A Becker
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Justin P Peters
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - L James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Anjum Ansari
- Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA.,Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
16
|
Chakraborty S, Steinbach PJ, Paul D, Mu H, Broyde S, Min JH, Ansari A. Enhanced spontaneous DNA twisting/bending fluctuations unveiled by fluorescence lifetime distributions promote mismatch recognition by the Rad4 nucleotide excision repair complex. Nucleic Acids Res 2019; 46:1240-1255. [PMID: 29267981 PMCID: PMC5815138 DOI: 10.1093/nar/gkx1216] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 12/12/2017] [Indexed: 12/15/2022] Open
Abstract
Rad4/XPC recognizes diverse DNA lesions including ultraviolet-photolesions and carcinogen-DNA adducts, initiating nucleotide excision repair. Studies have suggested that Rad4/XPC senses lesion-induced helix-destabilization to flip out nucleotides from damaged DNA sites. However, characterizing how DNA deformability and/or distortions impact recognition has been challenging. Here, using fluorescence lifetime measurements empowered by a maximum entropy algorithm, we mapped the conformational heterogeneities of artificially destabilized mismatched DNA substrates of varying Rad4-binding specificities. The conformational distributions, as probed by FRET between a cytosine-analog pair exquisitely sensitive to DNA twisting/bending, reveal a direct connection between intrinsic DNA deformability and Rad4 recognition. High-specificity CCC/CCC mismatch, free in solution, sampled a strikingly broad range of conformations from B-DNA-like to highly distorted conformations that resembled those observed with Rad4 bound; the extent of these distortions increased with bound Rad4 and with temperature. Conversely, the non-specific TAT/TAT mismatch had a homogeneous, B-DNA-like conformation. Molecular dynamics simulations also revealed a wide distribution of conformations for CCC/CCC, complementing experimental findings. We propose that intrinsic deformability promotes Rad4 damage recognition, perhaps by stalling a diffusing protein and/or facilitating ‘conformational capture’ of pre-distorted damaged sites. Surprisingly, even mismatched DNA specifically bound to Rad4 remains highly dynamic, a feature that may reflect the versatility of Rad4/XPC to recognize many structurally dissimilar lesions.
Collapse
Affiliation(s)
- Sagnik Chakraborty
- Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Peter J Steinbach
- Center for Molecular Modeling, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892, USA
| | - Debamita Paul
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Hong Mu
- Department of Biology, New York University, New York, NY 10003, USA
| | - Suse Broyde
- Department of Biology, New York University, New York, NY 10003, USA
| | - Jung-Hyun Min
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Anjum Ansari
- Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA.,Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
17
|
Monovalent ions modulate the flux through multiple folding pathways of an RNA pseudoknot. Proc Natl Acad Sci U S A 2018; 115:E7313-E7322. [PMID: 30012621 PMCID: PMC6077692 DOI: 10.1073/pnas.1717582115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The assembly mechanism of RNA, vital to describing its functions, depends on both the sequence and the metal ion concentration. How the latter influences the folding trajectories remains an important unsolved problem. Here, we examine the folding pathways of an RNA pseudoknot (PK) with key functional roles in transcription and translation, using a combination of experiments and simulations. We demonstrate that the PK, consisting of two hairpins with differing stabilities, folds by parallel pathways. Surprisingly, the flux between them is modulated by monovalent salt concentration. Our work shows that the order of assembly of PKs is determined by the relative stability of the hairpins, implying that the folding landscape can be controlled by sequence and ion concentration. The functions of RNA pseudoknots (PKs), which are minimal tertiary structural motifs and an integral part of several ribozymes and ribonucleoprotein complexes, are determined by their structure, stability, and dynamics. Therefore, it is important to elucidate the general principles governing their thermodynamics/folding mechanisms. Here, we combine laser temperature-jump experiments and coarse-grained simulations to determine the folding/unfolding pathways of VPK, a variant of the mouse mammary tumor virus (MMTV) PK involved in ribosomal frameshifting. Fluorescent nucleotide analogs (2-aminopurine and pyrrolocytidine) placed at different stem/loop positions in the PK serve as local probes allowing us to monitor the order of assembly of VPK that has two constituent hairpins with different intrinsic stabilities. We show that at 50 mM KCl, the dominant folding pathway populates only the more stable hairpin intermediate; as the salt concentration is increased, a parallel folding pathway emerges involving the less stable hairpin as an alternate intermediate. Notably, the flux between the pathways is modulated by the ionic strength. Our findings support the principle that the order of PK structure formation is determined by the relative stabilities of the hairpins, which can be altered by sequence variations or salt concentrations. The experimental results of salt effects on the partitioning between the two folding pathways are in remarkable agreement with simulations that were performed with no adjustable parameters. Our study not only unambiguously demonstrates that VPK folds by parallel pathways but also showcases the power of combining experiments and simulations for a more enriched description of RNA self-assembly.
Collapse
|
18
|
Maffeo C, Aksimentiev A. Molecular mechanism of DNA association with single-stranded DNA binding protein. Nucleic Acids Res 2017; 45:12125-12139. [PMID: 29059392 PMCID: PMC5716091 DOI: 10.1093/nar/gkx917] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/28/2017] [Indexed: 01/10/2023] Open
Abstract
During DNA replication, the single-stranded DNA binding protein (SSB) wraps single-stranded DNA (ssDNA) with high affinity to protect it from degradation and prevent secondary structure formation. Although SSB binds ssDNA tightly, it can be repositioned along ssDNA to follow the advancement of the replication fork. Using all-atom molecular dynamics simulations, we characterized the molecular mechanism of ssDNA association with SSB. Placed in solution, ssDNA–SSB assemblies were observed to change their structure spontaneously; such structural changes were suppressed in the crystallographic environment. Repeat simulations of the SSB–ssDNA complex under mechanical tension revealed a multitude of possible pathways for ssDNA to come off SSB punctuated by prolonged arrests at reproducible sites at the SSB surface. Ensemble simulations of spontaneous association of short ssDNA fragments with SSB detailed a three-dimensional map of local affinity to DNA; the equilibrium amount of ssDNA bound to SSB was found to depend on the electrolyte concentration but not on the presence of the acidic tips of the SSB tails. Spontaneous formation of ssDNA bulges and their diffusive motion along SSB surface was directly observed in multiple 10-µs-long simulations. Such reptation-like motion was confined by DNA binding to high-affinity spots, suggesting a two-step mechanism for SSB diffusion.
