1
|
De Rose SA, Kuprat T, Isupov MN, Reinhardt A, Schönheit P, Littlechild JA. Biochemical and Structural Characterisation of a Novel D-Lyxose Isomerase From the Hyperthermophilic Archaeon Thermofilum sp. Front Bioeng Biotechnol 2021; 9:711487. [PMID: 34422783 PMCID: PMC8378251 DOI: 10.3389/fbioe.2021.711487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/13/2021] [Indexed: 11/30/2022] Open
Abstract
A novel D-lyxose isomerase has been identified within the genome of a hyperthermophilic archaeon belonging to the Thermofilum species. The enzyme has been cloned and over-expressed in Escherichia coli and biochemically characterised. This enzyme differs from other enzymes of this class in that it is highly specific for the substrate D-lyxose, showing less than 2% activity towards mannose and other substrates reported for lyxose isomerases. This is the most thermoactive and thermostable lyxose isomerase reported to date, showing activity above 95°C and retaining 60% of its activity after 60 min incubation at 80°C. This lyxose isomerase is stable in the presence of 50% (v/v) of solvents ethanol, methanol, acetonitrile and DMSO. The crystal structure of the enzyme has been resolved to 1.4–1.7 A. resolution in the ligand-free form and in complexes with both of the slowly reacting sugar substrates mannose and fructose. This thermophilic lyxose isomerase is stabilised by a disulfide bond between the two monomers of the dimeric enzyme and increased hydrophobicity at the dimer interface. These overall properties of high substrate specificity, thermostability and solvent tolerance make this lyxose isomerase enzyme a good candidate for potential industrial applications.
Collapse
Affiliation(s)
- Simone Antonio De Rose
- The Henry Wellcome Building for Biocatalysis, Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Tom Kuprat
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität Kiel, Kiel, Germany
| | - Michail N Isupov
- The Henry Wellcome Building for Biocatalysis, Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Andreas Reinhardt
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität Kiel, Kiel, Germany
| | - Peter Schönheit
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität Kiel, Kiel, Germany
| | - Jennifer A Littlechild
- The Henry Wellcome Building for Biocatalysis, Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
2
|
Swope N, Lake KE, Barrow GH, Yu D, Fox DA, Columbus L. TM1385 from Thermotoga maritima functions as a phosphoglucose isomerase via cis-enediol-based mechanism with active site redundancy. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140602. [PMID: 33422670 DOI: 10.1016/j.bbapap.2021.140602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 12/01/2020] [Accepted: 12/30/2020] [Indexed: 11/28/2022]
Abstract
Phosphoglucose isomerases (PGIs) belong to a class of enzymes that catalyze the reversible isomerization of glucose-6-phosphate to fructose-6-phosphate. PGIs are crucial in glycolysis and gluconeogenesis pathways and proposed as serving additional extracellular functions in eukaryotic organisms. The phosphoglucose isomerase function of TM1385, a previously uncharacterized protein from Thermotoga maritima, was hypothesized based on structural similarity to established PGI crystal structures and computational docking. Kinetic and colorimetric assays combined with 1H nuclear magnetic resonance (NMR) spectroscopy experimentally confirm that TM1385 is a phosphoglucose isomerase (TmPGI). Evidence of solvent exchange in 1H NMR spectra supports that TmPGI isomerization proceeds through a cis-enediol-based mechanism. To determine which amino acid residues are critical for TmPGI catalysis, putative active site residues were mutated with alanine and screened for activity. Results support that E281 is most important for TmPGI formation of the cis-enediol intermediate, and the presence of either H310 or K422 may be required for catalysis, similar to previous observations from homologous PGIs. However, only TmPGI E281A/Q415A and H310A/K422A double mutations abolished activity, suggesting that there are redundant catalytic residues, and Q415 may participate in sugar phosphate isomerization upon E281 mutation. Combined, we propose that TmPGI E281 participates directly in the cis-enediol intermediate step, and either H310 or K422 may facilitate sugar ring opening and closure.
Collapse
Affiliation(s)
- Nicole Swope
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Katherine E Lake
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Golda H Barrow
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Daniel Yu
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Daniel A Fox
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Linda Columbus
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
3
|
Vorobjeva NN, Kurilova SA, Petukhova AF, Nazarova TI, Kolomijtseva GY, Baykov AA, Rodina EV. A novel, cupin-type phosphoglucose isomerase in Escherichia coli. Biochim Biophys Acta Gen Subj 2020; 1864:129601. [PMID: 32179131 DOI: 10.1016/j.bbagen.2020.129601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/25/2020] [Accepted: 03/11/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Escherichia coli cells contain a homolog of presumed 5-keto-4-deoxyuronate isomerase (KduI) from pectin-degrading soil bacteria, but the catalytic activity of the E. coli protein (o-KduI) was never demonstrated. METHODS The known three-dimensional structure of E. coli o-KduI was compared with the available structures of sugar-converting enzymes. Based on the results of this analysis, sugar isomerization activity of recombinant o-KduI was tested against a panel of D-sugars and their derivatives. RESULTS The three-dimensional structure of o-KduI exhibits a close similarity with Pyrococcus furiosus cupin-type phosphoglucose isomerase. In accordance with this similarity, o-KduI was found to catalyze interconversion of glucose-6-phosphate and fructose-6-phosphate and, less efficiently, conversion of glucuronate to fructuronate. o-KduI was hexameric in crystals but represented a mixture of inactive hexamers and active dimers in solution and contained a tightly bound Zn2+ ion. Dilution, substrate binding and Zn2+ removal shifted the hexamer ⇆ dimer equilibrium to the dimers. CONCLUSIONS Our findings identify o-KduI as a novel phosphosugar isomerase in E. coli, whose activity may be regulated by changes in oligomeric structure. GENERAL SIGNIFICANCE More than 5700 protein sequences are annotated as KduI, but their enzymatic activity has not been directly demonstrated. E. coli o-KduI is the first characterized member of this group, and its enzymatic activity was found to be different from the predicted activity.
Collapse
Affiliation(s)
- Natalia N Vorobjeva
- Belozersky Institute of Physico-Chemical Biology and Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Svetlana A Kurilova
- Belozersky Institute of Physico-Chemical Biology and Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Anastasia F Petukhova
- Belozersky Institute of Physico-Chemical Biology and Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Tatiana I Nazarova
- Belozersky Institute of Physico-Chemical Biology and Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Galina Ya Kolomijtseva
- Belozersky Institute of Physico-Chemical Biology and Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Alexander A Baykov
- Belozersky Institute of Physico-Chemical Biology and Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Elena V Rodina
- Belozersky Institute of Physico-Chemical Biology and Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
4
|
Subramanian K, Mitusińska K, Raedts J, Almourfi F, Joosten HJ, Hendriks S, Sedelnikova SE, Kengen SWM, Hagen WR, Góra A, Martins Dos Santos VAP, Baker PJ, van der Oost J, Schaap PJ. Distant Non-Obvious Mutations Influence the Activity of a Hyperthermophilic Pyrococcus furiosus Phosphoglucose Isomerase. Biomolecules 2019; 9:biom9060212. [PMID: 31159273 PMCID: PMC6627849 DOI: 10.3390/biom9060212] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/20/2019] [Accepted: 05/28/2019] [Indexed: 01/06/2023] Open
Abstract
The cupin-type phosphoglucose isomerase (PfPGI) from the hyperthermophilic archaeon Pyrococcus furiosus catalyzes the reversible isomerization of glucose-6-phosphate to fructose-6-phosphate. We investigated PfPGI using protein-engineering bioinformatics tools to select functionally-important residues based on correlated mutation analyses. A pair of amino acids in the periphery of PfPGI was found to be the dominant co-evolving mutation. The position of these selected residues was found to be non-obvious to conventional protein engineering methods. We designed a small smart library of variants by substituting the co-evolved pair and screened their biochemical activity, which revealed their functional relevance. Four mutants were further selected from the library for purification, measurement of their specific activity, crystal structure determination, and metal cofactor coordination analysis. Though the mutant structures and metal cofactor coordination were strikingly similar, variations in their activity correlated with their fine-tuned dynamics and solvent access regulation. Alternative, small smart libraries for enzyme optimization are suggested by our approach, which is able to identify non-obvious yet beneficial mutations.