Collapse
Affiliation(s)
- Christopher Maffeo
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 W Green St, Urbana, IL 61801, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Ave, Urbana, IL 61801, USA.,National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, 1205 W Clark St, Urbana, IL 61801, USA
| | - Aleksei Aksimentiev
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 W Green St, Urbana, IL 61801, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Ave, Urbana, IL 61801, USA.,National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, 1205 W Clark St, Urbana, IL 61801, USA.,Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, 1110 W Green St, Urbana, IL 61801, USA
| |
Collapse
|
19
|
Morin JA, Cerrón F, Jarillo J, Beltran-Heredia E, Ciesielski GL, Arias-Gonzalez JR, Kaguni LS, Cao FJ, Ibarra B. DNA synthesis determines the binding mode of the human mitochondrial single-stranded DNA-binding protein. Nucleic Acids Res 2017; 45:7237-7248. [PMID: 28486639 PMCID: PMC5499585 DOI: 10.1093/nar/gkx395] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/27/2017] [Indexed: 12/02/2022] Open
Abstract
Single-stranded DNA-binding proteins (SSBs) play a key role in genome maintenance, binding and organizing single-stranded DNA (ssDNA) intermediates. Multimeric SSBs, such as the human mitochondrial SSB (HmtSSB), present multiple sites to interact with ssDNA, which has been shown in vitro to enable them to bind a variable number of single-stranded nucleotides depending on the salt and protein concentration. It has long been suggested that different binding modes might be used selectively for different functions. To study this possibility, we used optical tweezers to determine and compare the structure and energetics of long, individual HmtSSB–DNA complexes assembled on preformed ssDNA and on ssDNA generated gradually during ‘in situ’ DNA synthesis. We show that HmtSSB binds to preformed ssDNA in two major modes, depending on salt and protein concentration. However, when protein binding was coupled to strand-displacement DNA synthesis, only one of the two binding modes was observed under all experimental conditions. Our results reveal a key role for the gradual generation of ssDNA in modulating the binding mode of a multimeric SSB protein and consequently, in generating the appropriate nucleoprotein structure for DNA synthetic reactions required for genome maintenance.
Collapse
Affiliation(s)
- José A Morin
- Instituto Madrileño de Estudios Avanzados en Nanociencia, IMDEA Nanociencia, 28049 Madrid, Spain
| | - Fernando Cerrón
- Instituto Madrileño de Estudios Avanzados en Nanociencia, IMDEA Nanociencia, 28049 Madrid, Spain
| | - Javier Jarillo
- Departamento Física Atómica, Molecular y Nuclear, Universidad Complutense, 28040 Madrid, Spain
| | - Elena Beltran-Heredia
- Departamento Física Atómica, Molecular y Nuclear, Universidad Complutense, 28040 Madrid, Spain
| | - Grzegorz L Ciesielski
- Institute of Biosciences and Medical Technology, University of Tampere, 33520 Tampere, Finland.,Department of Biochemistry and Molecular Biology and Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, MI 48823, USA
| | - J Ricardo Arias-Gonzalez
- Instituto Madrileño de Estudios Avanzados en Nanociencia, IMDEA Nanociencia, 28049 Madrid, Spain.,Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia) and CNB-CSIC-IMDEA Nanociencia Associated Unit 'Unidad de Nanobiotecnología', 28049 Madrid, Spain
| | - Laurie S Kaguni
- Institute of Biosciences and Medical Technology, University of Tampere, 33520 Tampere, Finland.,Department of Biochemistry and Molecular Biology and Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, MI 48823, USA
| | - Francisco J Cao
- Departamento Física Atómica, Molecular y Nuclear, Universidad Complutense, 28040 Madrid, Spain
| | - Borja Ibarra
- Instituto Madrileño de Estudios Avanzados en Nanociencia, IMDEA Nanociencia, 28049 Madrid, Spain.,Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia) and CNB-CSIC-IMDEA Nanociencia Associated Unit 'Unidad de Nanobiotecnología', 28049 Madrid, Spain
| |
Collapse
|
20
|
Bianco PR, Lyubchenko YL. SSB and the RecG DNA helicase: an intimate association to rescue a stalled replication fork. Protein Sci 2017; 26:638-649. [PMID: 28078722 DOI: 10.1002/pro.3114] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 12/26/2016] [Accepted: 12/28/2016] [Indexed: 12/27/2022]
Abstract
In E. coli, the regression of stalled DNA replication forks is catalyzed by the DNA helicase RecG. One means of gaining access to the fork is by binding to the single strand binding protein or SSB. This interaction occurs via the wedge domain of RecG and the intrinsically disordered linker (IDL) of SSB, in a manner similar to that of SH3 domains binding to PXXP motif-containing ligands in eukaryotic cells. During loading, SSB remodels the wedge domain so that the helicase domains bind to the parental, duplex DNA, permitting the helicase to translocate using thermal energy. This translocation may be used to clear the fork of obstacles, prior to the initiation of fork regression.