Collapse
Affiliation(s)
- Kalyanasundaram Subramanian
- Laboratory of Systems and Synthetic Biology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Karolina Mitusińska
- Biotechnology Center, Silesian University of Technology, ul. Krzywoustego 8, 44-100 Gliwice, Poland.
- Faculty of Chemistry, Silesian University of Technology, ul. Strzody 9, 44-100 Gliwice, Poland.
| | - John Raedts
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Feras Almourfi
- Saudi Human Genome Project, National Center of Genome Technology, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia.
| | - Henk-Jan Joosten
- Bio-Prodict, Nieuwe Marktstraat 54E, 6511 AA Nijmegen, The Netherlands.
| | - Sjon Hendriks
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Svetlana E Sedelnikova
- The Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK.
| | - Servé W M Kengen
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Wilfred R Hagen
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Artur Góra
- Biotechnology Center, Silesian University of Technology, ul. Krzywoustego 8, 44-100 Gliwice, Poland.
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Patrick J Baker
- The Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK.
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Peter J Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| |
Collapse
|
5
|
Gogoi P, Mordina P, Kanaujia SP. Structural insights into the catalytic mechanism of 5-methylthioribose 1-phosphate isomerase. J Struct Biol 2019; 205:67-77. [DOI: 10.1016/j.jsb.2018.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/14/2018] [Accepted: 11/16/2018] [Indexed: 12/16/2022]
|
6
|
Li H, Yang S, Saravanamurugan S, Riisager A. Glucose Isomerization by Enzymes and Chemo-catalysts: Status and Current Advances. ACS Catal 2017. [DOI: 10.1021/acscatal.6b03625] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hu Li
- State-Local Joint Engineering Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, PR China
| | - Song Yang
- State-Local Joint Engineering Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, PR China
| | | | - Anders Riisager
- Centre
for Catalysis and Sustainable Chemistry, Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
7
|
Vertregt F, Torrelo G, Trunk S, Wiltsche H, Hagen WR, Hanefeld U, Steiner K. EPR Study of Substrate Binding to Mn(II) in Hydroxynitrile Lyase from Granulicella tundricola. ACS Catal 2016. [DOI: 10.1021/acscatal.6b01204] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Femke Vertregt
- Biokatalyse,
Afdeling Biotechnologie, Technische Universiteit Delft, van der Maasweg
9, 2629HZ Delft, The Netherlands
| | - Guzman Torrelo
- Biokatalyse,
Afdeling Biotechnologie, Technische Universiteit Delft, van der Maasweg
9, 2629HZ Delft, The Netherlands
| | - Sarah Trunk
- Austrian Centre
of Industrial Biotechnology GmbH, Petersgasse
14/4, 8010 Graz, Austria
| | - Helmar Wiltsche
- Institute
of Analytical Chemistry and Food Chemistry, TU Graz, Stremayrgasse
9/III, 8010 Graz, Austria
| | - Wilfred R. Hagen
- Biokatalyse,
Afdeling Biotechnologie, Technische Universiteit Delft, van der Maasweg
9, 2629HZ Delft, The Netherlands
| | - Ulf Hanefeld
- Biokatalyse,
Afdeling Biotechnologie, Technische Universiteit Delft, van der Maasweg
9, 2629HZ Delft, The Netherlands
| | - Kerstin Steiner
- Austrian Centre
of Industrial Biotechnology GmbH, Petersgasse
14/4, 8010 Graz, Austria
| |
Collapse
|
8
|
NMR studies on mechanism of isomerisation of fructose 6-phosphate to glucose 6-phosphate catalysed by phosphoglucose isomerase from Thermococcus kodakarensis. Bioorg Chem 2016; 66:41-5. [DOI: 10.1016/j.bioorg.2016.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 03/02/2016] [Accepted: 03/13/2016] [Indexed: 11/22/2022]
|
9
|
Carbohydrate metabolism in Archaea: current insights into unusual enzymes and pathways and their regulation. Microbiol Mol Biol Rev 2014; 78:89-175. [PMID: 24600042 DOI: 10.1128/mmbr.00041-13] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The metabolism of Archaea, the third domain of life, resembles in its complexity those of Bacteria and lower Eukarya. However, this metabolic complexity in Archaea is accompanied by the absence of many "classical" pathways, particularly in central carbohydrate metabolism. Instead, Archaea are characterized by the presence of unique, modified variants of classical pathways such as the Embden-Meyerhof-Parnas (EMP) pathway and the Entner-Doudoroff (ED) pathway. The pentose phosphate pathway is only partly present (if at all), and pentose degradation also significantly differs from that known for bacterial model organisms. These modifications are accompanied by the invention of "new," unusual enzymes which cause fundamental consequences for the underlying regulatory principles, and classical allosteric regulation sites well established in Bacteria and Eukarya are lost. The aim of this review is to present the current understanding of central carbohydrate metabolic pathways and their regulation in Archaea. In order to give an overview of their complexity, pathway modifications are discussed with respect to unusual archaeal biocatalysts, their structural and mechanistic characteristics, and their regulatory properties in comparison to their classic counterparts from Bacteria and Eukarya. Furthermore, an overview focusing on hexose metabolic, i.e., glycolytic as well as gluconeogenic, pathways identified in archaeal model organisms is given. Their energy gain is discussed, and new insights into different levels of regulation that have been observed so far, including the transcript and protein levels (e.g., gene regulation, known transcription regulators, and posttranslational modification via reversible protein phosphorylation), are presented.
Collapse
|
10
|
Yadav R, Prasad R. Identification and functional characterization of sorbitol-6-phosphate dehydrogenase protein from rice and structural elucidation by in silico approach. PLANTA 2014; 240:223-238. [PMID: 24817585 DOI: 10.1007/s00425-014-2076-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 04/08/2014] [Indexed: 06/03/2023]
Abstract
The sorbitol-6-phosphate dehydrogenase (S6PDH) is a key enzyme for sorbitol synthesis and plays an important role in the alleviation of salinity stress in plants. Despite the huge significance, the structure and the mode of action of this enzyme are still not known. In the present study, sequence analysis, cloning, expression, activity assays and enzyme kinetics using various substrates (glucose-6-phosphate, sorbitol-6-phosphate and mannose-6-phosphate) were performed to establish the functional role of S6PDH protein from rice (Oryza sativa). For the structural analysis of the protein, a comparative homology model was prepared on the basis of percentage sequence identity and substrate similarity using the crystal structure of human aldose reductase in complex with glucose-6-phosphate and NADP(+) (PDB ID: 2ACQ) as a template. Molecular docking was performed for studying the structural details of substrate binding and possible enzyme mechanism. The cloned sequence resulted into an active recombinant protein when expressed into a bacterial expression system. The purified recombinant protein was found to be active with glucose-6-phosphate and sorbitol-6-phosphate; however, activity against mannose-6-phosphate was not found. The K m values for glucose-6-phosphate and sorbitol-6-phosphate were found to be 15.9 ± 0.2 and 7.21 ± 0.5 mM, respectively. A molecular-level analysis of the active site of OsS6PDH provides valuable information about the enzyme mechanism and requisite enantioselectivity for its physiological substrates. Thus, the fundamental studies of structure and function of OsS6PDH could serve as the basis for the future studies of bio-catalytic applications of this enzyme.