Collapse
Affiliation(s)
- Piero R Bianco
- SUNY Microbiology and Immunology, Center for Single Molecule Biophysics, University at Buffalo, 321 Cary Hall, 3435 Main St, Buffalo, New York 14214.,Department of Microbiology and Immunology, University at Buffalo, Buffalo, New York.,Department of Biochemistry, University at Buffalo, Buffalo, New York
| | - Yuri L Lyubchenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska, 68198-6025
| |
Collapse
|
21
|
Tan HY, Wilczek LA, Pottinger S, Manosas M, Yu C, Nguyenduc T, Bianco PR. The intrinsically disordered linker of E. coli SSB is critical for the release from single-stranded DNA. Protein Sci 2017; 26:700-717. [PMID: 28078720 DOI: 10.1002/pro.3115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 12/28/2016] [Indexed: 11/08/2022]
Abstract
The Escherichia coli single stranded DNA binding protein (SSB) is crucial for DNA replication, recombination and repair. Within each process, it has two seemingly disparate roles: it stabilizes single-stranded DNA (ssDNA) intermediates generated during DNA processing and, forms complexes with a group of proteins known as the SSB-interactome. Key to both roles is the C-terminal, one-third of the protein, in particular the intrinsically disordered linker (IDL). Previously, they have shown using a series of linker deletion mutants that the IDL links both ssDNA and target protein binding by mediating interactions with the oligosaccharide/oligonucleotide binding fold in the target. In this study, they examine the role of the linker region in SSB function in a variety of DNA metabolic processes in vitro. Using the same linker mutants, the results show that in addition to association reactions (either DNA or protein), the IDL is critical for the release of SSB from DNA. This release can be under conditions of ssDNA competition or active displacement by a DNA helicase or recombinase. Consistent with their previous work these results indicate that SSB linker mutants are defective for SSB-SSB interactions, and when the IDL is removed a terminal SSB-DNA complex results. Formation of this complex inhibits downstream processing of DNA by helicases such as RecG or PriA as well as recombination, mediated by RecA. A model, based on the evidence herein, is presented to explain how the IDL acts in SSB function.
Collapse
Affiliation(s)
- Hui Yin Tan
- Department of Microbiology and Immunology, Center for Single Molecule Biophysics, University at Buffalo, Buffalo, New York
| | - Luke A Wilczek
- Department of Microbiology and Immunology, Center for Single Molecule Biophysics, University at Buffalo, Buffalo, New York
| | - Sasheen Pottinger
- Department of Microbiology and Immunology, Center for Single Molecule Biophysics, University at Buffalo, Buffalo, New York
| | - Maria Manosas
- Departament de Física Fonamental, Facultat de Física, Universitat de Barcelona, Diagonal 647, 08028, Barcelona, Spain.,CIBER-BBN de Bioingenieria, Biomateriales y Nanomedicina, Instituto de Sanidad Carlos III, Madrid, Spain
| | - Cong Yu
- Department of Microbiology and Immunology, Center for Single Molecule Biophysics, University at Buffalo, Buffalo, New York
| | - Trong Nguyenduc
- Department of Microbiology and Immunology, Center for Single Molecule Biophysics, University at Buffalo, Buffalo, New York
| | - Piero R Bianco
- Department of Microbiology and Immunology, Center for Single Molecule Biophysics, University at Buffalo, Buffalo, New York
| |
Collapse
|
22
|
Bianco PR, Pottinger S, Tan HY, Nguyenduc T, Rex K, Varshney U. The IDL of E. coli SSB links ssDNA and protein binding by mediating protein-protein interactions. Protein Sci 2017; 26:227-241. [PMID: 28127816 DOI: 10.1002/pro.3072] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/17/2016] [Indexed: 11/10/2022]
Abstract
The E. coli single strand DNA binding protein (SSB) is essential to viability where it functions in two seemingly disparate roles: it binds to single stranded DNA (ssDNA) and to target proteins that comprise the SSB interactome. The link between these roles resides in a previously under-appreciated region of the protein known as the intrinsically disordered linker (IDL). We present a model wherein the IDL is responsible for mediating protein-protein interactions critical to each role. When interactions occur between SSB tetramers, cooperative binding to ssDNA results. When binding occurs between SSB and an interactome partner, storage or loading of that protein onto the DNA takes place. The properties of the IDL that facilitate these interactions include the presence of repeats, a putative polyproline type II helix and, PXXP motifs that may facilitate direct binding to the OB-fold in a manner similar to that observed for SH3 domain binding of PXXP ligands in eukaryotic systems.
Collapse
Affiliation(s)
- Piero R Bianco
- Department of Microbiology and Immunology, Center for Single Molecule Biophysics, University at Buffalo, Buffalo, New York, 14214
| | - Sasheen Pottinger
- Department of Microbiology and Immunology, Center for Single Molecule Biophysics, University at Buffalo, Buffalo, New York, 14214
| | - Hui Yin Tan
- Department of Microbiology and Immunology, Center for Single Molecule Biophysics, University at Buffalo, Buffalo, New York, 14214
| | - Trong Nguyenduc
- Department of Microbiology and Immunology, Center for Single Molecule Biophysics, University at Buffalo, Buffalo, New York, 14214
| | - Kervin Rex
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| |
Collapse
|
23
|
Bianco PR. The tale of SSB. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 127:111-118. [PMID: 27838363 DOI: 10.1016/j.pbiomolbio.2016.11.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 11/04/2016] [Indexed: 01/07/2023]
Abstract
The E. coli single stranded DNA binding protein (SSB) is essential to all aspects of DNA metabolism. Here, it has two seemingly disparate but equally important roles: it binds rapidly and cooperatively to single stranded DNA (ssDNA) and it binds to partner proteins that constitute the SSB interactome. These two roles are not disparate but are instead, intimately linked. A model is presented wherein the intrinsically disordered linker (IDL) is directly responsible for mediating protein-protein interactions. It does this by binding, via PXXP motifs, to the OB-fold (aka SH3 domain) of a nearby protein. When the nearby protein is another SSB tetramer, this leads to a highly efficient ssDNA binding reaction that rapidly and cooperatively covers and protects the exposed nucleic acid from degradation. Alternatively, when the nearby protein is a member of the SSB interactome, loading of the enzyme onto the DNA takes places.
Collapse
Affiliation(s)
- Piero R Bianco
- Center for Single Molecule Biophysics, Department of Biochemistry, University at Buffalo, Buffalo, NY, 14214, USA; Department of Microbiology and Immunology, University at Buffalo, Buffalo, NY, 14214, USA.
| |
Collapse
|
24
|
Blouin S, Craggs TD, Lafontaine DA, Penedo JC. Functional Studies of DNA-Protein Interactions Using FRET Techniques. Methods Mol Biol 2016; 1334:115-41. [PMID: 26404147 DOI: 10.1007/978-1-4939-2877-4_8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Protein-DNA interactions underpin life and play key roles in all cellular processes and functions including DNA transcription, packaging, replication, and repair. Identifying and examining the nature of these interactions is therefore a crucial prerequisite to understand the molecular basis of how these fundamental processes take place. The application of fluorescence techniques and in particular fluorescence resonance energy transfer (FRET) to provide structural and kinetic information has experienced a stunning growth during the past decade. This has been mostly promoted by new advances in the preparation of dye-labeled nucleic acids and proteins and in optical sensitivity, where its implementation at the level of individual molecules has opened a new biophysical frontier. Nowadays, the application of FRET-based techniques to the analysis of protein-DNA interactions spans from the classical steady-state and time-resolved methods averaging over large ensembles to the analysis of distances, conformational changes, and enzymatic reactions in individual protein-DNA complexes. This chapter introduces the practical aspects of applying these methods for the study of protein-DNA interactions.
Collapse
Affiliation(s)
- Simon Blouin
- Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Daniel A Lafontaine
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, 2500 Boulevard de L'Université, Sherbrooke, QC, Canada, J1K 2R1.
| | - J Carlos Penedo
- School of Physics and Astronomy, University of St. Andrews, St. Andrews, UK
| |
Collapse
|
25
|
Abstract
DNA replication in Escherichia coli initiates at oriC, the origin of replication and proceeds bidirectionally, resulting in two replication forks that travel in opposite directions from the origin. Here, we focus on events at the replication fork. The replication machinery (or replisome), first assembled on both forks at oriC, contains the DnaB helicase for strand separation, and the DNA polymerase III holoenzyme (Pol III HE) for DNA synthesis. DnaB interacts transiently with the DnaG primase for RNA priming on both strands. The Pol III HE is made up of three subassemblies: (i) the αɛθ core polymerase complex that is present in two (or three) copies to simultaneously copy both DNA strands, (ii) the β2 sliding clamp that interacts with the core polymerase to ensure its processivity, and (iii) the seven-subunit clamp loader complex that loads β2 onto primer-template junctions and interacts with the α polymerase subunit of the core and the DnaB helicase to organize the two (or three) core polymerases. Here, we review the structures of the enzymatic components of replisomes, and the protein-protein and protein-DNA interactions that ensure they remain intact while undergoing substantial dynamic changes as they function to copy both the leading and lagging strands simultaneously during coordinated replication.
Collapse
Affiliation(s)
- J S Lewis
- Centre for Medical & Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - S Jergic
- Centre for Medical & Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - N E Dixon
- Centre for Medical & Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.
| |
Collapse
|
26
|
Twist-open mechanism of DNA damage recognition by the Rad4/XPC nucleotide excision repair complex. Proc Natl Acad Sci U S A 2016; 113:E2296-305. [PMID: 27035942 DOI: 10.1073/pnas.1514666113] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
DNA damage repair starts with the recognition of damaged sites from predominantly normal DNA. In eukaryotes, diverse DNA lesions from environmental sources are recognized by the xeroderma pigmentosum C (XPC) nucleotide excision repair complex. Studies of Rad4 (radiation-sensitive 4; yeast XPC ortholog) showed that Rad4 "opens" up damaged DNA by inserting a β-hairpin into the duplex and flipping out two damage-containing nucleotide pairs. However, this DNA lesion "opening" is slow (˜5-10 ms) compared with typical submillisecond residence times per base pair site reported for various DNA-binding proteins during 1D diffusion on DNA. To address the mystery as to how Rad4 pauses to recognize lesions during diffusional search, we examine conformational dynamics along the lesion recognition trajectory using temperature-jump spectroscopy. Besides identifying the ˜10-ms step as the rate-limiting bottleneck towards opening specific DNA site, we uncover an earlier ˜100- to 500-μs step that we assign to nonspecific deformation (unwinding/"twisting") of DNA by Rad4. The β-hairpin is not required to unwind or to overcome the bottleneck but is essential for full nucleotide-flipping. We propose that Rad4 recognizes lesions in a step-wise "twist-open" mechanism, in which preliminary twisting represents Rad4 interconverting between search and interrogation modes. Through such conformational switches compatible with rapid diffusion on DNA, Rad4 may stall preferentially at a lesion site, offering time to open DNA. This study represents the first direct observation, to our knowledge, of dynamical DNA distortions during search/interrogation beyond base pair breathing. Submillisecond interrogation with preferential stalling at cognate sites may be common to various DNA-binding proteins.
Collapse
|
27
|
Abstract
This article reviews atomic force microscopy (AFM) studies of DNA structure and dynamics and protein-DNA complexes, including recent advances in the visualization of protein-DNA complexes with the use of cutting-edge, high-speed AFM. Special emphasis is given to direct nanoscale visualization of dynamics of protein-DNA complexes. In the area of DNA structure and dynamics, structural studies of local non-B conformations of DNA and the interplay of local and global DNA conformations are reviewed. The application of time-lapse AFM nanoscale imaging of DNA dynamics is illustrated by studies of Holliday junction branch migration. Structure and dynamics of protein-DNA interactions include problems related to site-specific DNA recombination, DNA replication, and DNA mismatch repair. Studies involving the structure and dynamics of chromatin are also described.
Collapse
Affiliation(s)
- Yuri L. Lyubchenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025
| | - Luda S. Shlyakhtenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025
| |
Collapse
|
28
|
Parsaeian A, de la Cruz MO, Marko JF. Binding-rebinding dynamics of proteins interacting nonspecifically with a long DNA molecule. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:040703. [PMID: 24229102 PMCID: PMC3894571 DOI: 10.1103/physreve.88.040703] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Indexed: 06/01/2023]
Abstract
We investigate how nonspecific interactions and unbinding-rebinding events give rise to a length- and conformation-dependent enhancement of the "macroscopic" dissociation time of proteins from a DNA, or in general for the release of ligands initially bound to a long polymer. By numerically simulating the release of ligands from polymers of different conformations, we show that the total dissociation time increases logarithmically with polymer length for an extended conformation, and as a power law for self-avoiding and compact conformations. For the latter two cases, the presence of self-avoidance acting between the diffusing ligands affects the power-law exponents. Our results are important in relating kinetic measurements of protein on- and off-rates for large DNAs to equilibrium affinities for a single binding site.