Collapse
Affiliation(s)
- Rajbala Yadav
- Molecular Biology and Proteomics Lab, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India,
| | | |
Collapse
|
11
|
Steinborn M, Suhanji M, Klüfers P. Mixed sugar-core–phosphate chelation of d-fructose 1,6-bisphosphate with the ReVO(tmen) metal fragment. Dalton Trans 2013; 42:5749-54. [DOI: 10.1039/c3dt32901a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
12
|
Roux C, Bhatt F, Foret J, de Courcy B, Gresh N, Piquemal JP, Jeffery CJ, Salmon L. The reaction mechanism of type I phosphomannose isomerases: new information from inhibition and polarizable molecular mechanics studies. Proteins 2011; 79:203-20. [PMID: 21058398 DOI: 10.1002/prot.22873] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Type I phosphomannose isomerases (PMIs) are zinc-dependent metalloenzymes involved in the reversible isomerization of D-mannose 6-phosphate (M6P) and D-fructose 6-phosphate (F6P). 5-Phospho-D-arabinonohydroxamic acid (5PAH), an inhibitor endowed with nanomolar affinity for yeast (Type I) and Pseudomonas aeruginosa (Type II) PMIs (Roux et al., Biochemistry 2004; 43:2926-2934), strongly inhibits human (Type I) PMI (for which we report an improved expression and purification procedure), as well as Escherichia coli (Type I) PMI. Its K(i) value of 41 nM for human PMI is the lowest value ever reported for an inhibitor of PMI. 5-Phospho-D-arabinonhydrazide, a neutral analogue of the reaction intermediate 1,2-cis-enediol, is about 15 times less efficient at inhibiting both enzymes, in accord with the anionic nature of the postulated high-energy reaction intermediate. Using the polarizable molecular mechanics, sum of interactions between fragments ab initio computed (SIBFA) procedure, computed structures of the complexes between Candida albicans (Type I) PMI and the cyclic substrate β-D-mannopyranose 6-phosphate (β-M6P) and between the enzyme and the high-energy intermediate analogue inhibitor 5PAH are reported. Their analysis allows us to identify clearly the nature of each individual active site amino acid and to formulate a hypothesis for the overall mechanism of the reaction catalyzed by Type I PMIs, that is, the ring-opening and isomerization steps, respectively. Following enzyme-catalyzed ring-opening of β-M6P by zinc-coordinated water and Gln111 ligands, Lys136 is identified as the probable catalytic base involved in proton transfer between the two carbon atoms C1 and C2 of the substrate D-mannose 6-phosphate.
Collapse
Affiliation(s)
- Céline Roux
- Laboratoire de Chimie Bioorganique et Bioinorganique, ICMMO, Univ Paris-Sud, UMR 8182, Orsay F-91405, France
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Marincean S, Jackson JE. Can hydridic-to-protonic hydrogen bonds catalyze hydride transfers in biological systems? J Phys Chem A 2010; 114:13376-80. [PMID: 21141894 DOI: 10.1021/jp1050854] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Catalysis of hydride transfer by hydridic-to-protonic hydrogen (HHH) bonding in α-hydroxy carbonyl isomerization reactions was examined computationally in the lithium salts of 7-substituted endo-3-hydroxybicyclo[2.2.1]hept-5-en-2-ones. The barrier for intramolecular hydride transfer in the parent system was calculated to be 17.2 kcal/mol. Traditional proton donors, such as OH and NH(3)(+), stabilized the metal cation-bridged transition state by 1.4 and 3.3 kcal/mol, respectively. Moreover, among the conformers of the OH systems, the one in which the proton donor is able to interact with the migrating hydride (H(m)) has an activation barrier lower by 1.3 and 1.7 kcal/mol than the other possible OH conformers. By contrast, the presence of an electronegative group such as F, which disfavors the migration electronically by opposing development of hydridic charge, destabilizes the hydride migration by 1.5 kcal/mol relative to the epimeric exo system. In both ground and transition states the H(m)···H distance decreased with increasing acidity of the proton donor, reaching a minimum of 1.58 Å at the transition state for NH(3)(+). Both Mulliken and NPA charges show enhancement of negative character of the migrating hydride in the cases in which HHH bonding is possible.