Collapse
Affiliation(s)
- Azita Parsaeian
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | | | | |
Collapse
|
29
|
Mason CE, Jergic S, Lo ATY, Wang Y, Dixon NE, Beck JL. Escherichia coli single-stranded DNA-binding protein: nanoESI-MS studies of salt-modulated subunit exchange and DNA binding transactions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:274-285. [PMID: 23283730 DOI: 10.1007/s13361-012-0552-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Revised: 11/28/2012] [Accepted: 11/30/2012] [Indexed: 06/01/2023]
Abstract
Single-stranded DNA-binding proteins (SSBs) are ubiquitous oligomeric proteins that bind with very high affinity to single-stranded DNA and have a variety of essential roles in DNA metabolism. Nanoelectrospray ionization mass spectrometry (nanoESI-MS) was used to monitor subunit exchange in full-length and truncated forms of the homotetrameric SSB from Escherichia coli. Subunit exchange in the native protein was found to occur slowly over a period of hours, but was significantly more rapid in a truncated variant of SSB from which the eight C-terminal residues were deleted. This effect is proposed to result from C-terminus mediated stabilization of the SSB tetramer, in which the C-termini interact with the DNA-binding cores of adjacent subunits. NanoESI-MS was also used to examine DNA binding to the SSB tetramer. Binding of single-stranded oligonucleotides [one molecule of (dT)(70), one molecule of (dT)(35), or two molecules of (dT)(35)] was found to prevent SSB subunit exchange. Transfer of SSB tetramers between discrete oligonucleotides was also observed and is consistent with predictions from solution-phase studies, suggesting that SSB-DNA complexes can be reliably analyzed by ESI mass spectrometry.
Collapse
Affiliation(s)
- Claire E Mason
- School of Chemistry, University of Wollongong, Wollongong, NSW, Australia
| | | | | | | | | | | |
Collapse
|
30
|
Bell JC, Plank JL, Dombrowski CC, Kowalczykowski SC. Direct imaging of RecA nucleation and growth on single molecules of SSB-coated ssDNA. Nature 2012; 491:274-8. [PMID: 23103864 PMCID: PMC4112059 DOI: 10.1038/nature11598] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 09/20/2012] [Indexed: 01/14/2023]
Abstract
Escherichia coli RecA is the defining member of a ubiquitous class of DNA strand exchange proteins that are essential for homologous recombination, a pathway that maintains genomic integrity by repairing broken DNA1. To function, filaments of RecA must nucleate and grow on single-stranded DNA (ssDNA) in direct competition with ssDNA-binding protein (SSB), which rapidly binds and continuously sequesters ssDNA, kinetically blocking RecA assembly2,3. This dynamic self-assembly on a DNA lattice, in competition with another protein, is unique for the RecA-family relative to other filament-forming proteins such as actin and tubulin. The complexity of this process has hindered our understanding of RecA filament assembly because ensemble measurements cannot reliably distinguish between the nucleation and growth phases, despite extensive and diverse attempts2–5. Previous single-molecule assays have measured nucleation and growth of RecA—and its eukaryotic homolog RAD51—on naked dsDNA and ssDNA6–12; however, the template for RecA self-assembly in vivo is SSB-coated ssDNA3. Using single-molecule microscopy, we directly visualized RecA filament assembly on single molecules of SSB-coated ssDNA, simultaneously measuring nucleation and growth. We establish that a dimer of RecA is required for nucleation, followed by growth of the filament through monomer addition, consistent with the finding that nucleation, but not growth, is modulated by nucleotide and magnesium ion cofactors. Filament growth is bidirectional, albeit faster in the 5′→3′ direction. Both nucleation and growth are repressed at physiological conditions, highlighting the essential role of recombination mediators in potentiating assembly in vivo. We define a two-step kinetic mechanism where RecA nucleates on transiently exposed ssDNA during SSB sliding and/or partial dissociation (i.e., DNA unwrapping) and then grows. We further demonstrate that the recombination mediator protein pair, RecOR, accelerates both RecA nucleation and filament growth, and that introduction of RecF further stimulates RecA nucleation.
Collapse
Affiliation(s)
- Jason C Bell
- Department of Microbiology, University of California, Davis, California 95616, USA
| | | | | | | |
Collapse
|
31
|
Mapping the Transition State for DNA Bending by IHF. J Mol Biol 2012; 418:300-15. [DOI: 10.1016/j.jmb.2012.02.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 02/14/2012] [Accepted: 02/17/2012] [Indexed: 01/01/2023]
|
32
|
Sequential-dissociation kinetics of non-covalent complexes of DNA with multiple proteins in separation-based approach: General theory and its application. Anal Chim Acta 2012; 724:111-8. [DOI: 10.1016/j.aca.2012.01.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 01/27/2012] [Accepted: 01/29/2012] [Indexed: 11/20/2022]
|
33
|
Abstract
The advent of new technologies allowing the study of single biological molecules continues to have a major impact on studies of interacting systems as well as enzyme reactions. These approaches (fluorescence, optical, and magnetic tweezers), in combination with ensemble methods, have been particularly useful for mechanistic studies of protein-nucleic acid interactions and enzymes that function on nucleic acids. We review progress in the use of single-molecule methods to observe and perturb the activities of proteins and enzymes that function on flexible single-stranded DNA. These include single-stranded DNA binding proteins, recombinases (RecA/Rad51), and helicases/translocases that operate as motor proteins and play central roles in genome maintenance. We emphasize methods that have been used to detect and study the movement of these proteins (both ATP-dependent directional and random movement) along the single-stranded DNA and the mechanistic and functional information that can result from detailed analysis of such movement.
Collapse
Affiliation(s)
- Taekjip Ha
- Department of Physics and the Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
34
|
Shlyakhtenko LS, Lushnikov AY, Miyagi A, Lyubchenko YL. Specificity of binding of single-stranded DNA-binding protein to its target. Biochemistry 2012; 51:1500-9. [PMID: 22304461 DOI: 10.1021/bi201863z] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Single-stranded DNA-binding proteins (SSBs) bind single-stranded DNA (ssDNA) and participate in all genetic processes involving ssDNA, such as replication, recombination, and repair. Here we applied atomic force microscopy to directly image SSB-DNA complexes under various conditions. We used the hybrid DNA construct methodology in which the ssDNA segment is conjugated to the DNA duplex. The duplex part of the construct plays the role of a marker, allowing unambiguous identification of specific and nonspecific SSB-DNA complexes. We designed hybrid DNA substrates with 5'- and 3'-ssDNA termini to clarify the role of ssDNA polarity on SSB loading. The hybrid substrates, in which two duplexes are connected with ssDNA, were the models for gapped DNA substrates. We demonstrated that Escherichia coli SSB binds to ssDNA ends and internal ssDNA regions with the same efficiency. However, the specific recognition by ssDNA requires the presence of Mg(2+) cations or a high ionic strength. In the absence of Mg(2+) cations and under low-salt conditions, the protein is capable of binding DNA duplexes. In addition, the number of interprotein interactions increases, resulting in the formation of clusters on double-stranded DNA. This finding suggests that the protein adopts different conformations depending on ionic strength, and specific recognition of ssDNA by SSB requires a high ionic strength or the presence of Mg(2+) cations.
Collapse
Affiliation(s)
- Luda S Shlyakhtenko
- University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, Nebraska 68198-6025, United States
| | | | | | | |
Collapse
|
35
|
Zhang W, Lü X, Zhang W, Shen J. EMSA and single-molecule force spectroscopy study of interactions between Bacillus subtilis single-stranded DNA-binding protein and single-stranded DNA. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:15008-15015. [PMID: 22054219 DOI: 10.1021/la203752y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In this article, interactions between Bacillus subtilis single-stranded DNA binding proteins (BsSSB) and single-stranded DNA (ssDNA) were systematically studied. The effect of different molar ratios between BsSSB and ssDNA on their binding modes was first investigated by electrophoretic mobility shift assays (EMSAs). It is found that a high molar ratio of BsSSB to ssDNA can produce BsSSB-ssDNA complexes formed in the mode of two proteins binding one 65-nt (nucleotide) ssDNA whereas a low molar ratio facilitates the formation of BsSSB-ssDNA complexes in the mode of one protein binding one 65-nt ssDNA. Furthermore, two binding modes are in dynamic equilibrium. The unbinding force of BsSSB-ssDNA complexes was measured quantitatively in solutions with different salt concentrations by using AFM-based single-molecule force spectroscopy (SMFS). Our results show that the unbinding force is about 10 pN higher at high salt concentration (0.5 M NaCl) than at low salt concentration (0.1 M NaCl) and the lifetime of BsSSB-ssDNA complexes at high salt concentration is twice as long as that at low salt concentration. These results indicate that more tightly packed BsSSB-ssDNA complexes can form at high salt (0.5 M NaCl) concentration. In addition, the results of EMSA show that ssDNA, which is bound to BsSSB, can dissociate from BsSSB in the presence of the cDNA strand, indicating the dynamic nature of BsSSB-ssDNA interactions.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | | | | | | |
Collapse
|
36
|
Zhou R, Kozlov AG, Roy R, Zhang J, Korolev S, Lohman TM, Ha T. SSB functions as a sliding platform that migrates on DNA via reptation. Cell 2011; 146:222-32. [PMID: 21784244 DOI: 10.1016/j.cell.2011.06.036] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 04/30/2011] [Accepted: 06/22/2011] [Indexed: 11/16/2022]
Abstract
SSB proteins bind to and control the accessibility of single-stranded DNA (ssDNA), likely facilitated by their ability to diffuse on ssDNA. Using a hybrid single-molecule method combining fluorescence and force, we probed how proteins with large binding site sizes can migrate rapidly on DNA and how protein-protein interactions and tension may modulate the motion. We observed force-induced progressive unraveling of ssDNA from the SSB surface between 1 and 6 pN, followed by SSB dissociation at ∼10 pN, and obtained experimental evidence of a reptation mechanism for protein movement along DNA wherein a protein slides via DNA bulge formation and propagation. SSB diffusion persists even when bound with RecO and at forces under which the fully wrapped state is perturbed, suggesting that even in crowded cellular conditions SSB can act as a sliding platform to recruit and carry its interacting proteins for use in DNA replication, recombination and repair.
Collapse
Affiliation(s)
- Ruobo Zhou
- Department of Physics and Center for the Physics of Living Cells, University of Illinois, Urbana-Champaign, IL 61801, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Wang XL. Gemini Surfactant-Induced DNA Compaction with Process Similar to Chromatin Assembly and the Kinetic Intermediates Captured by Surface Trapping. J DISPER SCI TECHNOL 2011. [DOI: 10.1080/01932691.2010.488508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
38
|
Kozlov AG, Lohman TM. E. coli SSB tetramer binds the first and second molecules of (dT)(35) with heat capacities of opposite sign. Biophys Chem 2011; 159:48-57. [PMID: 21636209 DOI: 10.1016/j.bpc.2011.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 05/02/2011] [Accepted: 05/02/2011] [Indexed: 11/17/2022]
Abstract
We have previously shown that formation of a 1:1 fully wrapped complex of Escherichia coli SSB tetramer with (dT)(70) displays a temperature-dependent sign reversal of the binding heat capacity (ΔC(P)). Here we examine SSB binding to shorter oligodeoxynucleotides ((dX)(35)) to probe whether this effect requires binding of one or two (dX)(35) molecules per SSB tetramer. We find that the ΔC(P) for the first molecule of (dX)(35) is always negative. However, a sign reversal of ΔC(P) from negative to positive occurs with increasing temperature for binding of the second (dX)(35). This striking behavior of ΔC(P) for the second (dX)(35) appears linked to conformational changes within the ssDNA-SSB complex that are required to form a fully wrapped (SSB)(65) binding mode. These results also underscore that binding heat capacities of macromolecular interactions have multiple origins that cannot be understood simply on the basis of examining static structures.