Collapse
Affiliation(s)
- Simona Marincean
- Natural Sciences Department, University of Michigan-Dearborn, Dearborn, Michigan 48128-1491, United States.
| | | |
Collapse
|
14
|
van Staalduinen LM, Park CS, Yeom SJ, Adams-Cioaba MA, Oh DK, Jia Z. Structure-based annotation of a novel sugar isomerase from the pathogenic E. coli O157:H7. J Mol Biol 2010; 401:866-81. [PMID: 20615418 DOI: 10.1016/j.jmb.2010.06.063] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 06/24/2010] [Accepted: 06/28/2010] [Indexed: 11/16/2022]
Abstract
Prokaryotes can use a variety of sugars as carbon sources in order to provide a selective survival advantage. The gene z5688 found in the pathogenic Escherichia coli O157:H7 encodes a "hypothetical" protein of unknown function. Sequence analysis identified the gene product as a putative member of the cupin superfamily of proteins, but no other functional information was known. We have determined the crystal structure of the Z5688 protein at 1.6 A resolution and identified the protein as a novel E. coli sugar isomerase (EcSI) through overall fold analysis and secondary-structure matching. Extensive substrate screening revealed that EcSI is capable of acting on d-lyxose and d-mannose. The complex structure of EcSI with fructose allowed the identification of key active-site residues, and mutagenesis confirmed their importance. The structure of EcSI also suggested a novel mechanism for substrate binding and product release in a cupin sugar isomerase. Supplementation of a nonpathogenic E. coli strain with EcSI enabled cell growth on the rare pentose d-lyxose.
Collapse
|
15
|
Anand K, Mathur D, Anant A, Garg LC. Structural studies of phosphoglucose isomerase from Mycobacterium tuberculosis H37Rv. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:490-7. [PMID: 20445242 DOI: 10.1107/s1744309110011656] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 03/27/2010] [Indexed: 01/17/2023]
Abstract
Phosphoglucose isomerase (PGI) plays a key role in both glycolysis and gluconeogenesis inside the cell, whereas outside the cell it exhibits cytokine properties. PGI is also known to act as an autocrine motility factor, a neuroleukin agent and a differentiation and maturation mediator. Here, the first crystal structure of PGI from Mycobacterium tuberculosis H37Rv (Mtb) is reported. The structure was refined at 2.25 A resolution and revealed the presence of one molecule in the asymmetric unit with two globular domains. As known previously, the active site of Mtb PGI contains conserved residues including Glu356, Glu216 and His387 (where His387 is from the neighbouring molecule). The crystal structure of Mtb PGI was observed to be rather more similar to human PGI than other nonbacterial PGIs, with only a few differences being detected in the loops, arm and hook regions of the human and Mtb PGIs, suggesting that the M. tuberculosis enzyme uses the same enzyme mechanism.
Collapse
Affiliation(s)
- Kanchan Anand
- European Molecular Biology Laboratory Heidelberg, Structural and Computational Biology Unit, Meyerhof Strasse 1, D-69117 Heidelberg, Germany. ,
| | | | | | | |
Collapse
|
16
|
Kuipers RKP, Joosten HJ, Verwiel E, Paans S, Akerboom J, van der Oost J, Leferink NGH, van Berkel WJH, Vriend G, Schaap PJ. Correlated mutation analyses on super-family alignments reveal functionally important residues. Proteins 2009; 76:608-16. [DOI: 10.1002/prot.22374] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Moomaw EW, Angerhofer A, Moussatche P, Ozarowski A, García-Rubio I, Richards NGJ. Metal dependence of oxalate decarboxylase activity. Biochemistry 2009; 48:6116-25. [PMID: 19473032 PMCID: PMC2801813 DOI: 10.1021/bi801856k] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bacillus subtilis oxalate decarboxylase (OxDC) catalyzes the conversion of oxalate into CO(2) and formate. The enzyme is composed of two cupin domains, each of which contains a Mn(II) ion. Although there is general agreement that Mn(II) in the N-terminal domain mediates OxDC-catalyzed decarboxylation, legitimate questions have been raised concerning the function (if any) of the Mn(II) bound in the C-terminal cupin domain. We have investigated this problem using a series of OxDC mutants in which Mn(II) binding is perturbed by mutagenesis of Glu-101 and Glu-280, which coordinate the metal in the N-terminal and C-terminal domains, respectively. We now demonstrate that decarboxylase activity and total manganese content are sensitive to modifications in either metal-binding glutamate residue. These findings, in combination with EPR measurements, raise the possibility that the C-terminal Mn(II) center can catalyze the decarboxylation reaction. Further support for this conclusion has been provided from a combination of in vivo and in vitro strategies for preparing wild-type OxDC in which Mn(II) is incorporated to a variety of extents. Kinetic characterization of these variants shows that OxDC activity is linearly correlated with manganese content, as might be expected if both sites can catalyze the breakdown of oxalate into formate and CO(2). These studies also represent the first unequivocal demonstration that OxDC activity is uniquely mediated by manganese.