Collapse
Affiliation(s)
- Alexander G Kozlov
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, United States
| | | |
Collapse
|
39
|
Liu J, Choi M, Stanenas AG, Byrd AK, Raney KD, Cohan C, Bianco PR. Novel, fluorescent, SSB protein chimeras with broad utility. Protein Sci 2011; 20:1005-20. [PMID: 21462278 DOI: 10.1002/pro.633] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 03/15/2011] [Accepted: 03/18/2011] [Indexed: 11/09/2022]
Abstract
The Escherichia coli single-stranded DNA binding protein (SSB) is a central player in DNA metabolism where it organizes genome maintenance complexes and stabilizes single-stranded DNA (ssDNA) intermediates generated during DNA processing. Due to the importance of SSB and to facilitate real-time studies, we developed a dual plasmid expression system to produce novel, chimeric SSB proteins. These chimeras, which contain mixtures of histidine-tagged and fluorescent protein(FP)-fusion subunits, are easily purified in milligram quantities and used without further modification, a significant enhancement over previous methods to produce fluorescent SSB. Chimeras retain the functionality of wild type in all assays, demonstrating that SSB function is unaffected by the FPs. We demonstrate the power and utility of these chimeras in single molecule studies providing a great level of insight into the biochemical mechanism of RecBCD. We also utilized the chimeras to show for the first time that RecG and SSB interact in vivo. Consequently, we anticipate that the chimeras described herein will facilitate in vivo, in vitro and single DNA molecule studies using proteins that do not require further modification prior to use.
Collapse
Affiliation(s)
- Juan Liu
- Center for Single Molecule Biophysics, Department of Microbiology and Immunology, University at Buffalo, Buffalo, New York 14214, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Toseland CP, Webb MR. Fluorescence tools to measure helicase activity in real time. Methods 2010; 51:259-68. [DOI: 10.1016/j.ymeth.2010.02.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 02/03/2010] [Accepted: 02/12/2010] [Indexed: 11/16/2022] Open
|
41
|
Abstract
ATP-driven translocation of helicases along DNA can be assayed in several ways. Reagentless biosensors, based on fluorophore-protein adducts, provide convenient ways for real-time assays of both the separation of dsDNA and the hydrolysis of ATP. Single-stranded DNA can be assayed using a modified single-stranded DNA-binding protein (SSB), and phosphate production during ATP hydrolysis can be measured by a modified phosphate-binding protein. Advantages and limitations of these approaches are compared with those of other types of measurements.
Collapse
Affiliation(s)
- Martin R Webb
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, UK
| |
Collapse
|
42
|
Kozlov AG, Jezewska MJ, Bujalowski W, Lohman TM. Binding specificity of Escherichia coli single-stranded DNA binding protein for the chi subunit of DNA pol III holoenzyme and PriA helicase. Biochemistry 2010; 49:3555-66. [PMID: 20329707 DOI: 10.1021/bi100069s] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Escherichia coli single-stranded DNA binding protein (SSB) plays a central role in DNA metabolism through its high affinity interactions with ssDNA, as well as its interactions with numerous other proteins via its unstructured C-termini. Although SSB interacts with at least 14 other proteins, it is not understood how SSB might recruit one protein over another for a particular metabolic role. To probe the specificity of these interactions, we have used isothermal titration calorimetry to examine the thermodynamics of binding of SSB to two E. coli proteins important for DNA replication, the chi subunit of DNA polymerase III holoenzyme and the PriA helicase. We find that an SSB tetramer can bind up to four molecules of either protein primarily via interactions with the last approximately 9 amino acids in the conserved SSB C-terminal tails (SSB-Ct). We observe intrinsic specificity for the binding of an isolated SSB-Ct peptide to PriA over chi due primarily to a more favorable enthalpic component. PriA and chi also bind with weaker affinity to SSB (in the absence of ssDNA) than to isolated SSB-Ct peptides, indicating an inhibitory effect of the SSB protein core. Although the binding affinity of SSB for both chi and PriA is enhanced if SSB is prebound to ssDNA, this effect is larger with PriA indicating a further enhancement of SSB specificity for PriA. These results also suggest that DNA binding proteins such as PriA, which also interact with SSB, could use this interaction to gain access to ssDNA by first interacting with the SSB C-termini.
Collapse
Affiliation(s)
- Alexander G Kozlov
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
43
|
Kozlov AG, Cox MM, Lohman TM. Regulation of single-stranded DNA binding by the C termini of Escherichia coli single-stranded DNA-binding (SSB) protein. J Biol Chem 2010; 285:17246-52. [PMID: 20360609 DOI: 10.1074/jbc.m110.118273] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The homotetrameric Escherichia coli single-stranded DNA-binding (SSB) protein plays a central role in DNA replication, repair, and recombination. In addition to its essential activity of binding to transiently formed single-stranded (ss) DNA, SSB also binds an array of partner proteins and recruits them to their sites of action using its four intrinsically disordered C-terminal tails. Here we show that the binding of ssDNA to SSB is inhibited by the SSB C-terminal tails, specifically by the last 8 highly acidic amino acids that comprise the binding site for its multiple partner proteins. We examined the energetics of ssDNA binding to short oligodeoxynucleotides and find that at moderate salt concentration, removal of the acidic C-terminal ends increases the intrinsic affinity for ssDNA and enhances the negative cooperativity between ssDNA binding sites, indicating that the C termini exert an inhibitory effect on ssDNA binding. This inhibitory effect decreases as the salt concentration increases. Binding of ssDNA to approximately half of the SSB subunits relieves the inhibitory effect for all of the subunits. The inhibition by the C termini is due primarily to a less favorable entropy change upon ssDNA binding. These observations explain why ssDNA binding to SSB enhances the affinity of SSB for its partner proteins and suggest that the C termini of SSB may interact, at least transiently, with its ssDNA binding sites. This inhibition and its relief by ssDNA binding suggest a mechanism that enhances the ability of SSB to selectively recruit its partner proteins to sites on DNA.