Collapse
Affiliation(s)
- Ellen W. Moomaw
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200
| | | | - Patricia Moussatche
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310-3706
| | - Inés García-Rubio
- Laboratorium fur Physikalische Chemie, ETH Zurich, CH-8043 Zurich-Hönggerberg, Switzerland
| | | |
Collapse
|
18
|
Wu R, Xie H, Mo Y, Cao Z. Broad Substrate Specificity and Catalytic Mechanism of Pseudomonas stutzeri l-Rhamnose Isomerase: Insights from QM/MM Molecular Dynamics Simulations. J Phys Chem A 2009; 113:11595-603. [DOI: 10.1021/jp901093g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ruibo Wu
- Department of Chemistry and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China, and Department of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008
| | - Hujun Xie
- Department of Chemistry and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China, and Department of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008
| | - Yirong Mo
- Department of Chemistry and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China, and Department of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008
| | - Zexing Cao
- Department of Chemistry and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China, and Department of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008
| |
Collapse
|
19
|
Yoon RY, Yeom SJ, Park CS, Oh DK. Substrate specificity of a glucose-6-phosphate isomerase from Pyrococcus furiosus for monosaccharides. Appl Microbiol Biotechnol 2009; 83:295-303. [PMID: 19159927 DOI: 10.1007/s00253-009-1859-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 01/03/2009] [Accepted: 01/05/2009] [Indexed: 11/25/2022]
Abstract
We purified recombinant glucose-6-phosphate isomerase from Pyrococcus furiosus using heat treatment and Hi-Trap anion-exchange chromatography with a final specific activity of 0.39 U mg(-1). The activity of the glucose-6-phosphate isomerase for L: -talose isomerization was optimal at pH 7.0, 95 degrees C, and 1.5 mM Co(2+). The half-lives of the enzyme at 65 degrees C, 75 degrees C, 85 degrees C, and 95 degrees C were 170, 41, 19, and 7.9 h, respectively. Glucose-6-phosphate isomerase catalyzed the interconversion between two different aldoses and ketose for all pentoses and hexoses via two isomerization reactions. This enzyme has a unique activity order as follows: aldose substrates with hydroxyl groups oriented in the same direction at C2, C3, and C4 > C2 and C4 > C2 and C3 > C3 and C4. L: -Talose and D: -ribulose exhibited the most preferred substrates among the aldoses and ketoses, respectively. L: -Talose was converted to L: -tagatose and L: -galactose by glucose-6-phosphate isomerase with 80% and 5% conversion yields after about 420 min, respectively, whereas D: -ribulose was converted to D: -ribose and D: -arabinose with 53% and 8% conversion yields after about 240 min, respectively.
Collapse
Affiliation(s)
- Ran-Young Yoon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 143-701, South Korea
| | | | | | | |
Collapse
|
20
|
Wu R, Xie H, Cao Z, Mo Y. Combined Quantum Mechanics/Molecular Mechanics Study on the Reversible Isomerization of Glucose and Fructose Catalyzed by Pyrococcus furiosus Phosphoglucose Isomerase. J Am Chem Soc 2008; 130:7022-31. [DOI: 10.1021/ja710633c] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ruibo Wu
- Department of Chemistry and State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, China, and Department of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008
| | - Hujun Xie
- Department of Chemistry and State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, China, and Department of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008
| | - Zexing Cao
- Department of Chemistry and State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, China, and Department of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008
| | - Yirong Mo
- Department of Chemistry and State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, China, and Department of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008
| |
Collapse
|
21
|
Taylor PL, Blakely KM, de Leon GP, Walker JR, McArthur F, Evdokimova E, Zhang K, Valvano MA, Wright GD, Junop MS. Structure and function of sedoheptulose-7-phosphate isomerase, a critical enzyme for lipopolysaccharide biosynthesis and a target for antibiotic adjuvants. J Biol Chem 2007; 283:2835-45. [PMID: 18056714 DOI: 10.1074/jbc.m706163200] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The barrier imposed by lipopolysaccharide (LPS) in the outer membrane of Gram-negative bacteria presents a significant challenge in treatment of these organisms with otherwise effective hydrophobic antibiotics. The absence of L-glycero-D-manno-heptose in the LPS molecule is associated with a dramatically increased bacterial susceptibility to hydrophobic antibiotics and thus enzymes in the ADP-heptose biosynthesis pathway are of significant interest. GmhA catalyzes the isomerization of D-sedoheptulose 7-phosphate into D-glycero-D-manno-heptose 7-phosphate, the first committed step in the formation of ADP-heptose. Here we report structures of GmhA from Escherichia coli and Pseudomonas aeruginosa in apo, substrate, and product-bound forms, which together suggest that GmhA adopts two distinct conformations during isomerization through reorganization of quaternary structure. Biochemical characterization of GmhA mutants, combined with in vivo analysis of LPS biosynthesis and novobiocin susceptibility, identifies key catalytic residues. We postulate GmhA acts through an enediol-intermediate isomerase mechanism.
Collapse
Affiliation(s)
- Patricia L Taylor
- Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, 1200 Main Street West, Hamilton, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Saito Y, Ashida H, Kojima C, Tamura H, Matsumura H, Kai Y, Yokota A. Enzymatic characterization of 5-methylthioribose 1-phosphate isomerase from Bacillus subtilis. Biosci Biotechnol Biochem 2007; 71:2021-8. [PMID: 17690466 DOI: 10.1271/bbb.70209] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The product of the mtnA gene of Bacillus subtilis catalyzes the isomerization of 5-methylthioribose 1-phosphate (MTR-1-P) to 5-methylthioribulose 1-phosphate (MTRu-1-P). The catalysis of MtnA is a novel isomerization of an aldose phosphate harboring a phosphate group on the hemiacetal group. This enzyme is distributed widely among bacteria through higher eukaryotes. The isomerase reaction analyzed using the recombinant B. subtilis enzyme showed a Michaelis constant for MTR-1-P of 138 microM, and showed that the maximum velocity of the reaction was 20.4 micromol min(-1) (mg protein)(-1). The optimum reaction temperature and reaction pH were 35 degrees C and 8.1. The activation energy of the reaction was calculated to be 68.7 kJ mol(-1). The enzyme, with a molecular mass of 76 kDa, was composed of two subunits. The equilibrium constant in the reversible isomerase reaction [MTRu-1-P]/[MTR-1-P] was 6. We discuss the possible reaction mechanism.
Collapse
Affiliation(s)
- Yohtaro Saito
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Molecular paramagnetism pervades the bioinorganic chemistry of V, Mn, Fe, Co, Ni, Cu, Mo, W, and of a number of non-biological transition elements. To date we can look back at half a century of fruitful EPR studies on metalloproteins, and against this background evaluate the significance of modern EPR spectroscopy from the perspective of a biochemist, making a distinction between conventional continuous wave X-band spectroscopy as a reliable work horse with broad, established applicability even on crude preparations, vs. a diffuse set of "advanced EPR" technologies whose practical application typically calls for narrowly focused research hypotheses and very high quality samples. The type of knowledge on metalloproteins that is readily obtainable with EPR spectroscopy, is explained with illustrative examples, as is the relation between experimental complexity and the spin value of the system.
Collapse
Affiliation(s)
- Wilfred R Hagen
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628, BC Delft, The Netherlands.
| |
Collapse
|