Collapse
Affiliation(s)
- Alexander G Kozlov
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | | | | |
Collapse
|
44
|
Kunzelmann S, Morris C, Chavda AP, Eccleston JF, Webb MR. Mechanism of interaction between single-stranded DNA binding protein and DNA. Biochemistry 2010; 49:843-52. [PMID: 20028139 PMCID: PMC2827191 DOI: 10.1021/bi901743k] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
A single-stranded DNA binding protein (SSB), labeled with a fluorophore, interacts with single-stranded DNA (ssDNA), giving a 6-fold increase in fluorescence. The labeled protein is the adduct of the G26C mutant of the homotetrameric SSB from Escherichia coli and a diethylaminocoumarin {N-[2-(iodoacetamido)ethyl]-7-diethylaminocoumarin-3-carboxamide}. This adduct can be used to assay production of ssDNA during separation of double-stranded DNA by helicases. To use this probe effectively, as well as to investigate the interaction between ssDNA and SSB, the fluorescent SSB has been used to develop the kinetic mechanism by which the protein and ssDNA associate and dissociate. Under conditions where ∼70 base lengths of ssDNA wrap around the tetramer, initial association is relatively simple and rapid, possibly diffusion-controlled. The kinetics are similar for a 70-base length of ssDNA, which binds one tetramer, and poly(dT), which could bind several. Under some conditions (high SSB and/or low ionic strength), a second tetramer binds to each 70-base length, but at a rate 2 orders of magnitude slower than the rate of binding of the first tetramer. Dissociation kinetics are complex and greatly accelerated by the presence of free wild-type SSB. The main route of dissociation of the fluorescent SSB·ssDNA complex is via association first with an additional SSB and then dissociation. Comparison of binding data with different lengths of ssDNA gave no evidence of cooperativity between tetramers. Analytical ultracentrifugation was used to determine the dissociation constant for labeled SSB2·dT70 to be 1.1 μM at a high ionic strength (200 mM NaCl). Shorter lengths of ssDNA were tested for binding: only when the length is reduced to 20 bases is the affinity significantly reduced.
Collapse
Affiliation(s)
- Simone Kunzelmann
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | | | | | | | | |
Collapse
|
45
|
|
46
|
SSB protein diffusion on single-stranded DNA stimulates RecA filament formation. Nature 2009; 461:1092-7. [PMID: 19820696 PMCID: PMC2782680 DOI: 10.1038/nature08442] [Citation(s) in RCA: 213] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Accepted: 08/20/2009] [Indexed: 11/08/2022]
Abstract
Single stranded (ss)DNA generated in the cell during DNA metabolism is stabilized and protected by binding of single stranded DNA binding (SSB) proteins. E. coli SSB, a representative homotetrameric SSB, binds to ssDNA by wrapping the DNA using its four subunits. However, such a tightly wrapped, high affinity protein-DNA complex still needs to be removed or repositioned quickly for unhindered action of other proteins. Here, we show, using single molecule two and three-color FRET, that tetrameric SSB can spontaneously migrate along ssDNA. Diffusional migration of SSB helps in the local displacement of SSB by an elongating RecA filament. SSB diffusion also melts short DNA hairpins transiently and stimulates RecA filament elongation on DNA with secondary structure. This first observation of diffusional movement of a protein on ssDNA introduces a new paradigm for how an SSB protein can be redistributed, while remaining tightly bound to ssDNA during recombination and repair processes.
Collapse
|
47
|
Shokri L, Rouzina I, Williams MC. Interaction of bacteriophage T4 and T7 single-stranded DNA-binding proteins with DNA. Phys Biol 2009; 6:025002. [PMID: 19571366 DOI: 10.1088/1478-3975/6/2/025002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bacteriophages T4 and T7 are well-studied model replication systems, which have allowed researchers to determine the roles of many proteins central to DNA replication, recombination and repair. Here we summarize and discuss the results from two recently developed single-molecule methods to determine the salt-dependent DNA-binding kinetics and thermodynamics of the single-stranded DNA (ssDNA)-binding proteins (SSBs) from these systems. We use these methods to characterize both the equilibrium double-stranded DNA (dsDNA) and ssDNA binding of the SSBs T4 gene 32 protein (gp32) and T7 gene 2.5 protein (gp2.5). Despite the overall two-orders-of-magnitude weaker binding of gp2.5 to both forms of DNA, we find that both proteins exhibit four-orders-of-magnitude preferential binding to ssDNA relative to dsDNA. This strong preferential ssDNA binding as well as the weak dsDNA binding is essential for the ability of both proteins to search dsDNA in one dimension to find available ssDNA-binding sites at the replication fork.
Collapse
Affiliation(s)
- Leila Shokri
- Department of Physics, Northeastern University, 111 Dana Research Center, Boston, MA 02115, USA
| | | | | |
Collapse
|
48
|
Ababneh AM. The role of polarization interactions in the wrapping/unwrapping of nucleosomal DNA around the histone octamer: Implications to gene regulation. J Theor Biol 2009; 258:229-39. [DOI: 10.1016/j.jtbi.2009.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 02/10/2009] [Accepted: 02/12/2009] [Indexed: 10/21/2022]
|
49
|
Blouin S, Craggs TD, Lafontaine DA, Penedo JC. Functional studies of DNA-protein interactions using FRET techniques. Methods Mol Biol 2009; 543:475-502. [PMID: 19378182 DOI: 10.1007/978-1-60327-015-1_28] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein-DNA interactions underpin life and play key roles in all cellular processes and functions including DNA transcription, packaging, replication, and repair. Identifying and examining the nature of these interactions is therefore a crucial prerequisite to understand the molecular basis of how these fundamental processes take place. The application of fluorescence techniques and in particular fluorescence resonance energy transfer (FRET) to provide structural and kinetic information has experienced a stunning growth during the past decade. This has been mostly promoted by new advances in the preparation of dye-labeled nucleic acids and proteins and in optical sensitivity, where its implementation at the level of individual molecules has opened a new biophysical frontier. Nowadays, the application of FRET-based techniques to the analysis of protein-DNA interactions spans from the classical steady-state and time-resolved methods averaging over large ensembles to the analysis of distances, conformational changes, and enzymatic reactions in individual Protein-DNA complexes. This chapter introduces the practical aspects of applying these methods for the study of Protein-DNA interactions.
Collapse
Affiliation(s)
- Simon Blouin
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, 2500 boul. Université, Sherbrooke, QC, Canada, J1K 2R1
| | | | | | | |
Collapse
|
50
|
Kubelka J. Time-resolved methods in biophysics. 9. Laser temperature-jump methods for investigating biomolecular dynamics. Photochem Photobiol Sci 2009; 8:499-512. [DOI: 10.1039/b819929a] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|